JP2003326244A - Method and apparatus for restoring contaminated soil by microbe on-site - Google Patents

Method and apparatus for restoring contaminated soil by microbe on-site

Info

Publication number
JP2003326244A
JP2003326244A JP2002135543A JP2002135543A JP2003326244A JP 2003326244 A JP2003326244 A JP 2003326244A JP 2002135543 A JP2002135543 A JP 2002135543A JP 2002135543 A JP2002135543 A JP 2002135543A JP 2003326244 A JP2003326244 A JP 2003326244A
Authority
JP
Japan
Prior art keywords
soil
contaminated soil
packed bed
carrier
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002135543A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
英男 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002135543A priority Critical patent/JP2003326244A/en
Publication of JP2003326244A publication Critical patent/JP2003326244A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for easily decontaminating/ restoring contaminated soil at a contaminated site without moving the contaminated soil from the contaminated site and without pumping up contaminated ground water. <P>SOLUTION: A packed layer packed with a carrier carrying a microbe having the ability to decompose a soil contaminating substance is formed in a hollow tubular body arranged in the contaminated soil. Air and the ground water containing the soil contaminating substance extracted by being brought into contact with the contaminated soil are sent in the packed layer from the lower part of the packed layer and the soil contaminating substance is decomposed by bringing the sent ground water into contact with the carrier. The soil contaminating substance-decomposed/removed ground water is discharged from the upper part of the packed layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は汚染された土壌の修
復方法及び修復装置に関するもので、とくに土壌汚染物
質分解能を有する微生物を利用した汚染土壌修復方法、
すなわちバイオレメディエーションとその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for repairing contaminated soil, and particularly to a method for repairing contaminated soil using microorganisms capable of degrading soil pollutants,
That is, it relates to bioremediation and its device.

【0002】[0002]

【従来の技術】近年、各種の難分解性有害化学物質が土
壌、河川、海、空気中等において検出されており、これ
らの物質による汚染の進行が問題となっている。なかで
も重金属や有機塩素系化合物による土壌汚染は深刻な問
題となってきており、汚染の拡大を防止していくととも
に、汚染された環境を再生していく技術の確立が強く望
まれている。例えば、重金属化合物を扱う化学工場、ガ
ス製造プラント、製油所、石油精製所、燃料基地、パル
プ工場などの廃棄物処理サイトや跡地などにおいて土壌
汚染が問題となっており、これらの汚染土壌を浄化する
ための土壌修復方法の改良、開発に対するニーズが高
い。
2. Description of the Related Art In recent years, various kinds of hardly decomposable harmful chemical substances have been detected in soil, rivers, sea, air, etc., and the progress of pollution by these substances has become a problem. In particular, soil pollution due to heavy metals and organic chlorine compounds has become a serious problem, and it is strongly desired to establish a technology to prevent the spread of pollution and to regenerate the polluted environment. For example, soil pollution has become a problem at waste treatment sites and sites such as chemical plants, gas manufacturing plants, oil refineries, oil refineries, fuel stations, and pulp plants that handle heavy metal compounds. There is a high need for improvement and development of soil remediation methods to achieve this.

【0003】また、土壌汚染は土地の再利用を妨げるば
かりでなく、汚染物質が地下水に流れ込んで拡散するこ
とによる汚染地域の拡大を引き起こす危険性が大きいの
で、汚染された土壌の修復技術が早急に確立されること
が強く要望されている。
In addition, soil pollution not only hinders the reuse of land, but also has a high risk of expanding the contaminated area by pollutants flowing into and diffusing into groundwater. There is a strong demand for it to be established.

【0004】汚染された土壌から汚染物質を取り除くこ
とにより土壌を元の状態に復帰させる土壌修復法として
は種々の方法が知られ、また試みられている。例えば、
汚染された地下水を汲み上げて揮発性の有機物を分離
し、活性炭に吸着させる曝気処理、汚染土壌を太陽や熱
源にさらし、揮発性有機物を熱により蒸発させる加熱処
理、汚染土壌にボーリング穴を設け、真空で汚染物質を
吸引する真空抽出、また汚染土壌を真空釜に入れて加熱
し吸引して抽出する真空釜処理等が行われている。
Various methods have been known and tried as soil restoration methods for restoring soil to its original state by removing pollutants from polluted soil. For example,
Pumping polluted groundwater to separate volatile organic substances, aeration treatment to adsorb to activated carbon, exposing contaminated soil to the sun and heat source, heat treatment to evaporate volatile organic substances by heat, provide boring holes in contaminated soil, Vacuum extraction for sucking pollutants by vacuum, and vacuum pot processing for putting contaminated soil in a vacuum pot to heat and suck to extract are performed.

【0005】また、汚染された地下水を汲み上げて処理
する方法では、汲み上げや処理に多大なエネルギーを要
し、浄化のための地上施設も必要であり、更に地盤沈下
を生じたり、地下水流の下流側での利用に支障を生じた
り、伏流水の変化による下流生態系への影響等派生する
問題に対する考慮も必要である。一方、汚染土壌そのも
のを取り出して除害処理して埋め戻す方法は,一層のコ
ストを必要とする。このように、これらの物理化学的方
法は、高いコスト、低い操作性、低濃度で存在する汚染
物質の処理の困難性など、数多くの問題があり、とくに
汚染が高濃度の場合以外では多くの場合、実際的な方法
ではない。
Further, in the method of pumping up and treating contaminated groundwater, a great amount of energy is required for pumping up and treating, ground facilities for purification are also required, and further ground subsidence occurs, and downstream of groundwater flow. It is also necessary to consider the problems that may occur in the use on the local side and that may occur due to changes in underground water such as impacts on downstream ecosystems. On the other hand, the method of taking out the contaminated soil itself, detoxifying it, and backfilling it requires further cost. Thus, these physicochemical methods have many problems, such as high cost, low operability, and difficulty in treating pollutants that exist at low concentrations, especially when the pollution is not at high concentrations. If that's not the practical way.

【0006】そのため、土壌修復法のなかでも、微生物
を利用した土壌浄化による修復、いわゆるバイオレメデ
ィエーションに対する期待が高まっている。中でも汚染
土壌を堀り上げたり、移動したりしない原位置すなわち
オンサイトでの土壌修復がコストと労力の面から実用的
とされている。微生物、特に土壌に棲息できる微生物が
汚染物質を分解する方法であれば、自然のエネルギーに
より浄化が行われ、投入エネルギーも小さく、また分解
も水や炭酸ガスにまで進められる。微生物を利用する土
壌修復方法としては、対象とされる土壌中にもともと自
然に存在する微生物の機能を高めて汚染物質を分解して
無害化するという生態系の自浄能力を強化する方法や、
更にこの技術を一歩進めて外部から汚染物質の分解能を
有する菌(以後、汚染物質分解菌又は単に分解菌と呼ぶ
こともある)を積極的に汚染土壌に導入し、汚染土壌の
修復を促進する方法等が試みられている。
[0006] Therefore, among the soil remediation methods, expectations for remediation by soil purification using microorganisms, so-called bioremediation, are increasing. In particular, in-situ soil restoration that does not dug or move contaminated soil, that is, on-site, is considered practical from the viewpoint of cost and labor. If microorganisms, especially microorganisms that can live in soil, decompose pollutants, purification is performed by natural energy, the input energy is small, and the decomposition proceeds to water and carbon dioxide. As a soil remediation method using microorganisms, a method of enhancing the self-cleaning ability of the ecosystem by degrading pollutants and detoxifying them by enhancing the function of microorganisms that naturally exist in the target soil,
Taking this technology one step further, bacteria that have the ability to decompose pollutants (hereinafter also referred to as pollutant-decomposing bacteria or simply decomposing bacteria) are actively introduced into the contaminated soil to promote the repair of the contaminated soil. Methods are being tried.

【0007】土壌汚染を引き起こしている難分解性化合
物、例えば、芳香族炭化水素や有機塩素系化合物を分解
する微生物は数多く知られている。しかしながら、現実
の汚染土壌にこれらの菌を単にそのまま散布した場合、
散布時の菌の初期濃度に対して土壌中での菌濃度は時間
の経過とともに減少し、汚染現場の修復効率は低下して
しまう。これは「汚染物質の分布」と「微生物分解材料
の散布」では時間的差異、物理的性質の差異がありこの
両方を一致させることが困難なためである。この難点を
克服するため、微生物分解材料を地中内に強制的に配置
する施工を行なったり、材料を土質層内に挿入したパイ
プで圧送する等の方法が用いられてきた。
Many microorganisms are known that decompose persistent compounds causing soil pollution, such as aromatic hydrocarbons and organic chlorine compounds. However, when these bacteria are simply sprayed directly on the actual contaminated soil,
The bacterial concentration in the soil decreases with time as compared with the initial bacterial concentration at the time of spraying, and the repair efficiency at the polluted site decreases. This is because it is difficult to match both of "distribution of pollutants" and "dispersion of microbial decomposition material" due to differences in time and physical properties. In order to overcome this difficulty, there have been used methods such as forcibly arranging the microbial decomposition material in the ground, and pumping the material with a pipe inserted into the soil layer.

【0008】例えば,米国特許 USP-5120160 (Environ,
Reclamation Sys. Inc.)、 USP-5080782 (Environ. Sc
i. & Eng.Inc.)、USP5,032,042 (New Jersey Institute
of Technology)及びドイツ特許DE-3839093 C2 (BuaerS
pezialitiefbau Gmbh)等の各公報には、地中内へ微生物
や栄養物を供給して、汚染物質を生物浄化する方法が提
案されている。しかし、効率低下を防ぐには、微生物散
布をたびたび繰り返す必要があって手間とコストがかか
る上に、微生物散布に伴う副次的な汚染を引き起こす惧
れもある。しかも微生物の撒布は汚染土壌の深さ方向の
供給不均一を招いて汚染除去効果が低いレベルに留まり
がちである。従って、汚染土壌中において投与分解菌を
均一に分布させ、その菌濃度を高く保持することが望ま
れている。
For example, US Pat. No. 5,120,160 (Environ,
Reclamation Sys. Inc.), USP-5080782 (Environ. Sc
i. & Eng. Inc.), USP 5,032,042 (New Jersey Institute
of Technology) and German Patent DE-3839093 C2 (BuaerS
Each of the publications such as pezialitiefbau Gmbh) proposes a method of biologically purifying pollutants by supplying microorganisms and nutrients into the ground. However, in order to prevent a decrease in efficiency, it is necessary to repeat microbial application frequently, which is time-consuming and costly, and may cause secondary contamination due to microbial application. Moreover, spattering of microorganisms tends to cause uneven supply of contaminated soil in the depth direction, and the decontamination effect tends to remain at a low level. Therefore, it is desired to uniformly distribute the administered degrading bacteria in the contaminated soil and maintain the concentration of the bacteria high.

【0009】[0009]

【発明が解決しようとする課題】上記の汚染土壌の修復
技術の現状が示すように、汚染地下水の汲み上げや汚染
土壌の掘り返しなどを要しない簡易で効果的な汚染土壌
修復方法を求める一般的な要請に対して、未だに満足で
きる手段が提供されるに至っていない。本発明は、上記
した背景からなされたものであり、その目的は、汚染土
壌を汚染現場から移動したり、汚染地下水の汲み上げた
りすることなく簡易に汚染土壌を浄化(土壌修復ともい
う)する方法を提供することである。より具体的には、
汚染物質分解能を有する微生物を汚染土壌に作用させる
ことにより土壌汚染領域内で土壌修復(以後オンサイト
土壌修復ともいう)を行なうことができて、かつ修復操
作も簡便な汚染土壌修復方法及び修復装置を提供するこ
とにある。
As indicated by the current state of the art of remediating contaminated soil, it is common to find a simple and effective method for remediating contaminated soil that does not require pumping of contaminated groundwater or digging of contaminated soil. In response to the request, no satisfactory means have been provided yet. The present invention has been made from the background described above, and an object thereof is a method for easily purifying contaminated soil (also referred to as soil restoration) without moving the contaminated soil from the contaminated site or pumping contaminated groundwater. Is to provide. More specifically,
Soil remediation method and remediation device that can perform soil remediation (hereinafter also referred to as on-site soil remediation) in a soil contaminated area by causing a microorganism having a pollutant decomposing ability to act on the contaminated soil, and a simple remedial operation To provide.

【0010】[0010]

【課題を解決するための手段】上記した本発明の目的
は、下記の本発明の微生物による汚染土壌のオンサイト
修復方法とその方法が適用されるオンサイト修復手段と
によって実現させることができた。
The above-mentioned object of the present invention can be realized by the following on-site repairing method for soil contaminated by microorganisms of the present invention and on-site repairing means to which the method is applied. .

【0011】1.汚染土壌中に設置した中空管状体に、
土壌汚染物質分解能を有する微生物(以後土壌汚染物質
分解菌とも呼ぶ)を担持した担体を充填した充填層を設
け、該充填層の下部から汚染土壌と接して抽出された土
壌汚染物質を含有する地中水と、空気とを充填層内に送
りこみ、該地中水と該担体とを接触させて汚染物の分解
を行なわせ、汚染物が分解・除去された地中水を該充填
層の上部から排出することを特徴とする汚染土壌のオン
サイト修復方法。
1. In a hollow tubular body installed in contaminated soil,
A land containing a soil pollutant extracted by contacting with the contaminated soil from the lower part of the packed bed, provided with a packed bed filled with a carrier carrying a microorganism capable of degrading the soil pollutant (hereinafter also referred to as a soil pollutant degrading bacterium) Sending intermediate water and air into the packed bed to bring the underground water and the carrier into contact with each other to decompose the contaminants, and decompose the underground water into which the contaminants are decomposed and removed. An on-site remediation method for contaminated soil, characterized by discharging from the upper part.

【0012】上記1の汚染土壌のオンサイト修復方法の
特に好ましい態様として下記(a)〜(j)が挙げられ
る。 (a)管状体の周辺の汚染土壌領域に散水又は注水を行
って吸入孔に到達する地中水量を増加させることを特徴
とする上記1に記載の汚染土壌のオンサイト修復方法。 (b)前項(a)において、散水又は注水する水に土壌
汚染物質分解菌の栄養物を含有させることを特徴とする
汚染土壌のオンサイト修復方法。 (c)前項(a)又は(b)において、管状体底部に吸
入孔から取り入れられた地中水の貯留槽が設けられてい
ることを特徴とする汚染土壌のオンサイト修復方法。 (d)管状体の充填層より上部に地中水吸い上げ機構を
設けて、管状体の充填層よりも下部より管状体内に取り
入れた地中水を充填層に吸い上げ可能で、かつ充填層内
の滞留時間を調節可能としたことを特徴とする汚染土壌
のオンサイト修復方法。
The following (a) to (j) are mentioned as particularly preferable embodiments of the on-site restoration method for contaminated soil as described above. (A) The on-site restoration method for contaminated soil according to the above 1, wherein the contaminated soil area around the tubular body is watered or poured to increase the amount of underground water reaching the suction hole. (B) An on-site remediation method for contaminated soil according to the preceding item (a), characterized in that the water to be sprinkled or poured contains nutrients of soil contaminant degrading bacteria. (C) An on-site restoration method for contaminated soil according to the above (a) or (b), wherein a reservoir for underground water taken in through a suction hole is provided at the bottom of the tubular body. (D) An underground water suction mechanism is provided above the packed bed of the tubular body so that the underground water taken into the tubular body from below the packed bed of the tubular body can be sucked up into the packed bed, and An on-site remediation method for contaminated soil, characterized in that the residence time can be adjusted.

【0013】(e)管状体底部が地下水脈に達していな
いことを特徴とする汚染土壌のオンサイト修復方法。 (f)充填層が、異なる種類の土壌汚染物質分解菌を担
持した担体を充填した複数のサブ充填層から構成されて
いることを特徴とする汚染土壌のオンサイト修復方法。 (g)充填層が、異なる種類の土壌汚染物質分解菌を担
持した担体を混合して充填した充填層であることを特徴
とする汚染土壌のオンサイト修復方法。 (h)土壌汚染物質分解菌を担持した担持物質が生分解
性であることを特徴とする汚染土壌のオンサイト修復方
法。
(E) A method for on-site restoration of contaminated soil, wherein the bottom of the tubular body does not reach the groundwater vein. (F) An on-site restoration method for contaminated soil, wherein the packed layer is composed of a plurality of sub-packed layers filled with a carrier carrying different types of soil contaminant degrading bacteria. (G) The on-site restoration method for contaminated soil, wherein the packed bed is a packed bed in which carriers carrying different types of soil contaminant decomposing bacteria are mixed and packed. (H) An on-site remediation method for contaminated soil, characterized in that the carrier substance carrying soil pollutant degrading bacteria is biodegradable.

【0014】(i)土壌汚染物質分解菌がEDTA分解
能、フェノール類分解能及び界面活性剤分解能の少なく
とも一つを有する微生物であることを特徴とする汚染土
壌のオンサイト修復方法。 (j)充填層が、土壌汚染物質分解菌を担持した担体と
該分解菌の栄養物を徐放可能に担持した担体とを充填し
た混合充填層であることを特徴とする汚染土壌のオンサ
イト修復方法。
(I) An on-site remediation method for contaminated soil, wherein the soil pollutant-degrading bacterium is a microorganism having at least one of EDTA decomposing ability, phenol decomposing ability and surfactant decomposing ability. (J) On-site of contaminated soil, wherein the packed bed is a mixed packed bed filled with a carrier carrying a soil pollutant decomposing bacterium and a carrier carrying a nutrient for the decomposing bacterium so that the nutrient can be released slowly. How to repair.

【0015】2. 汚染土壌中に設置した中空管状体
に、土壌汚染物質分解能を有する微生物を担持した担
体を充填した充填層を設け、該管状体の充填層部分の
下部に、汚染土壌と接して抽出された土壌汚染物質を含
有する地中水を管状体内に取りこむ吸引孔と、充填層内
に空気を送りこむ送気口とを設け、該管状体の充填層
部分の上部に、充填層を貫流中に汚染物質が分解・除去
された地中水と充填層を貫流した空気とを該管状体外へ
排出する排出口を設けたことを特徴とする汚染土壌のオ
ンサイト修復装置。
2. A hollow tubular body placed in contaminated soil is provided with a packed bed filled with a carrier carrying microorganisms capable of degrading soil pollutants, and the soil extracted in contact with the contaminated soil is provided below the packed bed portion of the tubular body. A suction hole for taking underground water containing a pollutant into the tubular body and an air supply port for feeding air into the packed bed are provided, and the pollutant is passed through the packed bed above the packed bed portion of the tubular body. An on-site remediation device for contaminated soil, comprising an outlet for discharging underground water decomposed and removed and air flowing through a packed layer to the outside of the tubular body.

【0016】上記2の汚染土壌のオンサイト修復手段の
特に好ましい態様として下記(k)〜(p)の態様を挙
げることができる。 (k)車戴可能であって汚染地域間で移設できることを
特徴とする汚染土壌のオンサイト修復装置。 (l)充填層部分を管状体から着脱自在のカセット型と
して必要に応じて交換可能としたことを特徴とする汚染
土壌のオンサイト修復装置。
The following (k) to (p) modes can be mentioned as particularly preferable modes of the on-site repairing means for the contaminated soil described above. (K) An on-site remediation device for contaminated soil, which can be moved by car and can be relocated between contaminated areas. (L) An on-site remediation device for contaminated soil, wherein the packed bed portion is a detachable cassette type from a tubular body and can be exchanged as needed.

【0017】(m)管状体底部に吸入孔から取り入れら
れた地中水の貯留槽が設けられていることを特徴とする
汚染土壌のオンサイト修復装置。 (n)充填層が、異なる種類の土壌汚染物質分解菌を担
持した担体を充填した複数のサブ充填層から構成されて
いることを特徴とする汚染土壌のオンサイト修復装置。 (o)管状体の充填層部分の下部に、土壌汚染物質分解
菌の栄養物を含有する水溶液を供給する供給管を設けた
ことを特徴とする汚染土壌のオンサイト修復装置。 (p)管状体の充填層より上部に地中水吸い上げ機構を
設けて、管状体の充填層よりも下部より管状体内に取り
入れた地中水を充填層に吸い上げ可能で、かつ充填層内
に滞留させることも可能としたことを特徴とする汚染土
壌のオンサイト修復装置。
(M) An on-site remediation device for contaminated soil, characterized in that a reservoir for underground water taken in through a suction hole is provided at the bottom of the tubular body. (N) An on-site repair apparatus for contaminated soil, wherein the packed layer is composed of a plurality of sub-packed layers filled with a carrier carrying different types of soil contaminant degrading bacteria. (O) An on-site repair apparatus for contaminated soil, characterized in that a supply pipe for supplying an aqueous solution containing a nutrient for soil pollutant-decomposing bacteria is provided below the packed bed portion of the tubular body. (P) An underground water suction mechanism is provided above the packed bed of the tubular body so that the underground water taken into the tubular body from below the packed bed of the tubular body can be sucked up into the packed bed, and within the packed bed. An on-site remediation device for contaminated soil, which can be retained.

【0018】本発明の土壌修復方法とその装置の特徴
は、汚染土壌に接触して汚染物質を含有している地中水
を土中拡散により管状体内に取り込んで、管状体内の土
壌汚染物質分解菌を 担持した担体が充填され、かつ曝
気用空気で賦活された充填層を貫流させて充填層上部か
ら管状体外へ排出するという構成の単純性と操作の簡易
性にある。この方法及び装置によって、効率的な土壌浄
化を達成できること、かつ微生物による副次的な環境汚
濁も抑止されること、地下水の汲み上げや土壌の掘り返
し,移動を要しないこと及び装置と操作の簡易・簡便性
から、必要により汚染領域間で移動もできるという性能
上の特徴が発揮される。以下、本発明をさらに具体的に
詳述する。
The soil remediation method and the apparatus therefor of the present invention are characterized in that groundwater containing pollutants in contact with contaminated soil is taken into the tubular body by diffusion in the soil to decompose the soil pollutants in the tubular body. The structure is simple and easy to operate, in which the carrier supporting the bacteria is filled and the packed bed activated by aeration air is passed through and discharged from the upper part of the packed bed to the outside of the tubular body. With this method and device, efficient soil purification can be achieved, secondary environmental pollution due to microorganisms can be suppressed, pumping of groundwater, excavation and movement of soil are not required, and the device and operation can be simplified. Due to its simplicity, it has the performance feature that it can be moved between contaminated areas if necessary. Hereinafter, the present invention will be described in more detail.

【0019】[0019]

【発明の実施の形態】はじめに、本発明のオンサイト汚
染土壌修復方法及びその装置の概略を図1を用いて説明
する。図1は、本発明のオンサイト汚染土壌修復方法に
用いる装置を汚染土壌中に設置した配置状態を示す概略
断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION First, the outline of an on-site contaminated soil restoration method and apparatus of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing an arrangement state in which an apparatus used in the on-site contaminated soil restoration method of the present invention is installed in contaminated soil.

【0020】図1において、オンサイト汚染土壌修復装
置は、管状体1と空気Aを供給する送気管15から構成
されていて、管状体1の主要部は、充填層14が占めて
おり、充填層14には汚染物質分解菌を 担持した担体
11を充填されている。充填層14の下部には汚染土壌
4に含まれる地中水Wを取り入れるための通常複数個の
吸入孔13が設けられ、充填層14の上部に充填層14
を上方へ移動しながら、土壌汚染物質の分解・除去を受
けた地中水Wを装置外に排出する排出口18と、送気管
15から送気口を経て管状体内に取りこまれて充填層1
4を通過した空気12を図示しない排気ファンによって
大気中に戻す排気口A’が設けられている。
In FIG. 1, the on-site contaminated soil remediation device is composed of a tubular body 1 and an air supply pipe 15 for supplying air A. A main part of the tubular body 1 is occupied by a packed bed 14, The layer 14 is filled with a carrier 11 carrying contaminant decomposing bacteria. A plurality of suction holes 13 for taking in the underground water W contained in the contaminated soil 4 are usually provided below the packed bed 14, and the packed bed 14 is provided above the packed bed 14.
While moving upward, the discharge port 18 that discharges underground water W that has undergone decomposition and removal of soil pollutants to the outside of the device, and the packed layer that is taken from the air supply pipe 15 into the tubular body through the air supply port. 1
There is provided an exhaust port A'for returning the air 12 that has passed through 4 to the atmosphere by an exhaust fan (not shown).

【0021】図2は、本発明のオンサイト汚染土壌修復
方法に用いる別の態様の装置を示す概略断面図で、図1
同様汚染土壌中に設置した配置状態を示してある。図1
と図2では、共通の部分には同じ部材番号を付けてあ
る。図2は、汚染物質分解菌に与える栄養分を含んだ水
溶液Fを供給する給液管16が設けられていて,充填層
下部から管状体14内に該水溶液Fが取り入れられるこ
とと、とくに液面17まで充填層内が水で満たされてい
る態様であることを除けば、図1の装置と同じである。
FIG. 2 is a schematic sectional view showing an apparatus of another embodiment used in the method for repairing on-site contaminated soil according to the present invention.
Similarly, it shows the arrangement state installed in the contaminated soil. Figure 1
2 and FIG. 2, common parts are given the same member numbers. FIG. 2 shows that a liquid supply pipe 16 for supplying an aqueous solution F containing a nutrient to be given to the pollutant degrading bacteria is provided, and that the aqueous solution F is taken into the tubular body 14 from the lower part of the packed bed, The apparatus is the same as that of FIG. 1 except that the packed bed is filled with water up to 17.

【0022】図3は、本発明のオンサイト汚染土壌修復
方法に用いるさらに別の態様の装置を示す概略断面図
で、図1同様汚染土壌中に設置した配置状態を示してあ
る。図3では、図1及び図2と共通の部分には同じ部材
番号を付けてある。図3は、管状体の上部(充填層より
も上の部分)に地中水吸い上げ用のポンプPが設けら
れ、同時に送気管15、給液管16及び排出口18に
は、それぞれ開閉弁C1、C2及びC3が設けられてい
て必要に応じて、送気、給液あるいは排出を一時停止す
ることも可能にしてある。図3において上記以外の構成
は図2と同じである。
FIG. 3 is a schematic sectional view showing an apparatus of still another embodiment used in the method for repairing on-site contaminated soil according to the present invention, and shows the arrangement state installed in contaminated soil like FIG. In FIG. 3, parts common to those in FIGS. 1 and 2 are given the same member numbers. In FIG. 3, a pump P for sucking underground water is provided in the upper part (portion above the packed bed) of the tubular body, and at the same time, the air supply pipe 15, the liquid supply pipe 16 and the discharge port 18 are each provided with an opening / closing valve C1. , C2 and C3 are provided so that the air supply, the liquid supply, or the discharge can be temporarily stopped if necessary. The configuration of FIG. 3 other than the above is the same as that of FIG.

【0023】次ぎに図1及び図2を用いて、本発明の汚
染土壌のオンサイト修復方法を説明する。この修復装置
は土壌汚染領域内に設けられており、空気取り入れ口A
と空気排出口A’及び図2の態様の水溶液Fの供給管1
6の上端部以外は地中に埋めこんであることが好まし
い。また、汚染物質分解処理がなされた地中水を地中に
還流する排出口18は、地中であっても地表にあっても
よく、充填層を貫通した空気を大気中に戻す排気口A’
を兼ねていてもよいが、管理上は排出口18は地表にあ
る方が好ましい。
Next, the on-site repair method for contaminated soil according to the present invention will be described with reference to FIGS. 1 and 2. This remediation device is located in the soil contamination area and has an air intake A
And the air outlet A'and the supply pipe 1 for the aqueous solution F of the embodiment shown in FIG.
Other than the upper end portion of 6 is preferably buried in the ground. Further, the exhaust port 18 for returning the underground water, which has been subjected to the pollutant decomposition treatment, to the ground may be in the ground or on the surface of the ground, and the exhaust port A for returning the air penetrating the packed bed to the atmosphere. '
However, it is preferable from the viewpoint of management that the discharge port 18 is located on the ground surface.

【0024】汚染土壌中4に含まれている地中水Wは汚
染物質を含有しており、管状体1の図示しない排気ファ
ンによる吸引作用によって地中を拡散移動して吸入口1
3を経て管上体内に取りこまれる。取りこまれた地中水
Wは、送気管15により取り入れられた空気Aと共に吸
引作用によって充填層14を上方へ移動しながら、単体
11に 担持されている汚染物質分解菌によって分解さ
れ、汚染が除かれる。汚染物質分解菌は通常好気性菌で
あって送気管から取り入れられた空気Aによって賦活さ
れ、汚染除去効果を高める作用をも有している。浄化さ
れた地中水は排出口18から排出される。
The underground water W contained in the contaminated soil 4 contains pollutants, and is diffused and moved in the ground by the suction action of the exhaust fan (not shown) of the tubular body 1, and the suction port 1
It is taken into the upper body through 3 The underground water W taken in is moved upward in the packed bed 14 by the suction action together with the air A taken in by the air supply pipe 15, and is decomposed by the pollutant-decomposing bacteria carried on the simple substance 11 to contaminate it. Excluded. The pollutant-decomposing bacteria are usually aerobic bacteria, which are activated by the air A taken in from the air pipe, and also have an action of enhancing the effect of removing contaminants. The purified underground water is discharged from the discharge port 18.

【0025】図3の土壌修復装置の作用を説明する。図
3の装置では、吸引ポンプPを作動させることによって
吸入孔13を経て地中水を管状体1内に取り入れる吸引
作用が強化されて地中水の充填層への供給が円滑とな
る。さらに開閉弁C1、C2及びC3を閉じて吸引ポン
プPを作動させると地中水の吸い上げ作用は一層強化さ
れる。充填層に十分の地中水が供給されたのち、ポンプ
Pを停止させて地中水を充填層内に滞留させることがで
きる。充填層内への滞留は、充填層内の地中水を一度に
入れ替えることも可能であり、あるいは、地中水を一定
量ずつ上部に移動させることによって、地中水を充填層
内を少しづつ上部に移動させることもできる。これらの
操作によって地中水を充填層にとどめて微生物担体11
と必要十分の時間接触させて汚染物質の分解率を向上さ
せることが可能であり、図3の装置を用いる態様によっ
て、本発明の目的を特に効果的に達成することができ
る。
The operation of the soil restoration device of FIG. 3 will be described. In the apparatus of FIG. 3, by operating the suction pump P, the suction action of taking the underground water into the tubular body 1 through the suction hole 13 is enhanced, and the underground water is smoothly supplied to the packed bed. Further, when the on-off valves C1, C2 and C3 are closed and the suction pump P is operated, the suction action of underground water is further enhanced. After sufficient underground water is supplied to the packed bed, the pump P can be stopped to allow the underground water to stay in the packed bed. For the retention in the packed bed, it is possible to replace the underground water in the packed bed at one time, or by moving the underground water to the upper part by a fixed amount, it is possible to slightly move the underground water in the packed bed. It can also be moved to the top one by one. By these operations, the underground water is kept in the packed bed and the microorganism carrier 11
It is possible to improve the decomposition rate of the pollutants by contacting the substrate with the target for a necessary and sufficient time, and the object of the present invention can be achieved particularly effectively by the embodiment using the apparatus of FIG.

【0026】ここで、「地中水」とは、土壌中に存在し
ている水を指しており、帯水層が含む地下水である場合
もあるが、非帯水層に吸蔵されている滞留水の場合もあ
る。本発明では、吸入口13は、地下水の帯水層よりも
上部にあって非帯水層が吸蔵する滞留水であることが好
ましい。その理由は、本発明が意図しているのは、地下
水の浄化ではなく土壌そのものの汚染の修復であって、
汚染した土壌が修復されれば、土壌から地下水への汚染
物質の拡散がなくなるので地下水汚染も自ずから解消し
ていくという技術思想によるものである。汚染が拡散し
た地下水で対策を取るよりは、汚染が濃厚ではあるが地
域的には限定されている汚染源土壌で対策を取る方が低
コストかつ効果的であり、そのためには地下水の帯水層
よりも上層の吸蔵水つまり滞留水で修復操作を行なうこ
とが好ましい。
Here, "underground water" refers to the water existing in the soil, and although it may be groundwater contained in the aquifer, the retention stored in the non-aquifer. It may be water. In the present invention, it is preferable that the suction port 13 is accumulated water that is located above the aquifer of groundwater and is stored in the non-aquifer. The reason is that the purpose of the present invention is not the purification of groundwater but the restoration of pollution of the soil itself,
If the contaminated soil is repaired, the diffusion of pollutants from the soil to the groundwater will cease, and groundwater pollution will be eliminated by itself. It is cheaper and more effective to take countermeasures in pollutant soils that are heavily contaminated but are locally limited, rather than taking measures against groundwater in which the pollution has diffused. It is preferable to perform the repairing operation with the stored water, that is, the accumulated water in the upper layer.

【0027】また、図1〜図3において、送気管から管
状体内に送りこまれた空気12を気泡で示してあるが、
便宜的に気泡としたものであり、管状体内部は必ずしも
地中水で充満していて気泡を生じている場合に限られて
はなく、地中水の吸入穴13から管上帯への取り込みが
遅く、管状体1の内側が気相であって、したがって取り
こんだ空気も気泡ではなく気流の場合もある。特に本発
明の好ましい態様では、管状体内に取り入れられた地中
水が、管状体底部に貯留され、気流と共に充填層を湿ら
せながら上方へ移動していく形態がとられる。充填層内
の湿分変動が少なく、分解菌の活動が安定に行なわれる
利点がある。
Further, in FIGS. 1 to 3, the air 12 sent into the tubular body from the air supply pipe is shown by bubbles.
It is a bubble as a matter of convenience, and the inside of the tubular body is not necessarily limited to the case where bubbles are generated by being filled with underground water, and the intake of underground water from the suction hole 13 to the upper zone of the tube. However, in some cases, the inside of the tubular body 1 is in the vapor phase, and thus the taken-in air is not a bubble but an air stream. In a particularly preferred embodiment of the present invention, the underground water taken into the tubular body is stored at the bottom of the tubular body and moves upward while moistening the packed bed with the airflow. There is little fluctuation in moisture in the packed bed, and the advantages of degrading bacteria are stable.

【0028】地中水Wが安定して供給されるためには、
管状体1が設けられている周辺の汚染土壌4に散水ある
いは注水を行なって地中水を涵養することも好ましい。
その意味で排出口18から排出される浄化された地中水
は管状体1の周辺の汚染土壌4に還流されるのが好まし
い。その場合に、汚染土壌に接する地中水は一般に貧栄
養であることが多いので、汚染物質分解菌の活動を高め
てやるために、散水あるいは注水される水には、汚染物
質分解菌の栄養物を加えた水溶液とすることも好まし
い。栄養物の濃度は汚染物質分解菌の作用が最大になる
ように調節する必要がある。栄養物の濃度が過大である
と汚染物質分解菌の生育はよいが、汚染物質の分解作用
は低下し、濃度が過小であると分解菌の生育が悪く、汚
染物質の分解作用は低下する。
In order to stably supply the underground water W,
It is also preferable that the contaminated soil 4 around which the tubular body 1 is provided is watered or poured to recharge the underground water.
In that sense, the purified underground water discharged from the discharge port 18 is preferably returned to the contaminated soil 4 around the tubular body 1. In that case, the groundwater in contact with the contaminated soil is generally poor in nutrients.Therefore, in order to enhance the activity of the pollutant-decomposing bacteria, the water sprinkled or poured into the water should have nutrients of the pollutant-decomposing bacteria. It is also preferable to use an aqueous solution containing a substance. The concentration of nutrients should be adjusted to maximize the action of pollutant-degrading bacteria. If the concentration of nutrients is too high, the contaminant-degrading bacteria grow well, but the degrading action of the pollutants decreases, and if the concentration is too low, the degrading bacteria grow poorly and the degrading action of pollutants decreases.

【0029】このような汚染物質分解菌の活性の確保の
ために適した栄養物の供給方法としては、栄養物を徐放
可能な状態で充填層に含有させることも効果的な方法で
ある。充填層内の汚染物質分解菌担持担体と栄養物徐放
化体との混合比率は、栄養物の供給速度が汚染物質分解
菌の活性を維持するのに最適な速度であるように選択さ
れる。栄養物の徐放化の好適な手段としては包括法が挙
げられる。その詳細については後述する。
As a method of supplying nutrients suitable for ensuring the activity of such pollutant-decomposing bacteria, it is also effective to include the nutrients in a packed bed in a state where they can be gradually released. The mixing ratio of the carrier carrying pollutant-degrading bacteria and the sustained-release product of nutrients in the packed bed is selected so that the feeding rate of the nutrients is the optimum rate for maintaining the activity of the pollutant-degrading bacteria. . A comprehensive method is mentioned as a suitable means for sustained-release of nutrients. The details will be described later.

【0030】充填層は、交換が容易に行なえるため、あ
るいは2種以上の土壌汚染を修復する必要のためなどの
理由から、2層以上の汚染物質分解菌担持担体のサブ充
填層から構成されていてもよい。前者は可搬性の確保な
ど、後者はたとえば界面活性剤とアミノポリカルボン酸
型キレート剤の両方で汚染された土壌の修復の場合など
が挙げられる。また、場合によっては充填層を上記に多
複合構成とする代わりに、2種以上の汚染物質分解菌担
持担体を混合して充填した充填層としてもよい。充填層
を構成する汚染物質分解菌担持担体は、生分解性の担体
であれば、廃棄による新たな環境負荷の付加がないの
で、本発明の基本的な目的である環境改善の見地から一
層好ましい。
The packed bed is composed of two or more sub-packed layers of the carrier carrying contaminant-degrading bacteria, for reasons such as easy replacement and the need to repair two or more soil contaminations. May be. The former is for ensuring portability, and the latter is for repairing soil contaminated with both a surfactant and an aminopolycarboxylic acid type chelating agent. Further, in some cases, the packed bed may be a packed bed in which two or more kinds of contaminant-degrading bacteria-supporting carriers are mixed and packed, instead of the above-described multi-composite structure. The carrier carrying pollutants degrading bacteria constituting the packed bed is more preferable from the viewpoint of environmental improvement, which is the basic object of the present invention, as long as it is a biodegradable carrier, it does not add a new environmental load due to disposal. .

【0031】[土壌汚染物質分解能を有する微生物]本発
明において担体に保持させる土壌汚染物質分解能を有す
る微生物は、土壌汚染の種類に対応した微生物を用いる
ことができ、汚染物質に対して生分解能を有する限り、
特に限定されないが、芳香族炭化水素系化合物(例え
ば、フェノール類)有機溶剤(例えば、トルエン、トリ
クロロエチレンなど)、有機塩素化合物(例えばダイオ
キシン、PCBなど)等を分解するPseudomonas属に属
する細菌の他に、上記を含む各種有害物質の分解能を有
することが知られているMethylosinus、Methylomonas、
Methylobacterium、Hethylocystis、Alcaligenes、Myco
bacterium、Nitrosomonas、Xanthomonas、Spirillum、V
ibrio、Bacterium、Achromobacter、Acinetobacter、Fl
avobacterium、Chromobacterium、Desulfovibrio、Desu
lfotomaculum、Micrococcus、Sarcina、Bacillus、Stre
ptomyces、Nocardia、Corynebacterium、Pseudobacteri
um、Arthrobacter、Brevibacterium、Saccharomyces、L
actobacillusの各属に属する微生物等を用いることがき
る。
[Microorganism capable of degrading soil pollutants] In the present invention, as the microorganism capable of degrading soil pollutants to be held on the carrier, a microorganism corresponding to the type of soil contamination can be used, and biodegradability against pollutants can be increased. As long as you have
Although not particularly limited, in addition to bacteria belonging to the genus Pseudomonas that decompose aromatic hydrocarbon compounds (eg, phenols) organic solvents (eg, toluene, trichlorethylene, etc.), organic chlorine compounds (eg, dioxins, PCBs, etc.) , Methylosinus, Methylomonas, which are known to have the ability to decompose various harmful substances including the above,
Methylobacterium, Hethylocystis, Alcaligenes, Myco
bacterium, Nitrosomonas, Xanthomonas, Spirillum, V
ibrio, Bacterium, Achromobacter, Acinetobacter, Fl
avobacterium, Chromobacterium, Desulfovibrio, Desu
lfotomaculum, Micrococcus, Sarcina, Bacillus, Stre
ptomyces, Nocardia, Corynebacterium, Pseudobacteri
um, Arthrobacter, Brevibacterium, Saccharomyces, L
A microorganism belonging to each genus of actobacillus can be used.

【0032】また、EDTAなどの金属キレート化剤や
それらが重金属と錯結合した重金属キレートなども重金
属による土壌汚染誘引物質であるが、これらを分解する
能力を有する微生物には、バチルス属に属する細菌とし
て、バチルス エディタビダス(Bacillus editabidus)
、バチルス サブチリス(Bacillus subtilis) 、バチル
ス メガテリウム(Bacillus megaterium) 、バチルス ス
ファエリカス(Bacillus sphaericus) などがあげられ
る。これらは、例えば、Bacillus edtabidus-1(微工研
菌寄 第13449号)、Bacillus subtilis NRIC 0068
、B. megateriumNRIC 1009 、B. sphaericus NRIC 101
3 などとして容易に入手することができる。
Further, metal chelating agents such as EDTA and heavy metal chelates in which they are complex-bonded with heavy metals are also soil pollutants for heavy metals, but microorganisms capable of degrading these are bacteria belonging to the genus Bacillus. As Bacillus editabidus
, Bacillus subtilis, Bacillus megaterium, Bacillus sphaericus, and the like. These are, for example, Bacillus edtabidus-1 (Microbiology Research Institute No. 13449), Bacillus subtilis NRIC 0068.
, B. megaterium NRIC 1009, B. sphaericus NRIC 101
It can be easily obtained as 3.

【0033】別のEDTA分解能を有する微生物として
は、特開昭58−43782号に記載のシュードモナス
属やアルカリゲネス属、Applid and Environmental Mic
robiology vol.56,p.3346-3353(1990)に記載のアグロバ
クテリウム属の菌種、Applidand Environmental Microb
iology vol.58,No.2,Feb.1992,p.671-676に記載のGram-
negative isolateが挙げられる。これらのうち、例え
ば、シュードモナス・エディタビダス(Pseudomonas ed
itabidus) は、Pseudomonas editabidus−1(微工研
菌寄第13634号)として入手できる。
Other microorganisms having the ability to decompose EDTA include Pseudomonas spp., Alcaligenes spp., Applid and Environmental Mic described in JP-A-58-43782.
Applid and Environmental Microb, a species of the genus Agrobacterium described in robiology vol.56, p.3346-3353 (1990).
Gram- described in Biology Vol.58, No.2, Feb.1992, p.671-676
An example is negative isolate. Of these, for example, Pseudomonas ed
itabidus) is available as Pseudomonas editabidus-1 (Microtechnological Research Institute, No. 13634).

【0034】さらに別のEDTA分解能を有する微生物
としては、海洋性菌類であるバチルス・エディタビダス
(Bacillus editabidus)及びメソフィロバクター・エ
ディタビダス(Mesophilobacter editabidus) が挙げ
られる。この有機アミノカルボン酸類分解菌バチルス・
エディタビダス(Bacilluseditabidus)は、Bacillused
itabidus −M1(微工研菌寄第14868号)及びBac
illus editabidus −M2(微工研菌寄第14869
号)の属する種である。又、有機アミノカルボン酸類分
解菌メソフィロバクター・エディタビダス(Mesophilob
acter editabidus) は、Mesophilobacter editabidus
−M3(微工研菌寄第14870号)の属する種であ
る。
Further microorganisms having the ability to decompose EDTA include Bacillus editabidus and Mesophilobacter editabidus, which are marine fungi. This organic aminocarboxylic acid degrading bacterium Bacillus
Editor Vidas (Bacilluseditabidus) is Bacilled
itabidus-M1 (Microtechnology Research Institute, No. 14868) and Bac
illus editabidus-M2
No.) belongs to. In addition, organic aminocarboxylic acid degrading bacteria Mesophyllobacter editor Vidas (Mesophilob
acter editabidus) is Mesophilobacter editabidus
-M3 (Ministry of Industrial Science, Microbiology No. 14870) belongs to.

【0035】また、フェノール類やクレゾール類化合物
を分解する微生物としては、例えばUSP4352886号及
び4556638号に記載のシュウドモナスプチダcb-173(atcc
31800)を挙げることができる。これらの微生物の適用対
象となる汚染土壌は、例えば、フェノール樹脂工場排
水、クレゾール樹脂工場廃水、ビスフェノールAなどか
ら得られるポリフェノール類の工場排水や、それらのフ
ェノール系樹脂を扱う製版工程やフォトレジスト形成工
程から排出されるフェノール類含有排水に汚染された土
壌である。界面活性剤分解性菌としては例えばUSP4
274954号に記載のシュウドモナスフルオレッセン
ス3p(atcc31483)を挙げることができる。これらの微生
物の適用対象となる汚染土壌は、例えば、アニオン系、
ノニオン系あるいはカチオン系の界面活性剤含有排水、
とりわけいわゆるハードな界面活性剤と呼ばれる生分解
性に乏しい界面活性剤含有排水、なかでもスルホン酸基
含有界面活性剤含有排水で汚染された土壌である。
Examples of microorganisms that decompose phenols and cresol compounds include Pseudomonas putida cb-173 (atcc described in US Pat. Nos. 4,352,886 and 4,556,638).
31800). The contaminated soils to which these microorganisms are applied include, for example, phenol resin factory wastewater, cresol resin factory wastewater, factory wastewater of polyphenols obtained from bisphenol A, plate-making processes and photoresist formation for handling those phenolic resins. It is soil contaminated with wastewater containing phenols discharged from the process. Examples of the surfactant-degrading bacteria include USP4
Pseudomonas fluorescens 3p (atcc31483) described in No. 274954 can be mentioned. Contaminated soils to which these microorganisms are applied are, for example, anionic,
Wastewater containing nonionic or cationic surfactant,
Particularly, it is soil contaminated with a so-called hard surfactant-containing wastewater containing a surfactant having a poor biodegradability, especially a wastewater containing a sulfonic acid group-containing surfactant.

【0036】なお、投与微生物としては、既に単離され
ているもののほか、土壌等から目的に応じて新たにスク
リーニングしたものも利用でき、複数の株の混合系でも
よい。なお、スクリーニングにより分離したものの場合
それが未同定のものでも良い。
As the microorganisms to be administered, in addition to those already isolated, those newly screened from soil or the like according to the purpose can be used, and a mixed system of a plurality of strains may be used. In the case of those separated by screening, they may be unidentified.

【0037】[汚染物質分解菌 担持担体]充填層に充填
される微生物担持用担体及び担持方法について説明す
る。微生物担持用担体としては、微生物を 担持して汚
染土壌に投与できる材料であれば、いずれの公知材料を
も使用できるが、有用微生物の効果的な担持という点か
ら、担体表面に微生物が強く吸着するもの、微生物を微
小孔隙中へ侵入させることにより保持力を高めることが
できるような多孔性のもの、ミクロ粒子が凝集して実質
的に吸着あるいは吸蔵表面を増大させたものが望まし
い。具体的には、セルロース、デキストラン、アガロー
スのような多糖類;コラーゲン、ゼラチン、アルブミン
などの不活化蛋白質;イオン交換樹脂、ポリビニルクロ
ライドのような合成高分子化合物;セラミックスや多孔
性ガラスなどの無機物;寒天、アルギン酸、カラギーナ
ンなどの天然炭水化物;さらにはセルロースアセテー
ト、ポリアクリルアミド、ポリビニルアルコール、エポ
キシ樹脂、光硬化性樹脂、ポリエステル、ポリスチレ
ン、ポリウレタンなど包括担体に用いられている高分子
化合物などがあげられる。
[Contaminant-degrading bacterium-supporting carrier] A carrier and a supporting method for supporting a microorganism to be packed in the packed bed will be described. As a carrier for supporting microorganisms, any known material can be used as long as it can support microorganisms and can be administered to contaminated soil, but from the viewpoint of effectively supporting useful microorganisms, microorganisms are strongly adsorbed on the surface of the carrier. It is preferable that the microparticles are porous, the retention can be enhanced by invading the micropores, and the microparticles are aggregated to substantially increase the adsorption or occlusion surface. Specifically, polysaccharides such as cellulose, dextran and agarose; inactivated proteins such as collagen, gelatin and albumin; synthetic polymer compounds such as ion exchange resins and polyvinyl chloride; inorganic substances such as ceramics and porous glass; Examples include natural carbohydrates such as agar, alginic acid, and carrageenan; and polymer compounds used as comprehensive carriers such as cellulose acetate, polyacrylamide, polyvinyl alcohol, epoxy resin, photocurable resin, polyester, polystyrene, and polyurethane.

【0038】また、リグニン、デンプン、キチン、キト
サン、濾紙、木片等からなるものも利用できる。これら
の材料からなる担体は、微生物の保持が比較的穏やかで
増殖した微生物の脱離も容易であり、安価であり、場合
によっては投与微生物自体の栄養物、とくに徐放形態の
栄養物ともなりうるので好ましい。
Further, lignin, starch, chitin, chitosan, filter paper, wood chips and the like can also be used. Carriers made of these materials have a relatively gentle retention of microorganisms, are easy to remove proliferated microorganisms, are inexpensive, and in some cases, serve as nutrients of the administered microorganisms themselves, particularly, nutrients in sustained release form. It is preferable because it can

【0039】本発明においては、土壌汚染物質分解能を
有する微生物を担体に担持、すなわち固定化した状態に
して、充填層を構成させる。微生物固定化方法として
は、担体から生分解菌が流出しないように固定される方
法ならばその種類、形式を問わない。具体的な固定化法
としては、例えば、微生物が付着して生物膜を形成する
ような担体を用いる付着生物膜法、担体と培地を混合し
て微生物を培養する担持培養法、減圧下で孔隙内に微生
物を封入する方法、微生物をゲル内部に閉じ込めた包括
固定化法などを用いることができる。中でも、付着生物
膜法及び包括固定化法が好ましく,とりわけ包括固定化
法が優れている。
In the present invention, the packed bed is constituted by supporting, that is, immobilizing a microorganism having a soil pollutant decomposing ability on a carrier. As a method for immobilizing microorganisms, any type and format can be used as long as it is a method in which biodegradable bacteria are immobilized so as not to flow out from the carrier. Specific immobilization methods include, for example, an adherent biofilm method using a carrier to which a microorganism adheres to form a biofilm, a supported culture method in which a carrier and a medium are mixed to culture a microorganism, and a pore space under reduced pressure. A method of encapsulating microorganisms inside, a method of entrapping entrapment of microorganisms in a gel, and the like can be used. Among them, the adherent biofilm method and the entrapping immobilization method are preferable, and the entrapping immobilization method is particularly excellent.

【0040】付着微生物膜法の特徴は、微生物を高濃度
化することができ、処理効率を向上させることができ
る。また、通常は系外に洗い出されてしまうような増殖
速度が遅い菌を系内に留めることができる。また、微生
物が安定して棲息できる状態に保てることも特徴として
あげられる。
The feature of the adherent microbial membrane method is that the concentration of microorganisms can be increased and the treatment efficiency can be improved. In addition, bacteria with a slow growth rate that would normally be washed out of the system can be retained in the system. Another feature is that microorganisms can be kept in a stable habitat.

【0041】包括固定化法の特徴は、菌体を高濃度に保
持できるため、処理効率を向上させることができ、増殖
の遅い菌を固定化できる。また、pH、温度等の条件変
化に対する耐性が広く、高負荷状態にも耐えることがで
きる。包括固定化法としては、アクリルアミド法、寒天
−アクリルアミド法、PVA−ホウ酸法、PVA−冷凍
法、光硬化性樹脂法、アクリル系合成高分子樹脂法、ポ
リアクリル酸ソーダ法、アルギン酸ナトリウム法、K−
カラギーナン法等、微生物を閉じ込めることができ、土
壌の中で微生物の活性を維持しつつ、物理的強度が大き
く長時間の使用に耐え得るものならば種類を問わない。
The feature of the entrapping immobilization method is that the bacterial cells can be maintained at a high concentration, so that the treatment efficiency can be improved and the bacteria that grow slowly can be immobilized. Further, it has a wide resistance to changes in conditions such as pH and temperature, and can withstand a high load condition. As the entrapping immobilization method, acrylamide method, agar-acrylamide method, PVA-boric acid method, PVA-freezing method, photocurable resin method, acrylic synthetic polymer resin method, sodium polyacrylate method, sodium alginate method, K-
The carrageenan method or the like can be used as long as the microorganisms can be confined, the activity of the microorganisms can be maintained in the soil, and the physical strength is large and the material can be used for a long time.

【0042】包括固定化法の代表例としてアクリルアミ
ド法の場合の微生物固定化ゲルの調製法について説明す
る。固定化ゲルは、架橋剤(例えば、N,N'−メチレ
ンビスアクリルアミド)を含有したアクリルアミドモノ
マー溶液と細菌(MLSS20,000ppm程度の濃
縮菌体)とを懸濁し、重合促進剤(例えば、N,N,
N',N'−テトラメチルエチレンジアミン)、重合開始
剤(例えば、過硫酸カリウム)を添加し、3mm径の塩化
ビニル製チューブ等の成型形に入れ、20℃で重合し、
重合終了後、成型形から押し出し、一定の長さに切断し
て得られる。固定化ゲルの表面の細孔は、細菌より小さ
いため、包括固定化した細菌はリークしにくく、内部で
増殖し、自己分解する。土壌中の汚染成分のみが細孔よ
りゲル内部に入り込み、内部の細菌により処理される。
As a typical example of the entrapping immobilization method, a method for preparing a microorganism-immobilized gel in the case of the acrylamide method will be described. The immobilized gel suspends an acrylamide monomer solution containing a cross-linking agent (for example, N, N′-methylenebisacrylamide) and bacteria (concentrated bacterial cells of MLSS of about 20,000 ppm), and a polymerization accelerator (for example, N, N,
N ′, N′-tetramethylethylenediamine), a polymerization initiator (for example, potassium persulfate) are added, and the mixture is put into a molded form such as a vinyl chloride tube having a diameter of 3 mm and polymerized at 20 ° C.,
After completion of the polymerization, it is obtained by extruding from a molded form and cutting it into a certain length. Since the pores on the surface of the immobilized gel are smaller than bacteria, the entrapped and immobilized bacteria are unlikely to leak, and they grow inside and self-decompose. Only the contaminants in the soil enter the gel through the pores and are treated by the bacteria inside.

【0043】これらの固定化法のより具体的な方法につ
いては「微生物固定化法による排水処理」須藤隆一編著
(産業用水調査会)、稲森悠平の「生物膜法による排水
処理の高度・効率化の動向」,水質汚濁研究,vol.13,N
o.9,1990,p.563-574、稲森悠平らの「高度水処理技術開
発の動向・課題・展望」,用水と廃水,vol.34,No.10,1
992,P.829-835 などに記載されている。
For more specific methods of these immobilization methods, “Wastewater Treatment by Microbial Immobilization Method” edited by Ryuichi Sudo (Industrial Water Research Committee), Yuhei Inamori, “Higher and more efficient wastewater treatment by biofilm method” Trend ”, Water Pollution Research, vol.13, N
o.9,1990, p.563-574, Yuhei Inamori's "Trends, Challenges and Prospects of Advanced Water Treatment Technology Development", Water and Wastewater, vol.34, No.10,1
992, P.829-835 etc.

【0044】更に、担体自体を生分解性の材料から形成
することは、担体を更新する際の不要となった担体の処
分について環境保全観点から問題が少なく好ましい。こ
のような生分解性の担体を用いれば、例えば汚染土壌領
域に廃棄しても担体の消失によって土壌中に放出された
投与微生物は、土壌中の優勢な土着微生物との競争、原
生動物の捕食、あるいは生育にとって苛酷な環境下に置
かれることによって駆逐されてその数が徐々に減少し、
やがて消滅し、その結果土壌中の生態系をもとの状態に
戻すことができる。
Further, it is preferable to form the carrier itself from a biodegradable material, since there is no problem in terms of environmental protection regarding disposal of the carrier when it is no longer needed when renewing the carrier. If such a biodegradable carrier is used, the administered microorganisms released into the soil due to the disappearance of the carrier even if they are discarded in the contaminated soil region, for example, compete with the dominant indigenous microorganisms in the soil and prey on the protozoa. Or, it is exterminated by being placed in a harsh environment for growth and the number gradually decreases,
It will eventually disappear, and as a result the ecosystem in the soil can be restored.

【0045】好ましい生分解性担体としては、セルロー
ス系担体、例えばビスコパール(レンゴー(株)製)及
びキチンキト酸、微生物ポリエステル、ポリ乳酸、ポリ
ラクトン、ポリグリオキシル酸、ポリリンゴ酸、デンプ
ン添加プラスチック、ポリカプロラクトン、(ヒドロキ
シ酪酸)−(ヒドロキシ吉草酸)共重合体、アルギン酸
・ポリエチレングリコールなどからなる高分子担体、例
えばKPパール(関西ペイント(株)製)、ポリアミノ
酸、多糖類ポリマー等の生分解性の高分子材料を用いた
担体が好ましく、中でもセルロース系担体、例えばビス
コパール(レンゴー(株)製)及びキチンキト酸がより
好ましく、例えばキトパール(富士紡績(株)製)を挙
げることができる。
Preferred biodegradable carriers include cellulosic carriers such as Viscopearl (manufactured by Rengo Co.) and chitin chito acid, microbial polyester, polylactic acid, polylactone, polyglyoxylic acid, polymalic acid, starch-added plastic, polycaprolactone. , A (hydroxybutyric acid)-(hydroxyvaleric acid) copolymer, a polymeric carrier composed of alginic acid / polyethylene glycol, for example, KP Pearl (manufactured by Kansai Paint Co., Ltd.), a polyamino acid, a biodegradable polysaccharide polymer, etc. A carrier using a polymer material is preferable, and among them, a cellulose-based carrier, for example, Viscopearl (manufactured by Rengo Co., Ltd.) and chitin chito acid are more preferable, and examples thereof include Chitopearl (manufactured by Fuji Spinning Co., Ltd.).

【0046】好ましい担体の形状としては、ほぼ球状、
ほぼ立方体状、ほぼ直方体状、円筒状あるいはチューブ
状であり、なかでも製造し易いほぼ球状、あるいは比面
積を大きくできるほぼ直方体状であることが好ましい。
担体の製造方法としては、既知の任意の方法を用いるこ
とができる。例えば微生物と担体物質(又はその前駆体)
の混合溶液を不溶解性液体中に滴下、懸濁して液体中で
液滴を固化させて微生物 担持担体粒子の分散物を作る
方法、微生物と担体物質(又はその前駆体)の混合溶液を
低温化、ゲル化剤や固化剤の添加などの方法で固化させ
た後、固化体を適当なサイズに裁断、粉砕して微生物を
担持した粒子を得る方法、微生物と担体物質(又はその
前駆体)の混合溶液を押し出しノズルから不溶解性液体
中に注入して液体中で固化させて微生物 担持担体の糸
状の固化物を得てこれを適当に裁断して円筒状粒子を作
る方法、またこのときの押し出し成形のダイを環状とし
て円環状(チューブ状)の微生物 担持担体粒子を得る
方法を挙げることができる。
The preferred carrier shape is substantially spherical,
It is preferably a substantially cubic shape, a substantially rectangular parallelepiped shape, a cylindrical shape or a tube shape, and among them, a substantially spherical shape that is easy to manufacture or a substantially rectangular parallelepiped shape that can increase the specific area is preferable.
As a method for producing the carrier, any known method can be used. For example, microorganisms and carrier substances (or their precursors)
A method of making a dispersion of microorganism-supporting carrier particles by dropping and suspending the mixed solution of the above in an insoluble liquid and solidifying the droplets in the liquid, a mixed solution of the microorganism and the carrier substance (or its precursor) at low temperature. After solidifying by adding a gelling agent or a solidifying agent, the solidified body is cut into an appropriate size and pulverized to obtain particles carrying microorganisms, microorganisms and carrier substances (or precursors thereof). A method for producing a filamentous solidified substance of a microorganism-supporting carrier by injecting the mixed solution of 1. into an insoluble liquid through an extrusion nozzle and solidifying in the liquid, and appropriately cutting this to form cylindrical particles, and at this time The method of obtaining an annular (tube-shaped) microorganism-supporting carrier particle by using the extrusion molding die as an annular shape can be mentioned.

【0047】担体粒子の大きさは、地中水が適度の速度
で移動できる充填度が確保できる大きさであればよく、
外径0.1〜70mm、好ましくは0.5〜40mm
で、より好ましくは1〜10mmであり、充填層の均一
通過性が制約される。したがって、適用対象に応じて好
ましいサイズが選択される。
The size of the carrier particles may be any size as long as the filling degree that allows underground water to move at an appropriate speed is secured,
Outer diameter 0.1-70 mm, preferably 0.5-40 mm
It is more preferably 1 to 10 mm, and the uniform passability of the packed bed is restricted. Therefore, a preferred size is selected according to the application target.

【0048】担体の含水率は、1〜99質量%、好まし
くは5〜90質量%、より好ましくは10〜85質量%
である。含水率が低すぎると微生物の生存に支障があ
り、高すぎると担体の物理的強度が低下して取り扱いの
際に支障をきたす。
The water content of the carrier is 1 to 99% by mass, preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
Is. If the water content is too low, the survival of microorganisms will be hindered, and if it is too high, the physical strength of the carrier will be reduced, and this will hinder handling.

【0049】充填層の温度は、微生物の活動に適した温
度であることが必要で、3〜50℃、好ましくは10〜
45℃、より好ましくは18〜40℃である。
The temperature of the packed bed needs to be a temperature suitable for the activity of microorganisms, and is 3 to 50 ° C., preferably 10 to 10.
It is 45 ° C, more preferably 18-40 ° C.

【0050】生分解性担体を用いた場合の担体自体の分
解速度は、その材質や性状等を選択することで制御可能
であり、例えば、材質を考慮して、孔隙の孔径、孔隙の
形態、担体の形状及び大きさ等を適宜選択する。本発明
においては、栄養物の供給が徐放形式で行なわれること
が必要なので、生分解性の担体の分解速度は、徐放条件
が保たれる範囲の遅い速度であることが必要である。な
お、これらの要件の選択に際して、分解速度に影響を及
ぼす因子として考慮すべきものとしては、担体を分解す
る微生物(土壌中の土着微生物または投与微生物)の種
類、量及び分解活性、あるいは処理土壌の体積等を挙げ
ることができ、どのくらいの期間で汚染物質が分解する
か、どのくらいの期間で担体が分解するかをあらかじめ
フィールド実験で確認し、その上で担体を設計すると良
い。
When the biodegradable carrier is used, the rate of decomposition of the carrier itself can be controlled by selecting the material and properties thereof. For example, in consideration of the material, the pore diameter of the pores, the morphology of the pores, The shape and size of the carrier are appropriately selected. In the present invention, since the nutrients need to be supplied in a sustained-release manner, the biodegradable carrier needs to be decomposed at a slow rate within the range where sustained-release conditions are maintained. When selecting these requirements, the factors that affect the decomposition rate should be taken into consideration: the type, amount and decomposition activity of the microorganisms that decompose the carrier (indigenous microorganisms or administered microorganisms in the soil), or the treated soil. The volume can be mentioned, and it is advisable to confirm in advance by field experiments how long the pollutant decomposes and how long the carrier decomposes, and then design the carrier.

【0051】[微生物栄養物の供給]多くの場合、汚染土
壌は貧栄養であって、地中水は充填層が含有する微生物
が担体中で生存して十分に汚染物質分解能を維持するに
足りるだけの栄養分を含んでいないことがおおい。その
ような場合には、充填層中の微生物に栄養物を供給する
必要があり、管状体周囲の汚染土壌中に散布あるいは注
入する水に栄養分を含ませてもよく、また図2に示した
態様のように、配管によって栄養物含有水を管上体下部
に供給してもよい。栄養物の供給量は注意して調節する
必要があり、栄養物が過多になると微生物の汚染物質分
解能は低下して本来目的とする機能が発揮されなくな
り、過小であると微生物の機能が衰える。したがって、
栄養物の供給は、土壌修復用微生物の活動維持と汚染物
質分解効率の低下抑止とが両立する低レベル,低変動の
状態で持続できるように調節することが好ましい。
[Supply of Microbial Nutrients] In many cases, the contaminated soil is oligotrophic, and the groundwater is sufficient for the microorganisms contained in the packed bed to survive in the carrier and sufficiently maintain the pollutant decomposing ability. It does not contain enough nutrients. In such a case, it is necessary to supply nutrients to the microorganisms in the packed bed, and the water to be sprayed or injected into the contaminated soil around the tubular body may contain nutrients, and as shown in FIG. As in the embodiment, the nutrient-containing water may be supplied to the lower part of the upper body of the pipe by piping. It is necessary to carefully control the supply amount of nutrients. When nutrients are excessive, the ability of microorganisms to decompose pollutants deteriorates and the intended function is not exerted. When the nutrients are too small, the function of microorganisms declines. Therefore,
It is preferable to adjust the supply of nutrients so that the activity of the soil-remediating microorganisms can be maintained and the efficiency of degrading pollutants can be suppressed at a low level and low fluctuation.

【0052】栄養物としては、炭素、窒素、リンを含む
ものが好ましく、微生物の生育に適した培養液などが挙
げられる。培養液としては、例えば、肉汁、酵母エキ
ス、麦芽エキス、バクトペプトン、グルコース、無機塩
類、ミネラルなどが適当な割合で混合したものが良く用
いられているが、微生物の種類に応じて適当な配合比の
ものを選べば良い。また、本発明に用いる栄養物として
は、上記の培養液以外にも有機、無機栄養物を適当に含
むものであれば、どのようなものでも利用可能である。
例えば、自然界より採取した、あるいは培養を加えた任
意の微生物を乾燥、粉砕し、粉砕微粉体を栄養物として
用いてもよい。さらに、分解菌を活性化する共存微生物
を用いることもできる。この共存微生物は、それ自身が
分解菌の栄養物となったり、その微生物が分泌する物質
が分解菌を活性化する成分を含んでいる。好ましい微生
物としては、いわゆるEM菌として市販されている微生
物混合体が挙げられる。
As the nutrients, those containing carbon, nitrogen and phosphorus are preferable, and examples thereof include a culture solution suitable for the growth of microorganisms. As the culture solution, for example, a mixture of broth, yeast extract, malt extract, bactopeptone, glucose, inorganic salts, minerals and the like at an appropriate ratio is often used, but a suitable mixture depending on the type of microorganism. You can choose a ratio. As the nutrient used in the present invention, any nutrient can be used as long as it appropriately contains organic and inorganic nutrients in addition to the above culture solution.
For example, any microorganism collected from the natural world or added with culture may be dried and ground, and the ground fine powder may be used as a nutrient. Furthermore, a coexisting microorganism that activates a degrading bacterium can also be used. The coexisting microorganisms themselves serve as nutrients for the degrading bacteria, and substances secreted by the microorganisms include components that activate the degrading bacteria. Preferred microorganisms include a mixture of microorganisms commercially available as so-called EM bacteria.

【0053】本発明の特別の態様としては、栄養物を徐
放状態にして充填層内に含有させることもできる。徐放
化栄養物を充填層に取り入れる方法を採用する場合に
は、栄養物が担持物質から放出される濃度が、該微生物
の生存・活動維持に足りるが、汚染物質分解機能を低下
させない低濃度で濃度変動の少ない投与レベルに維持さ
れる方法である限り、いかなる方法でもよい。具体的な
徐放形態としては、例えば、栄養物を徐放条件を満たす
ように粒子分散した担持物質表面に吸着させる方法、よ
り効果的には栄養物を徐放条件を満たすように 担持物
質表面に化学吸着させる方法,栄養物を徐放性を満たす
条件で担持物質と混合造粒する方法、栄養物を徐放性を
満たす条件で担持物質に吸蔵させる方法、栄養物を徐放
性を満たす条件で担持物質、例えばゲル内部に閉じ込め
た包括法などを用いることができる。この中でも、包括
法が特に優れている。本明細書における「包括法」は、
文部科学省編、「学術用語辞典」及び日本化学会編「標
準化学用語辞典」に記載の「包括法」の定義に沿って用い
られており、またJIS K3600でも定義されている 通常の
意味の「包括法」であって、菌体などの生体触媒を高分
子ゲルの中に取り込んだり、膜などにマイクロカプセル
化して閉じ込める生体固定化方法で、その詳細は適当な
成書、例えば日本化学会編,化学便覧、応用化学編II、
1197頁に記されている。
As a special embodiment of the present invention, the nutrients can be contained in the packed bed in a sustained release state. When adopting the method of incorporating sustained-release nutrients into the packed bed, the concentration of nutrients released from the carrier is sufficient for survival and activity maintenance of the microorganism, but low concentration that does not deteriorate the pollutant decomposition function. Any method may be used as long as it is a method of maintaining the administration level at which the concentration fluctuation is small. As a specific sustained release form, for example, a method of adsorbing a nutrient on the surface of a carrier material in which particles are dispersed so as to satisfy the sustained release condition, or more effectively, a surface of the carrier material so that the nutrient is satisfied Chemisorption, nutrients mixed and granulated with a support material under conditions that satisfy sustained release, nutrients stored in a support material under conditions that satisfy sustained release, and nutrients sustained release Depending on the conditions, a supporting substance, for example, a trapping method in which the substance is confined inside the gel can be used. Among these, the comprehensive method is particularly excellent. The “comprehensive method” in this specification is
It is used in accordance with the definition of "Comprehensive Law" described in "Scientific Term Dictionary" edited by the Ministry of Education, Culture, Sports, Science and Technology and "Chemical Dictionary of Standard Chemistry" edited by the Chemical Society of Japan. "Comprehensive method" is a bioimmobilization method in which a biocatalyst such as cells is incorporated into a polymer gel or encapsulated in a membrane or the like by microencapsulation. For details, see an appropriate textbook, for example, The Chemical Society of Japan. Chapter, Chemistry Handbook, Applied Chemistry II,
It is described on page 1197.

【0054】包括法の特徴は、栄養物担持物質が栄養物
を高濃度に内包できて、その放出濃度を十分に低濃度に
制御できるので、微生物が汚染物質分解能を維持し、し
かも微生物自体の生活条件が確保され、且つその放出が
長時間にわたって安定に持続できるので、生物管理も容
易であることにある。包括法は、微生物を反応系内に固
定化するのに効果的な前記の微生物の包括固定化法と原
理的には同じで、実施形態も実質的に準拠している方法
である。栄養物を内包させる包括法の担持用材料として
は、アクリルアミド法、寒天−アクリルアミド法、PV
A−ホウ酸法、PVA−冷凍法、光硬化性樹脂法、アク
リル系合成高分子樹脂法、ポリアクリル酸ソーダ法、ア
ルギン酸ナトリウム法、K−カラギーナン法等、栄養物
を内包することができ、処理槽(リアクター)の中で微
生物の活性を維持できる程度に栄養物を放出し、効果的
且つ長時間にわたって安定に放出を持続するものならば
種類を問わない。
The inclusion method is characterized in that the nutrient-supporting substance can encapsulate the nutrient in a high concentration and the release concentration thereof can be controlled to a sufficiently low concentration. Living conditions are secured and the release can be stably maintained over a long period of time, which means that biological management is easy. The entrapping method is the same as the entrapping immobilization method for microorganisms, which is effective for immobilizing the microorganisms in the reaction system, in principle, and the embodiment substantially complies with the method. As the supporting material for the entrapping method for encapsulating nutrients, an acrylamide method, an agar-acrylamide method, PV
A-boric acid method, PVA-freezing method, photocurable resin method, acrylic synthetic polymer resin method, sodium polyacrylate method, sodium alginate method, K-carrageenan method, etc. can be included in nutrition, There is no limitation on the kind as long as it releases the nutrients to the extent that the activity of the microorganism can be maintained in the treatment tank (reactor) and effectively and stably releases the nutrients for a long time.

【0055】包括法の代表例としてアクリルアミド法の
場合の栄養物ゲルの調製法について説明する。栄養物内
包ゲルは、架橋剤(例えば、N,N'−メチレンビスア
クリルアミド)を含有したアクリルアミドモノマー溶液
と栄養物(例えば 20,000ppm程度)とを懸濁
し、重合促進剤(例えば、N,N,N',N'−テトラメ
チルエチレンジアミン)、重合開始剤(例えば、過硫酸
カリウム)を添加し、1〜3mm径の塩化ビニル製チュー
ブ等の成型形に入れ、20℃で重合し、重合終了後、成
型形から押し出し、一定の長さに切断し、あるいは粉砕
して得られる。栄養物の放出を調節するには、ゲル化体
の粒子サイズとゲル中の内包濃度の調節などによって行
なわれる。
As a typical example of the comprehensive method, a method for preparing a nutrient gel in the case of the acrylamide method will be described. The nutrient-encapsulated gel suspends a acrylamide monomer solution containing a cross-linking agent (for example, N, N′-methylenebisacrylamide) and a nutrient (for example, about 20,000 ppm), and a polymerization accelerator (for example, N, N). , N ', N'-tetramethylethylenediamine) and a polymerization initiator (for example, potassium persulfate) are added, and the mixture is put into a molded form such as a tube made of vinyl chloride having a diameter of 1 to 3 mm and polymerized at 20 ° C to complete the polymerization. After that, it is obtained by extruding from a molded form, cutting it to a certain length, or crushing. The release of nutrients is controlled by adjusting the particle size of the gelled product and the concentration of inclusion in the gel.

【0056】これらの包括法は、より具体的には、前記
した「微生物固定化法による排水処理」須藤隆一編著
(産業用水調査会)、稲森悠平の「生物膜法による排水
処理の高度・効率化の動向」,水質汚濁研究,vol.13,N
o.9,1990,p.563-574、稲森悠平らの「高度水処理技術開
発の動向・課題・展望」,用水と廃水,vol.34,No.10,1
992,P.829-835 などの微生物の包括固定化法に準拠して
行なうことができる。
More specifically, these comprehensive methods are described in “High-efficiency / efficiency of wastewater treatment by biofilm method” by Ryuichi Sudo (Industrial Water Research Committee), “Wastewater treatment by microorganism immobilization method” described above, by Yuhei Inamori. Trend ”, Water Pollution Research, vol.13, N
o.9,1990, p.563-574, Yuhei Inamori's "Trends, Challenges and Prospects of Advanced Water Treatment Technology Development", Water and Wastewater, vol.34, No.10,1
992, P.829-835, etc. can be carried out in accordance with the comprehensive immobilization method for microorganisms.

【0057】また、包括法とは別の徐放形態の栄養物担
持方法として、カラギーナン、アルギン酸などの、ゲル
状包括担体に栄養物を含有させて徐放効果を発揮させる
こともでき、その方法としては、1)栄養物を含む溶液
とゲル化材料(カラギーナン、アルギン酸など)を含む
溶液と混合した後、2)ゲル化とともに担体形状を制御
して担体を得る工程を含む方法などを用いることもでき
る。
As a method of supporting a nutrient in a sustained release form different from the entrapping method, it is also possible to incorporate the nutrient into a gel entrapping carrier such as carrageenan or alginic acid to exert a sustained release effect. As the method, a method including a step of 1) mixing a solution containing a nutrient with a solution containing a gelling material (carrageenan, alginic acid, etc.), and 2) controlling the shape of the carrier with gelation to obtain a carrier is used. You can also

【0058】さらに別の徐放形態の栄養物担持方法とし
ては、生分解速度が遅い天然高分子を栄養物質兼担持物
質として用いることもできる。例えば、リグノセルロー
ス系やキチン系の天然高分子を、適当な徐放速度が得ら
れるように10μm〜3mm程度に粉砕して投与してもよ
い。
As another method for supporting a nutrient in a sustained-release form, a natural polymer having a slow biodegradation rate can be used as a supporting substance as a nutrient. For example, a lignocellulosic or chitin-based natural polymer may be pulverized to about 10 μm to 3 mm so as to obtain an appropriate sustained release rate and then administered.

【0059】[0059]

【実施例】以下、実施例により本発明をより具体的に説
明するが、これらは本発明の範囲をなんら限定するもの
ではない。なお、実施例中の「菌体」は、本明細書中に述
べた「微生物」に分類される「菌体」であって、実質的に
同義に解してよい。
The present invention will be described in more detail below with reference to examples, but these examples do not limit the scope of the present invention. In addition, the "bacteria" in the examples are "bacteria" classified into the "microorganisms" described in the present specification, and may be substantially synonymous.

【0060】実施例1 〔汚染物質分解菌担持担体の準備〕特開平6-261771号公
報記載のEDTA分解菌バチルス・エディタビダス(Bacill
useditabidus-1、微工研菌寄 第13449号)の1白金耳
を、ポリペプトン(極東製薬工業)0.5%、酵母エキス
(和光純薬工業(株)製)0.1%及びNH4Fe(III)EDTA
(和光純薬工業(株)製)0.01%(いずれも質量
%)を含む1/30Mリン酸緩衝液(pH5.8)の基本培地
200mlで37℃にて1日静置培養し、本菌体を高濃
度に含有する培養物を得た。この培養物を遠心分離によ
り、本菌株の湿菌体と培養上清に分離した。日本薬局方
で純度規定された精製水による洗浄と遠心分離による湿
菌体の回収を3回繰り返し、培養上清を十分に除去した
洗浄湿菌体を得た。これを80mlの精製水に再分散
し、さらに再分散液に微生物保持担体として修飾ビスコ
パールAZ4200-cc(レンゴー(株)製)10gを加え、1
時間振盪攪拌した後、ろ過、洗浄により未担持の菌体を
除去した。ここで得た菌体担持体をAとする。
Example 1 [Preparation of carrier for supporting contaminant-decomposing bacteria] EDTA-degrading bacterium Bacillus editorvidus (Bacill) described in JP-A-6-261771
Useditabidus-1, 1 Platinum loop of Micro Incorporated Research Institute No. 13449), 0.5% polypeptone (Far East Pharmaceutical Industry), 0.1% yeast extract (manufactured by Wako Pure Chemical Industries, Ltd.) and NH4Fe (III) ) EDTA
(Manufactured by Wako Pure Chemical Industries, Ltd.) 1/30 M phosphate buffer (pH 5.8) containing 0.01% (both by mass) was cultivated for 1 day at 37 ° C. in 200 ml of a basic medium, A culture containing this cell at a high concentration was obtained. The culture was separated into wet bacterial cells of this strain and the culture supernatant by centrifugation. Washing with purified water whose purity was regulated by the Japanese Pharmacopoeia and collection of wet cells by centrifugation were repeated 3 times to obtain washed wet cells from which the culture supernatant was sufficiently removed. This was redispersed in 80 ml of purified water, and 10 g of modified Viscopearl AZ4200-cc (manufactured by Rengo Co., Ltd.) was added to the redispersion liquid as a microorganism retention carrier.
After stirring and shaking for a period of time, unsupported cells were removed by filtration and washing. The cell-supported body obtained here is designated as A.

【0061】一方で、上記操作にて精製水の代わりに上
記培地を用いた以外は上記と同じ操作で調製した菌体担
持体を得た。得られた菌体担持体を菌体担持体Bとす
る。この菌体担持体Bには栄養物である培地成分が含有
されている。
On the other hand, a microbial cell carrier prepared by the same procedure as above except that the above medium was used in place of the purified water in the above procedure was obtained. The obtained microbial cell carrier is designated as microbial cell carrier B. This bacterial cell support B contains a nutrient medium component.

【0062】〔栄養物 徐放化担体の準備〕上記基本培
地150mlに寒天を3%濃度となるように加え、加熱
溶解後、冷却した寒天ゲルを凍結乾燥後、ボールミルで
質量平均粒子径10μmまで粉砕し、栄養物徐放化担体
Dを得た。
[Preparation of Nutrient Sustained Release Carrier] Agar was added to 150 ml of the above basic medium to a concentration of 3%, and the mixture was heated and dissolved, and the cooled agar gel was freeze-dried, and then the mass average particle diameter was adjusted to 10 μm with a ball mill. Crushed and nutrient sustained-release carrier
Got D.

【0063】〔モデル汚染土壌の作製〕富士写真フイル
ム(株)足柄工場内の緑地帯から採取した土壌を室温で
1週間放置乾燥後、1000Kgを直方体の貯留槽に付加
さ30cmで均一に広げ、NH4Fe(III)・EDTA(和光純薬
工業(株)製)1%溶液750リットルを散布後、良く
混合した。この調製汚染土壌を室温にて1週間放置乾燥
した。これをEDTA汚染土壌と呼ぶ。内法の底面が70c
m×50cmで高さが40cmの直方体で底面にドレイ
ン孔と底面から5cmの高さに液面レベル維持のための
オーバーフロー排出孔とを設けた硬質塩ビ容器に深さ3
5cmになるように上記のEDTA汚染土壌を充填し、底面
に水が1cm溜まるように散水してEDTAで汚染した
湿潤土壌を得た。
[Preparation of Model Contaminated Soil] Soil collected from the green zone in Fuji Photo Film Co., Ltd. Ashigara Factory was left to dry at room temperature for 1 week, then 1000 kg was added to a rectangular parallelepiped storage tank and spread evenly at 30 cm. After spraying 750 liters of a 1% solution of NH4Fe (III) / EDTA (manufactured by Wako Pure Chemical Industries, Ltd.), they were mixed well. This prepared contaminated soil was left to dry at room temperature for 1 week. This is called EDTA contaminated soil. Inner method bottom is 70c
It is a rectangular parallelepiped with a size of mx 50 cm and a height of 40 cm, and a drain hole on the bottom surface and an overflow discharge hole for maintaining the liquid level at a height of 5 cm from the bottom surface.
The above-mentioned EDTA-contaminated soil was filled so as to be 5 cm, and water was sprayed so that 1 cm of water was accumulated on the bottom surface to obtain wet soil contaminated with EDTA.

【0064】〔汚染土壌修復のモデル試験装置〕図1に
示した形式の汚染土壌修復用モデル試験装置を用いた。
内径約40mmで長さ30cmの硬質塩ビ管を本明細書
中に前記した管状体のモデル体として使用した。塩ビ管
の一端を封じ、封じた側の端部から長さ5cmにわたっ
て吸入孔として孔径3mmの孔を5mm四方に1個の割
合で搾孔し、また吸入孔の一つは送気管に接続して空気
を送り込む送気口とし、送気口の先端には電磁弁を設け
て地中水の汲み上げ時には送気を遮断するようにした。
塩ビ管の封じた端部から5cm〜25cmに亘る20c
mを充填層として汚染物質分解菌 担持担体などの充填
に充当した。さらに塩ビ管上端部には吸引装置と吸引し
た水・空気混合体の分離排出装置を設けて、塩ビ管下部
から吸い上げて充填層を経た水と空気を分離して水は汚
染土壌に還流し、空気は試験室環境へ放出するようにし
た。5分置きに1分間間歇的に行う地中水の吸引速度は
10ミリリットル/分とし、空気の送気は20ミリリッ
トル/秒とした。吸引時は空気の送気を停止した。塩ビ
管を上記モデル汚染土壌にほぼ鉛直に上端部3cmが土
壌表面に現れるように管入させて、モデル試験装置とし
た。
[Model Test Device for Repairing Contaminated Soil] A model test device for repairing contaminated soil of the type shown in FIG. 1 was used.
A rigid PVC tube having an inner diameter of about 40 mm and a length of 30 cm was used as a model body of the tubular body described above in this specification. One end of the PVC pipe was sealed, and a hole with a diameter of 3 mm was pierced as a suction hole over the length of 5 cm from the end on the sealed side at a rate of 1 per 5 mm square, and one of the suction holes was connected to the air supply pipe. As an air supply port for sending air, a solenoid valve was installed at the tip of the air supply port to shut off the air supply when pumping underground water.
20c from 5cm to 25cm from the closed end of the PVC pipe
m was used as a packed bed for packing the carrier carrying contaminant-degrading bacteria and the like. Furthermore, a suction device and a separation / exhaust device for the sucked water / air mixture are installed at the upper end of the PVC pipe, and the water and air that have been sucked up from the lower part of the PVC pipe and passed through the packed bed are separated, and the water returns to the contaminated soil, Air was allowed to vent into the laboratory environment. The suction rate of underground water, which was intermittently performed every 5 minutes for 1 minute, was 10 ml / min, and air was fed at 20 ml / sec. Air supply was stopped during suction. A PVC pipe was inserted into the model-contaminated soil so that the upper end portion of 3 cm appeared on the soil surface almost vertically, to obtain a model test device.

【0065】〔土壌修復試験〕 試験1:充填層には菌体担持体Aを充填した。試験中は
塩ビ管の管状体の周辺の汚染土壌に毎時100ミリリッ
トルの速度で散水した。一方吸引装置を稼動させて汚染
土壌を浸透し、拡散した水(モデル地中水)を吸入孔か
ら塩ビ管内に流入させて取りこんだ。取りこまれた水は
空気とともに充填層に吸い上げられ、充填層の上部で水
は汚染土壌中に還流され(上記の土壌への散水量に含ま
れる)、空気は環境中に排出させた。この下部から地中
水吸入・充填層移動・上部から排出・還流の操作を連続
20日行なった。
[Soil Restoration Test] Test 1: The microbial cell carrier A was filled in the packed bed. During the test, water was sprinkled on the contaminated soil around the tubular body of the PVC pipe at a rate of 100 ml / h. On the other hand, the suction device was operated to infiltrate the contaminated soil, and the diffused water (model underground water) was introduced from the suction hole into the PVC pipe. The taken-in water was sucked up into the packed bed together with air, the water was returned to the contaminated soil at the upper part of the packed bed (included in the amount of water sprayed on the soil), and the air was discharged into the environment. The operation of sucking underground water from the lower part, moving the packed bed, discharging from the upper part, and reflux was continuously performed for 20 days.

【0066】試験2:試験1において、充填層には菌体
担持体Aを充填する代わりに同量の菌体 担持体Bを充
填して用いた以外は試験1と同じ装置と操作で試験2を
行なった。 試験3:試験1において、充填層には菌体担持体Aのみ
を充填する代わりに同量の菌体 担持担体Aと栄養物徐
放化担体Dを質量比で9:1の比で混合して充填した以
外は試験1と同じ装置と操作で試験3を行なった。 試験4:試験1において、汚染土壌への散水の代わりに
前記した汚染物質分解菌の準備に用いた基本培地と同じ
組成の培養液を10倍に希釈して栄養物水溶液としたも
のを同量散布した。この変更以外は試験1と同じ装置と
操作で試験4を行なった。 試験5:試験2において、モデル汚染土壌の底面の水の
深さ1cmを10cmに変更して塩ビ管底部が貯留水に
浸る状態とした以外は試験2と同じ装置と操作で試験2
を行なった。 試験0:試験1において、充填層には菌体担持体Aを充
填する代わりに 担持用担体として使用した修飾ビスコ
パールAZ4200-cc(レンゴー(株)製)の分解菌を 担持
させる前のものを同量充填して用いた以外は試験1と同
じ装置と操作で比較試験を行なった。これを試験0とす
る。
Test 2: In Test 1, the same apparatus and operation as in Test 1 were used except that the packed bed was filled with the same amount of the bacterial cell carrier B instead of being packed with the bacterial cell carrier A. Was done. Test 3: In Test 1, instead of packing only the bacterial cell carrier A in the packed bed, the same amount of the bacterial cell carrier A and the nutrient sustained-release carrier D were mixed at a mass ratio of 9: 1. Test 3 was conducted using the same equipment and operation as in Test 1 except that the filling was performed by filling. Test 4: In Test 1, instead of sprinkling water on the contaminated soil, a culture solution having the same composition as the basal medium used for preparing the pollutant-degrading bacteria was diluted 10 times to obtain a nutrient solution in the same amount. Sprayed. Test 4 was performed using the same apparatus and operation as in Test 1 except for this change. Test 5: In Test 2, the same apparatus and operation as Test 2 were used except that the depth of water on the bottom of the model contaminated soil was changed from 10 cm to 10 cm so that the bottom of the PVC pipe was immersed in the stored water.
Was done. Test 0: In Test 1, the packed bed before loading the degrading bacteria of modified Viscopearl AZ4200-cc (manufactured by Rengo Co., Ltd.), which was used as a carrier for loading instead of loading the bacterial cell carrier A A comparative test was conducted using the same apparatus and operation as in Test 1, except that the same amount was used. This is designated as test 0.

【0067】試験開始後5,10及び20日目に各塩ビ
管下部から流入するモデル地中水と上部からの排出水を
1gずつ採取し、イオンクロマトグラフィーにより溶存
するEDTA量を定量する方法で行った。試験結果を表1に
示す。
On the 5th, 10th and 20th days after the start of the test, 1 g of model underground water flowing in from the lower part of each PVC pipe and 1 g of discharge water from the upper part were collected, and the amount of dissolved EDTA was determined by ion chromatography. went. The test results are shown in Table 1.

【0068】[0068]

【表1】 [Table 1]

【0069】表1に示した本発明の方法による汚染土壌
修復試験では、栄養物を供給しない試験1でも土壌中の
EDTAの分解、低減が認められるが、試験2では、栄
養物も含まれた菌 体担持体Bを用いることによって、
EDTAの分解低減効果が増大している。しかしなが
ら、栄養物が消費されるためと思われるが、時間と共に
効果は低減して試験1の場合に近づく。さらに、試験3
では、栄養物を含まない分解菌 担持担体と、栄養物徐
放剤Dとを混合して用いて、栄養物の放出速度を制御す
ることによってEDTAの分解、低減率はさらに増大す
ることが示されている。試験4では、栄養物を含まない
分解菌 担持担体を用いているが、地中水に低濃度の栄
養物を含ませることによって試験3に近い効果が得られ
ている。モデル地下水を用いた試験5においては、地下
水ではない地中水を用いる場合よりも効果は低いが、そ
れでも汚染物質の分解は進行していることが判る。いず
れにしても試験1〜5が示す本発明の方法によって効果
的な汚染土壌の修復が可能であることが示された。
In the contaminated soil restoration test according to the method of the present invention shown in Table 1, decomposition and reduction of EDTA in the soil were observed even in Test 1 in which nutrients were not supplied, but in Test 2, nutrients were also included. By using the cell support B,
The decomposition reduction effect of EDTA is increasing. However, the effect diminishes over time, likely due to the consumption of nutrients, approaching that of Test 1. In addition, test 3
Show that the degradation and reduction rate of EDTA can be further increased by controlling the release rate of nutrients by mixing a nutrient-free carrier supporting degrading bacteria and a nutrient sustained-release agent D. Has been done. In Test 4, a carrier containing a degrading bacterium containing no nutrient was used, but the effect similar to that in Test 3 was obtained by including a low concentration of nutrient in ground water. In Test 5 using model groundwater, although the effect is lower than the case of using groundwater which is not groundwater, it is understood that the decomposition of pollutants is still progressing. In any case, it was shown that the methods of the present invention shown in Tests 1 to 5 can effectively remediate contaminated soil.

【0070】実施例2 実施例試験1において、1日の試験終了時に、図2に示
した装置の栄養物含有水Fを供給する配管16から基本
培地と同じ組成の培養液を100ミリリットル塩ビ管内
に供給した。その他は試験1とおなじ操作を行なった。
結果は試験1が試験開始後5日間に示した汚染物質分解
率に等しい分解率が示され、しかもそれがその後の21
日までの試験でも維持されることが示された。
Example 2 In Example test 1, at the end of the one-day test, a culture solution having the same composition as the basal medium was introduced from a pipe 16 for supplying the nutrient-containing water F of the apparatus shown in FIG. Supplied to. The other operations were the same as those in Test 1.
The results show a degradation rate equal to the pollutant degradation rate that Test 1 showed 5 days after the start of the test, and
It was shown to be maintained in tests up to the day.

【0071】[0071]

【発明の効果】土壌汚染物質分解菌を含有する充填層の
下部から汚染土壌に接して汚染した地中水を取り入れて
該充填層で処理した後、上部から排出すことを特徴とす
る本発明の汚染土壌のオンサイト修復方法及び修復手段
は、汚染土壌を汚染現場から移動したり、汚染地下水の
汲み上げたりすることなく汚染現場で簡易に汚染土壌を
浄化・修復することができる。さらに、菌体の 担持、
栄養物の直接あるいは徐放化した供給によって土壌修復
能を長期継続的に維持できて、発明の効果を高めること
ができる。
The present invention is characterized in that the ground water contaminated by contacting the contaminated soil from the lower part of the packed bed containing soil pollutant decomposing bacteria is taken in, treated in the packed bed, and then discharged from the upper part. The on-site remediation method and means for remediating contaminated soil can easily purify and repair contaminated soil at the contaminated site without moving the contaminated soil from the contaminated site or pumping contaminated groundwater. In addition, support of bacterial cells,
Soil remediation ability can be maintained continuously for a long time by supplying nutrients directly or with sustained release, and the effect of the invention can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の典型的な実施態様を示す汚染土壌修復
装置の一例の断面模式図である。
FIG. 1 is a schematic cross-sectional view of an example of a contaminated soil restoration device showing a typical embodiment of the present invention.

【図2】本発明の別の実施態様を示す汚染土壌修復装置
の一例の断面模式図である。
FIG. 2 is a schematic cross-sectional view of an example of a contaminated soil restoration device showing another embodiment of the present invention.

【図3】本発明のさらに別の実施態様を示す汚染土壌修
復装置の一例の断面模式図である。
FIG. 3 is a schematic cross-sectional view of an example of a contaminated soil repairing apparatus showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1. 中空管状体 11. 担体 12. 管状体内に取りこまれた空気 13. 吸入孔 14. 充填層 15. 送気管 16 給液管 17. 液面 18. 排出口 4. 汚染表面 41. 汚染土壌表面 A 管状体内への供給用空気 A’ 管状体からの排出空気 C1、C2、C3 開閉弁 F 栄養物供給管 P 吸引ポンプ W 地中水 1. Hollow tubular body 11. Carrier 12. Air taken into the tubular body 13. Suction hole 14. Packed bed 15. Air pipe 16 Liquid supply pipe 17. Liquid surface 18. Vent 4. Contaminated surface 41. Contaminated soil surface A Supply air into the tubular body Air discharged from A'tubular body C1, C2, C3 open / close valve F Nutrition supply pipe P suction pump W underground water

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B029 AA02 AA21 BB01 CC05 CC10 DA06 DG06 4B065 AA99X AC20 CA56 4D003 AA06 AB02 DA18 EA01 EA30 FA04 FA06 4D004 AA41 AB05 AB06 AC07 CA13 CC03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4B029 AA02 AA21 BB01 CC05 CC10                       DA06 DG06                 4B065 AA99X AC20 CA56                 4D003 AA06 AB02 DA18 EA01 EA30                       FA04 FA06                 4D004 AA41 AB05 AB06 AC07 CA13                       CC03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 汚染土壌中に設置した中空管状体に、土
壌汚染物質分解能を有する微生物を担持した担体を充填
した充填層を設け、該充填層の下部から汚染土壌と接し
て抽出された土壌汚染物質を含有する地中水と、空気と
を充填層内に送りこみ、該地中水と該担体とを接触させ
て汚染物の分解を行なわせ、汚染物が分解・除去された
地中水を該充填層の上部から排出することを特徴とする
汚染土壌のオンサイト修復方法。
1. A soil extracted from a hollow tubular body placed in a contaminated soil with a packed bed filled with a carrier carrying microorganisms capable of degrading soil pollutants, and in contact with the contaminated soil from the lower part of the packed bed. Underground where pollutants are decomposed and removed by sending underground water containing pollutants and air into the packed bed to bring the underground water and the carrier into contact with each other to decompose the pollutants. A method for on-site restoration of contaminated soil, comprising discharging water from the upper part of the packed bed.
【請求項2】 汚染土壌中に設置した中空管状体に、
土壌汚染物質分解能を有する微生物を担持した担体を充
填した充填層を設け、該管状体の充填層部分の下部
に、汚染土壌と接して抽出された土壌汚染物質を含有す
る地中水を管状体内に取りこむ吸引孔と、充填層内に空
気を送りこむ送気口とを設け、該管状体の充填層部分
の上部に、充填層を貫流中に汚染物質が分解・除去され
た地中水と充填層を貫流した空気とを該管状体外へ排出
する排出口を設けたことを特徴とする汚染土壌のオンサ
イト修復装置。
2. A hollow tubular body installed in contaminated soil,
A packed bed filled with a carrier carrying microorganisms capable of degrading soil pollutants is provided, and underground water containing soil pollutants extracted in contact with contaminated soil is provided under the packed bed portion of the tubular body. A suction hole for taking in the air and an air supply port for feeding air into the packed bed are provided, and the upper part of the packed bed portion of the tubular body is filled with underground water in which pollutants are decomposed and removed while flowing through the packed bed. An on-site repairing device for contaminated soil, comprising an outlet for discharging air flowing through a layer to the outside of the tubular body.
JP2002135543A 2002-05-10 2002-05-10 Method and apparatus for restoring contaminated soil by microbe on-site Pending JP2003326244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135543A JP2003326244A (en) 2002-05-10 2002-05-10 Method and apparatus for restoring contaminated soil by microbe on-site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135543A JP2003326244A (en) 2002-05-10 2002-05-10 Method and apparatus for restoring contaminated soil by microbe on-site

Publications (1)

Publication Number Publication Date
JP2003326244A true JP2003326244A (en) 2003-11-18

Family

ID=29697843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135543A Pending JP2003326244A (en) 2002-05-10 2002-05-10 Method and apparatus for restoring contaminated soil by microbe on-site

Country Status (1)

Country Link
JP (1) JP2003326244A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000967A1 (en) * 2007-06-27 2008-12-31 Mzymes Oy A method for cleaning polluted soil
JP2011156455A (en) * 2010-01-29 2011-08-18 Shimizu Corp In-situ purification method for contaminated underground water
CN108971221A (en) * 2018-07-10 2018-12-11 北京高能时代环境技术股份有限公司 A method of repairing nitrobenzene contaminated soil
CN109085325A (en) * 2018-09-13 2018-12-25 河北省地质环境监测院 A kind of the indoor soil-column experimental provision and method of soil pollution and repairing and treating process simulation
KR102300759B1 (en) * 2021-04-21 2021-09-10 한국위험물환경기술(주) Microbial purification box of soil carry-on purification facility
CN114029339A (en) * 2021-11-09 2022-02-11 上海园林绿化建设有限公司 System and method for restoring polluted soil by using microbial degradation technology

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000967A1 (en) * 2007-06-27 2008-12-31 Mzymes Oy A method for cleaning polluted soil
JP2011156455A (en) * 2010-01-29 2011-08-18 Shimizu Corp In-situ purification method for contaminated underground water
CN108971221A (en) * 2018-07-10 2018-12-11 北京高能时代环境技术股份有限公司 A method of repairing nitrobenzene contaminated soil
CN108971221B (en) * 2018-07-10 2020-08-21 北京高能时代环境技术股份有限公司 Method for restoring nitrobenzene contaminated soil
CN109085325A (en) * 2018-09-13 2018-12-25 河北省地质环境监测院 A kind of the indoor soil-column experimental provision and method of soil pollution and repairing and treating process simulation
CN109085325B (en) * 2018-09-13 2024-01-05 河北省地质环境监测院 Indoor soil column experiment device and method for simulating soil pollution and repair treatment process
KR102300759B1 (en) * 2021-04-21 2021-09-10 한국위험물환경기술(주) Microbial purification box of soil carry-on purification facility
CN114029339A (en) * 2021-11-09 2022-02-11 上海园林绿化建设有限公司 System and method for restoring polluted soil by using microbial degradation technology

Similar Documents

Publication Publication Date Title
Cohen Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review
US6905288B2 (en) Method of remedying contaminated soil by microorganism
EP0785035B1 (en) Process for remediating soil
JP3201661B2 (en) Biodegradation method of pollutant and restoration method of polluted environment
CN101134955A (en) Solid composite micro-organism micro-balloon for organic contaminant biodegradation and method for preparing the same
JP3450518B2 (en) Novel microorganism J1, biodegradation treatment method for aromatic compound and / or organochlorine compound using the same and environmental restoration method
Lin et al. Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse
JPH11239784A (en) Apparatus for cleaning soil and method for restoring polluted soil
EP0801033B1 (en) Apparatus for degrading pollutant, process for purifying contaminated medium and process for degrading pollutant
EP0780166B1 (en) Method of introducing microorganisms into a contaminated soil for its decontamination
EP0594125B1 (en) Carrier for supporting microorganisms, soil remediating agent using carrier, and method for remediating soil
JP3491929B2 (en) Purification method of groundwater contaminated by soil contamination
JPH09276841A (en) Method and apparatus for purifying contaminated soil
JP2003311258A (en) On-site restoration method and apparatus of contaminated soil by means of micro-organism
JP2003326244A (en) Method and apparatus for restoring contaminated soil by microbe on-site
JP3377120B2 (en) How to repair contaminated soil
WO1998049280A1 (en) Method for reducting bioavailability of lead by a lead-sequestering soil bacterium
JP3420307B2 (en) Microorganism-retaining carrier and soil remediation method using the carrier
JP3420306B2 (en) Contaminated soil purification method using superabsorbent polymer
JPH0797573A (en) Method for forming carrier for supporting microorganism in soil and method for restoring soil by the method
JPH06212155A (en) Microorganism carrier, soil amendment using the same, and method for soil improvement
JP3645651B2 (en) Purification method for contaminated soil
KR100455754B1 (en) Biological-biodegrading adsorbent for removing hydrocarbon compounds such as oil and method for manufacturing thereof
JPH11207315A (en) Microbial purifying method for contaminated soil and purifying device therefor
US20010002384A1 (en) Process for reducing the particle size of porous organic polymers and products produced therefrom