JP3645651B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP3645651B2
JP3645651B2 JP09149396A JP9149396A JP3645651B2 JP 3645651 B2 JP3645651 B2 JP 3645651B2 JP 09149396 A JP09149396 A JP 09149396A JP 9149396 A JP9149396 A JP 9149396A JP 3645651 B2 JP3645651 B2 JP 3645651B2
Authority
JP
Japan
Prior art keywords
soil
contaminated soil
microorganisms
gas
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09149396A
Other languages
Japanese (ja)
Other versions
JPH09276839A (en
Inventor
和實 田中
眞也 古崎
昌徳 桜永
彰 渡辺
正俊 飯尾
由里 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP09149396A priority Critical patent/JP3645651B2/en
Publication of JPH09276839A publication Critical patent/JPH09276839A/en
Application granted granted Critical
Publication of JP3645651B2 publication Critical patent/JP3645651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は揮発性の有機化合物で汚染された土壌の浄化方法に関するものであり、より詳しくは汚染された土壌の微生物の分解作用を利用した浄化方法に関する。
【0002】
【従来の技術】
産業活動の急激な膨張は環境に様々な形の負荷を与え、土壌においても土壌が元来有する浄化能力を超えた量の物質による汚染や、土壌自体に浄化能力が備わっていない物質による汚染などで広く汚染が進み浄化を急がれる例が多くなっている。
【0003】
これらのなかでも石油およびその誘導品で代表される液状で揮発性の有機化合物での汚染は深刻な状況にあり、浄化技術の確立が強く求められているところである。揮発性有機化合物による汚染土壌の浄化方法は、大きくは汚染土壌域を取り囲むように遮蔽壁を設けるなどして汚染物質の封じ込めを図る浄化方法と物理的、化学的あるいは生物学的方法により汚染物質そのものを分解除去する方法の2つに分類される。このなかでも汚染物質そのものを分解除去する方法は根本的な浄化方法として好ましいものとされている。
【0004】
分解除去する浄化方法には汚染土壌域に空気流を強制的に生じさせ汚染物質の揮発性を利用して空気流とともに汚染物質を排出後UV処理装置、活性炭処理装置などガス処理装置に誘導し分解・除去するいわゆる真空抽出法、掘削により掘り起こされた汚染土壌を地上のプラントなどにより加熱、UV照射、酸化処理などなどの手法により浄化する方法などが実用化されている。しかしこれらの方法では汚染物質の濃度が低下した場合に極端に浄化効率が落ちたり、汚染土壌の立地条件によって適用できないことがあったり、装置が大がかりになるなど課題をかかえている。
【0005】
近年になって微生物の分解作用を利用して汚染物質を分解除去するいわゆるバイオレメディエーション(以下BRと略記)が低濃度汚染土壌の浄化も可能で、浄化に要するエネルギーコストも低いことなどの特長から注目を集めている。
【0006】
このBRには汚染土壌中に生息する、汚染物質を分解する能力を有する微生物群の分解能力を栄養素の供給、酸素濃度の調整などによって人為的に向上させて分解浄化させる土着微生物活性化法と、汚染物質を分解する能力を有する微生物を予め確保しておき、それを増殖させ汚染土壌域に投入する分解微生物添加法がある。
【0007】
分解微生物添加法は、浄化対象となる汚染土壌中に生息する分解微生物で分解能力を有する分解微生物を適宜選択し汚染土壌域に投入することによって効率よく浄化できること、汚染物質を分解する能力をもつ微生物が汚染土壌中に存在しない場合、すなわち土着微生物活性化法が適用できない場合であっても別に増殖させた分解微生物を汚染土壌域に投入することにより浄化が可能であることなどの理由から、また特に近年になってトリクロロエチレン、テトラクロロエチレンなど自然環境下では分解浄化が困難な化合物による土壌汚染の例が増えていることなど、さらにはトリクロロエチレンなどの難分解性の化合物を分解する能力を有する微生物がスクリーニング技術、あるいは遺伝子組み換え技術の進歩などにより入手可能となっていることなどの理由から、この分解微生物添加法が有力な浄化方法として注目を集めている。
【0008】
【発明が解決しようとする課題】
しかしこの分解微生物添加法にもいくつかの課題がある。分解微生物の分解能は分解微生物と汚染物質が接触することによって初めて発揮されるものであるが、ほとんどの分解微生物および揮発性物質の土壌中の移動、拡散は汚染土壌域の一部分に分解微生物を添加するだけで実用的な分解速度を得るに十分な程度まで進むものではない。これについて、分解微生物を汚染土壌域に隈なく必要量注入し、さらに分解微生物の分解活性を支えるために適宜栄養素の供給、酸素濃度の調整などを行う試みがなされている。
【0009】
たとえばSavery W.らは汚染土壌中に任意に位置を変えられる注入孔ないし抽出孔をもつ注入装置および抽出装置を設け分解微生物、栄養素、酸素などを意図する位置に任意の量を供給することによる浄化方法を提案している(USP 5111883)。この方法によって汚染土壌域に隈なく分解微生物などを供給する技術は大幅に改善されたが汚染土壌域に注入する分解微生物などの量は膨大なものとなり実用化の場合大きな障害となっている。
【0010】
またWeber O.らは汚染土壌層に設けたボーリング孔を用いた真空抽出法と、汲み上げた汚染地下水に分解微生物、栄養素、酸素などを添加、必要に応じ浄化プラントで処理した後、汚染土壌表層近傍に設けられた戻し管を通じて汚染土壌に循環させる方法を組み合わせることによって炭化水素で汚染された不飽和帯水層土壌に好適な浄化方法を提案している(DE 3839093 C2)。
【0011】
この方法により不飽和帯水層土壌での分解微生物の分解活性は向上し、より高速な浄化を可能にしているが大量の分解微生物などを必要とし、また真空抽出された汚染物質については従来技術と同様何らかの二次処理が必要であるため設備上も大がかりとなることは免れない。さらに多量の分解微生物、栄養素などを浄化期間中繰り返し供給するため分解微生物を含むこれらの注入物質の環境中への流出の危険性も高い。
【0012】
またDuane A.G.らは汚染土壌域へ注入管および排出管を設置、供給管より気体状の栄養素を汚染土壌域に供給し排出管を経て循環させて汚染土壌域に栄養素の流路を確保、分解微生物の分解能を促進させることによって高速浄化を達成する方法を提案している(USP 5178491)。
【0013】
この方法により、汚染土壌中の分解微生物への栄養素供給は大きく改善され分解微生物の分解能は向上している。しかし分解微生物と汚染物資との接触という視点からはほとんど改善が期待できず不十分なものである。
【0014】
【課題を解決するための手段】
本発明者らは上記課題に対して検討を加えた結果、分解速度を早めるには分解微生物と汚染物質の接触を早めることが重要であり、そのためには分解微生物などを汚染土壌域に隈なく添加するのではなく逆に汚染土壌中の汚染物質を強制的に移動させて分解微生物と接触させることが有効でかつ簡便であることを見い出した。また汚染物質を分解微生物の作用を利用して分解させるには、従来の地上バイオリアクタではなく汚染土壌域に分解微生物などを注入した浄化土壌域を設け、その領域に汚染物質を含む気体を誘導することにより、温湿度条件など分解微生物の分解能を発揮させるうえで好適な条件下に長期に亘り維持することが容易になり、さらには分解微生物の近傍に揮発性有機化合物吸着材料を共存させることにより極めて効率のよい分解が可能であることを見出し本発明にいたった。
【0015】
すなわち本発明は揮発性有機化合物で汚染された土壌の微生物の分解作用を利用した浄化方法であって、汚染土壌領域に分解微生物材料および揮発性有機化合物吸着材料を含む浄化土壌域を形成する工程および汚染土壌域から汚染物質を含む気体を抽出し抽出気体を該浄化土壌域を経由して汚染土壌領域に循環させる工程を含むことを特徴とする汚染土壌の浄化方法を提供するものである。
【0016】
以下本発明についてより詳しく説明する。
【0017】
汚染土壌の浄化にあたっては、一般的にまず初めに汚染状態を正確に把握し汚染土壌領域を確定する必要がある。汚染状態を把握するには一般的な手段、方法により可能であるが、例えばボーリング孔または観測用の井戸を設け、土壌または地下水のサンプルを採取し汚染物質を測定する方法、ボーリング孔および観測用の井戸にセンサー類を挿入し土壌層、地下水層ににおける汚染物質をモニターする方法、ボーリング孔および観測用の井戸を通じ又は直接土壌層、地下水層にサンプリング管を挿入、気体または地下水を吸引しそこに含まれる汚染物質を測定する方法などにより可能である。
【0018】
これらのデータから汚染土壌領域を確定しその汚染土壌領域に浄化土壌域を形成させる。浄化土壌域は汚染物質を分解する能力を有する分解微生物を含む分解微生物材料および揮発性化合物吸着材料を汚染土壌領域に供給することにより形成される。
【0019】
分解微生物材料には分解微生物の他に分解微生物の増殖に必要な増殖機能材料、分解微生物による分解活性を発現させる活性維持機能材料、分解微生物が土壌内で安定に生息できる生殖機能材料などのなかから適宜選択された材料を含むことが好適な分解を進めるうえで好ましい。
【0020】
まず、汚染物質を分解する分解微生物としては、例えば分解活性が確認されているSaccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoc、Lactobacillus、Corynebacterium、Arthrobacter、Clostridium、Bacillus、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Nitrosomonas、Nitrobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、 Vibrio Moraxellaの属などの微生物、これらの突然変異体およびこれらの微生物の遺伝子組み換え体の1種または2種以上の混合体が用いられる。分解微生物は汚染物質の種類により好適な組み合わせがあり汚染物質の種類に応じて適宜選択される。また分解微生物としてはこれら分解微生物のほかに分解酵素そのものをを使用することも可能である。
【0021】
増殖機能材料とは分解微生物に対する栄養素であり、例えば、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌培地などが有用である。
【0022】
分解微生物から産生される分解酵素が構成的に発現される場合は、活性維持機能材料をとくに必要としないが、活性酵素が特定の誘導物質(インデューサー)により発現される場合は誘導物質が活性維持機能材料として必要である。誘導物質としてはメタン資化菌、芳香族資化菌ではトルエン、フェノールやクレゾールなど、また硝化菌ではアンモニウム塩などである。分解微生物材料として直接分解酵素を使用する場合には酵素活性を発現維持させるためのエネルギー源やミネラルなどが活性維持機能材料として要求される。
【0023】
生殖機能材料は分解微生物に浄化土壌域において快適な棲息空間を与え、これにより他の微生物や原生動物などによる捕食を妨害したり、あるいは分解微生物の浄化土壌域外への拡散消失を防ぐ目的を有している。
【0024】
生残機能材料としては、医薬品工業や食品工業あるいは廃水処理システムなどのバイオリアクターで利用されている多くの微生物担体を用いることができる。例えば多孔質ガラス、セラミックス、金属酸化物、活性炭、カオリナイト、ベントナイト、ゼオライト、シリカゲル、アルミナ、アンスラサイトなどの球状担体、澱粉、寒天、キチン、キトサン、ポリビニルアルコール、アルギン酸、ポリアクリルアミド、カラギーナン、アガロース、ゼラチン、セルロース、グルタルアルデヒド、ポリアクリル酸、ポリウレタンなどのゲル状担体、高分子樹脂やイオン交換樹脂などである。さらに例えばセルロースを主成分とする綿、麻、パルプ材などよりなる紙類、ポリエステル、ポリウレタンあるいはポリアセテートなどなどの変性高分子からなる布類も有効である。その他、増殖機能と生残機能を兼ねた材料として堆肥材料が有用であり、例えば麦藁など穀物類の藁やおが屑、米糠、おから、砂糖黍の絞りかす、カニやエビの殻などが挙げられる。
【0025】
揮発性有機化合物吸着材料は汚染土壌の領域から抽出されたガス状の揮発性有機化合物(汚染物質)を吸着トラップすることを目的としており、吸着された汚染物質が分解微生物により徐々に分解されることに役立つ。揮発性有機化合物吸着材料としては汚染物質の種類により適宜選択されるが、非極性の材料が好ましくそのなかでも結晶構造を取らない高分子化合物が特に好ましい。例えばスチレン、(メタ)アクリル酸アルキルエステルおよびそれらの誘導体を主成分とするビニル系共重合体が好ましい。
【0026】
それ自体が汚染の原因になること、取り扱い上火災の危険性があること、分解微生物へのダメージが懸念されることなどの理由から揮発性有機化合物吸着材料は有機溶媒に分散ないし溶解された形態ではなく水を媒体とするものであることが好ましい。そのなかでも水分散性の高分子化合物は浄化領域を形成させる注入時に液粘度が押さえられることから特に好ましい。
【0027】
高分子微粒子は表面がマイナスに荷電しているのが好ましい。これによって高分子微粒子は浄化領域形成初期は水に自由に分散しているが、浄化領域形成につれて分散性が低下する。すなわち高分子微粒子は注入時は液注入範囲に自由に拡散していくが注入後は浄化領域に固定され、雨水、地下水などにより、あるいはその後の液注入による洗い流しを回避するすることが可能となる。
【0028】
浄化領域形成時の分散性の低下は土壌中のマグネシウムイオン、カルシウムイオンなどの多価金属イオンが微粒子表面の荷電を中和することによるものである。注入口近傍の金属イオン濃度に比べ、注入液が土中に拡散し浄化領域を拡大するにつれその相対濃度が急激に上昇し、分散安定性が低下するものと考えられる。
【0029】
また、高分子微粒子の粒子径は0.01μmから5μmであることが好ましい。
【0030】
0.01μmを下回ると分散液の粘度が上昇し注入の効率が低下する。また5μmを越えると土壌粒子間隙への高分子微粒子の侵入が困難となる。
【0031】
上述した微生物材料、揮発性有機化合物吸着材料などをを含む浄化土壌域を形成させるにはたとえば図5に示すように注入口43を持つ注入パイプ42を汚染土壌域に挿入し微生物材料、揮発性有機化合物吸着材料などを含む注入液を送液ポンプなどからなる液注入ユニット41によって汚染土壌領域に注入する方法、図6または7に示すように地盤改良工法に使用される攪拌翼53および注入薬剤供給系51を有する施工機械を用いて汚染土壌域を掘削しながら掘削土壌中に微生物材料、揮発性有機化合物吸着材料などを含む注入液を供給する方法、図8または9に示すように汚染土壌域に掘削孔61を設けその中に分解微生物材料、揮発性有機化合物吸着材料などを含む土壌を埋め戻す方法など任意の方法で可能である。
【0032】
そのなかでも汚染物質の揮発による大気中への揮散を防止する観点から、また浄化土壌域形成の容易さおよび汚染物質を含む抽出気体の浄化土壌域への循環のし易さなどから注入口を持つ注入パイプを汚染土壌領域に挿入し微生物材料、揮発性有機化合物吸着材料などを含む注入液を送液ポンプで汚染土壌領域に注入する方法が好ましい。
【0033】
汚染土壌領域から汚染物質を含む気体を抽出するには汚染土壌領域に抽出井を設け汚染土壌領域に空気流を強制的に生じさせ、空気流とともに揮発性の汚染物質を排出させる真空抽出法が好適に用いられる。
【0034】
抽出された汚染物質を含む気体は浄化土壌域に設けられた注入井を通じて汚染土壌域に循環される。なお抽出気体は酸素濃度、炭酸ガス濃度、汚染物質、汚染物質の分解産物などを適宜測定し成分調整の上汚染土壌域に循環させることが好ましい。このなかでも酸素濃度は分解微生物の分解能に大きな影響を及ぼすため、抽出気体中の酸素濃度を測定しその結果に応じて最適な酸素濃度に調整したうえで汚染土壌域に循環することがとくに好ましい。
【0035】
本発明を実施するのに好適なシステム例を図1に示し、それを用いた汚染土壌の浄化フローについて記す。
【0036】
あらかじめ測定し設定された汚染土壌領域17に分解微生物材料、揮発性有機化合物吸着材料などを含む注入液を液注入ユニット11により、注入口14をもつ注入パイプ13を経由して注入し浄化土壌域18を設ける。汚染土壌領域17あるいはその近傍に埋設され、気体循環ユニット12(吸引要素、成分測定要素、気体注入要素を含む)に接続された吸引口16をもつ抽出パイプ15を経て汚染土壌領域中の汚染物質を含む気体を抽出する。抽出気体は適宜成分測定要素により気体成分組成を測定し、必要に応じて成分調整要素により気体成分を調整後、再び注入パイプ13を経由して浄化土壌域18に循環させる。
【0037】
なお、気体抽出から再注入・循環の一連の操作は連続的あるいは間欠的いずれの操作も可能であるが浄化効果を効率的に進める上では連続的な操作をとることが好ましい。
【0038】
また、注入口14より汚染土壌領域中の汚染物質を含む気体を吸引・抽出し、気体循環ユニット12、吸引口16を経て浄化土壌域に循環させてもよい。
以下実施例によって本発明を詳説する。
【0039】
【実施例】
【0040】
【実施例1】
(試験土壌槽の作成)
図2および3に示す、中心部の300mmの深さに注入口26をもつ注入パイプ25、壁面近傍に4本の抽出パイプ27(各々5ケ所のストレーナー付き吸引口を有する)および土壌層21中のガスをサンプリングするためのステンレス管(不図示)を設けた200Lドラム缶の下層に砂礫層22(40mm)を、その上にトリクロロエチレン12ppmを含有する細砂とシルトの試験土壌層21(750mm)を、さらにその上層に砂礫層23(40mm),ポリウレタンよりなるシール層24(40mm)をもうけ試験土壌槽とした。
【0041】
(揮発性有機化合物吸着材料の合成)
還流冷却機、攪拌機および温度計を備える300ml容量の重合容器中に、水160ml、アニオン系界面活性剤(ドデシルベンゼンスルホン酸ナトリウム)2グラムを添加し、72℃に加温した。次いで過硫酸カリウム2.5グラムを添加溶解後スチレン、アクリル酸ブチル、メタアクリル酸メチル、アクリル酸、アクリルアミド(重量比で40:30:24:4:2)からなるモノマー混合物50グラムおよびドデシルベンゼンスルホン酸ナトリウム3グラムを混合し2時間で連続注入し、さらに添加終了後72℃で3時間重合し粒子径が約0.2μmのアニオン性高分子粒子の水分散液が得られた(樹脂固形分約25%)。
【0042】
(浄化土壌域の形成)
リンゴ酸ナトリウム0.5%を含むM9寒天培地上のCorynebacterium sp.J1株(生命技術研究所受託番号:FERM BP-5102号)のコロニーを、坂口フラスコ中のリンゴ酸ナトリウム1.0%を含むM9培地3Lに接種し、25℃で24時間振盪培養を行った。リンゴ酸ナトリウム3%とJ1インデュース用のフェノール0.3g/Lを含む2倍濃度のM9培地5L、上記培養液3Lおよび上記の方法で得られたアニオン性高分子粒子水分散液160グラムを混合し注入液とした。注入液を上記試験土壌槽の注入パイプ25を通じて注入ポンプ(不図示)によって注入半径約200mmの球状の浄化土壌域29を形成した。
【0043】
(気体の抽出、循環浄化)
浄化土壌域形成後直ちに抽出パイプ27を通じてエアーポンプ27により試験土壌槽21中のガスを吸引(5L/min.)し、同時に吸引したガスを注入パイプ25を経て浄化土壌域28に注入・循環させた。循環開始後1時間毎に試験土壌槽21の上部、注入口近傍および試験土壌槽下部各々に挿入したステンレス管(不図示)から土壌槽内のガスをサンプリングし、ガス中に含まれるトリクロロエチレン濃度をガスクロマトグラフィー(FID検出器)で測定した。平均濃度の経時変化を図4に示す。
【0044】
【比較例1】
実施例と同様の試験土壌槽を作成、実施例とは注入液中にアニオン性高分子粒子水分散液を含まないことを除き同様の浄化土壌域を形成した。浄化土壌域形成後、実施例と同様気体の抽出、循環を行ない1時間毎にステンレス管から土壌槽内のガスをサンプリングし、ガス中に含まれるトリクロロエチレン濃度をガスクロマトグラフィー(FID検出器)で測定した。平均濃度の経時変化を図4に示す。
【0045】
【比較例2】
実施例と同様の試験土壌槽を作成、実施例とは注入液中にJ1株を含まないことを除き同様の浄化土壌域を形成した。浄化土壌域形成後、実施例と同様気体の抽出、循環を行ない1時間毎にステンレス管から土壌槽内のガスをサンプリングし、ガス中に含まれるトリクロロエチレン濃度をガスクロマトグラフィー(FID検出器)で測定した。平均濃度の経時変化を図4に示す。
【0046】
【比較例3】
実施例と同様の試験土壌槽を作成、実施例とは注入液中にアニオン性高分子粒子水分散液およびJ1を含まないことを除き同様の浄化土壌域を形成した。浄化土壌域形成後、実施例と同様気体の抽出、循環を行ない1時間毎にステンレス管から土壌槽内のガスをサンプリングし、ガス中に含まれるトリクロロエチレン濃度をガスクロマトグラフィー(FID検出器)で測定した。平均濃度の経時変化を図4に示す。
【0047】
【実施例2】
実施例1と同様の試験土壌槽を作成、実施例1とは注入液中にインデュース用のフェノールを含まないこととJ1の代わりにインデューサレスのJM1(生命技術研究所受託番号:FERM BP-5352)のコロニーを用いたことを除き同様の浄化土壌域を形成した。浄化土壌域形成後、実施例1と同様気体の抽出、循環を行ない1時間毎にステンレス管から土壌槽内のガスをサンプリングし、ガス中に含まれるトリクロロエチレン濃度をガスクロマトグラフィー(FID検出器)で測定した。平均濃度の経時変化を図3に示す。
【0048】
【発明の効果】
本発明の浄化方法により、簡便な工法、操作によって効率のよい浄化が可能となった。
【図面の簡単な説明】
【図1】本発明の方法を実施し得るシステムの一例を示す概念図
【図2】実施例および比較例2に用いる試験土壌槽の断面の略図
【図3】実施例および比較例2に用いる試験土壌槽の上面からみた略図
【図4】実施例および比較例1、2で得られた試験土壌中に含まれるトロクロロエチレンの濃度の変化を示すグラフ
【図5】注入パイプを用いて浄化土壌域を形成させる方法を示す概念図
【図6】地盤改良に用いられる施工機械を使用して浄化土壌域を形成させる方法を示す概念図
【図7】地盤改良に用いられる施工機械を使用して浄化土壌域を形成させる方法を示す概念図
【図8】掘削孔を設けて浄化土壌域を形成させる方法を示す概念図
【図9】掘削孔を設けて浄化土壌域を形成させる方法を示す概念図
【符号の簡単な説明】
11 液注入ユニット
12 気体循環ユニット
13 注入パイプ
14 注入口
15 抽出パイプ
16 吸引口
17 汚染土壌領域
18 浄化土壌域
21 試験土壌層
22 下層の砂礫層
23 上層の砂礫層
24 シール層
25 注入パイプ
26 注入口
27 抽出パイプ
28 浄化土壌域
29 エアーポンプ
41 液注入ユニット
42 注入パイプ
43 注入口
44 汚染土壌領域
45 浄化土壌域
51 注入薬剤供給系
52 攪拌動力
53 攪拌翼
54 汚染土壌領域
55 浄化土壌域
61 掘削孔
62 浄化土壌域
63 汚染土壌領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying soil contaminated with volatile organic compounds, and more particularly, to a method for purifying soil contaminated soil using a decomposition action of microorganisms.
[0002]
[Prior art]
Sudden expansion of industrial activities places various forms of load on the environment, such as contamination by the amount of substances in the soil that exceeds the natural purification capacity of the soil, or contamination by substances that do not have purification capacity in the soil itself In many cases, pollution is widespread and urged to clean up.
[0003]
Among these, contamination with liquid and volatile organic compounds represented by petroleum and its derivatives is in a serious situation, and there is a strong demand for establishment of purification technology. The method of remediation of contaminated soil with volatile organic compounds is largely comprised of a remediation method that includes a shielding wall to surround the contaminated soil area, etc., and a contaminant that is physically, chemically, or biologically contained. It is classified into two methods of decomposing and removing itself. Among these, the method of decomposing and removing the pollutant itself is considered preferable as a fundamental purification method.
[0004]
The decontamination and purification method involves forcibly generating an air flow in the contaminated soil area and using the volatility of the pollutant to discharge the pollutant along with the air flow and then guiding it to a gas processing device such as a UV treatment device or activated carbon treatment device. A so-called vacuum extraction method that decomposes and removes, and a method that purifies contaminated soil excavated by excavation by a method such as heating, UV irradiation, oxidation treatment, etc. on a plant on the ground have been put into practical use. However, these methods have problems such as extremely low purification efficiency when the concentration of pollutants is reduced, inability to be applied depending on the location conditions of the contaminated soil, and large equipment.
[0005]
In recent years, so-called bioremediation (hereinafter abbreviated as BR) that decomposes and removes pollutants using the decomposition action of microorganisms can purify low-contaminated soil, and the energy cost required for purification is low. It attracts attention.
[0006]
In this BR, there is an indigenous microorganism activation method that artificially improves the decomposition ability of microorganisms that have the ability to decompose pollutants in the contaminated soil by supplying nutrients, adjusting oxygen concentration, etc. There is a method of adding decomposing microorganisms, which reserves microorganisms having the ability to decompose pollutants in advance and propagates them into the contaminated soil area.
[0007]
The method of adding degrading microorganisms has the ability to efficiently decontaminate by degrading microorganisms inhabiting in the contaminated soil to be purified and having the degrading ability and putting them in the contaminated soil area, and has the ability to decompose pollutants. Even if the microorganisms are not present in the contaminated soil, that is, even if the indigenous microorganism activation method cannot be applied, it is possible to purify by introducing the decomposed microorganisms grown separately into the contaminated soil area. In particular, in recent years, examples of soil contamination due to compounds that are difficult to decompose and purify in natural environments such as trichlorethylene and tetrachloroethylene have increased, and microorganisms that have the ability to decompose difficult-to-decompose compounds such as trichlorethylene Available due to advances in screening technology or genetic engineering technology For reasons such as Rukoto, the degrading microorganism addition method has attracted attention as an effective purification method.
[0008]
[Problems to be solved by the invention]
However, there are several problems with this method of adding degraded microorganisms. The resolution of decomposing microorganisms is only demonstrated when the decomposing microorganisms come into contact with pollutants, but most of the decomposing microorganisms and volatile substances are transferred and spread in the soil by adding the decomposing microorganisms to a part of the contaminated soil area. It does not advance to a degree sufficient to obtain a practical decomposition rate. In this regard, attempts have been made to inject a necessary amount of decomposing microorganisms into the contaminated soil area, and to appropriately supply nutrients and adjust oxygen concentration in order to support the decomposing activity of the decomposing microorganisms.
[0009]
For example, Savery W. et al. Provide an injection device and extraction device with an injection hole or extraction hole that can be arbitrarily repositioned in contaminated soil, and supplies an arbitrary amount of decomposing microorganisms, nutrients, oxygen, etc. to the intended location. A purification method has been proposed (USP 5111883). Although this technique has greatly improved the technology for supplying decomposing microorganisms and the like to the contaminated soil area, the amount of decomposing microorganisms injected into the contaminated soil area has become enormous and has become a major obstacle in practical use.
[0010]
In addition, Weber O. et al. Added a vacuum extraction method using a borehole provided in the contaminated soil layer, added decomposed microorganisms, nutrients, oxygen, etc. to the pumped contaminated groundwater, treated it in a purification plant as needed, and then contaminated soil surface layer A purification method suitable for unsaturated aquifer soil contaminated with hydrocarbons has been proposed (DE 3839093 C2) by combining methods of circulating to contaminated soil through a return pipe provided nearby.
[0011]
This method improves the degradation activity of decomposing microorganisms in unsaturated aquifer soil and enables faster purification, but requires a large amount of decomposing microorganisms, and vacuum extracted contaminants are conventional technology As in the case of the above, some kind of secondary processing is necessary, so it is inevitable that the equipment will become large. Furthermore, since a large amount of decomposing microorganisms and nutrients are repeatedly supplied during the purification period, there is a high risk that these injected substances including decomposing microorganisms will flow out into the environment.
[0012]
Duane AG and others also installed injection pipes and discharge pipes in the contaminated soil area, supplied gaseous nutrients from the supply pipe to the contaminated soil area, and circulated them through the discharge pipe to secure and decompose nutrient channels in the contaminated soil area. A method for achieving high-speed purification by promoting the resolution of microorganisms has been proposed (USP 5178491).
[0013]
By this method, the nutrient supply to the decomposing microorganisms in the contaminated soil is greatly improved, and the resolution of the decomposing microorganisms is improved. However, from the viewpoint of contact between decomposing microorganisms and contaminants, improvement is hardly expected and is insufficient.
[0014]
[Means for Solving the Problems]
As a result of studying the above problems, the present inventors have found that it is important to accelerate the contact between the decomposing microorganism and the pollutant in order to increase the decomposition rate. It was found that it was effective and simple to forcibly move the pollutants in the contaminated soil and contact them with decomposing microorganisms instead of adding them. In addition, in order to decompose pollutants using the action of decomposing microorganisms, instead of conventional ground bioreactors, a contaminated soil area is provided with a purified soil area in which decomposing microorganisms are injected, and gas containing the pollutant is induced in that area. By doing so, it becomes easy to maintain under the conditions suitable for degrading microorganisms such as temperature and humidity conditions for a long period of time, and furthermore, a volatile organic compound adsorbing material coexists in the vicinity of the decomposing microorganisms. As a result, it was found that extremely efficient decomposition was possible.
[0015]
That is, the present invention is a purification method that utilizes the microbial decomposition action of soil contaminated with volatile organic compounds, and a process for forming a purified soil region containing degraded microbial material and volatile organic compound adsorbing material in the contaminated soil region And a method for purifying contaminated soil, comprising a step of extracting a gas containing a contaminant from the contaminated soil region and circulating the extracted gas to the contaminated soil region via the purified soil region.
[0016]
The present invention will be described in more detail below.
[0017]
In remediation of contaminated soil, it is generally necessary to first grasp the state of contamination accurately and determine the contaminated soil area. It is possible to grasp the contamination state by general means and methods. For example, a method for measuring pollutants by taking a sample of soil or ground water by setting up a borehole or observation well, a borehole and for observation Sensors are inserted into the wells of the soil to monitor the pollutants in the soil layer and groundwater layer, sampling holes are inserted through the borehole and observation well or directly into the soil layer and groundwater layer, and gas or groundwater is sucked there. It is possible by measuring the pollutants contained in
[0018]
From these data, a contaminated soil area is determined, and a purified soil area is formed in the contaminated soil area. The purified soil area is formed by supplying a decomposing microbial material including degrading microorganisms capable of decomposing pollutants and a volatile compound adsorbing material to the contaminated soil area.
[0019]
In addition to degrading microorganisms, the degrading microorganism materials include growth functional materials necessary for the growth of degrading microorganisms, activity maintaining functional materials that allow the degrading microorganisms to exert their degrading activity, and reproductive functional materials that allow the degrading microorganisms to live stably in the soil. It is preferable to include a material appropriately selected from the above in order to promote suitable decomposition.
[0020]
First, examples of degrading microorganisms that decompose pollutants include, for example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoc, Lactobacillus, Corynebacterium, Arthrobacter, Clostridium, Bacillus, Neisseria, Escherichia, Enteric, Microorganisms such as Serratia, Achromobacter, Alcaligenes, Flavobacterium, Acetobacter, Nitrosomonas, Nitrobacter, Thiobacillus, Gluconobacter, Pseudomonas, Xanthomonas, Vibrio Moraxella, one or more of these mutants and gene recombinants of these microorganisms A mixture of There are suitable combinations of decomposing microorganisms depending on the type of pollutant, and they are appropriately selected according to the type of pollutant. In addition to these decomposing microorganisms, decomposing enzymes themselves can be used as decomposing microorganisms.
[0021]
The growth functional material is a nutrient for degrading microorganisms, and for example, bouillon medium, M9 medium, L medium, Malt Extract, MY medium, nitrifying medium, and the like are useful.
[0022]
When degrading enzymes produced from degrading microorganisms are constitutively expressed, no active maintenance functional material is required, but when active enzymes are expressed by a specific inducer (inducer), the inducer is active. It is necessary as a maintenance function material. Examples of inducers include methane-utilizing bacteria, aromatic-assimilating bacteria such as toluene, phenol and cresol, and nitrifying bacteria such as ammonium salts. When directly degrading enzymes are used as decomposing microbial materials, energy sources and minerals for maintaining the expression of enzyme activity are required as activity maintaining functional materials.
[0023]
Reproductive functional materials have the purpose of providing decomposing microorganisms with a comfortable habitat in the purified soil area, thereby preventing the predation of other microorganisms and protozoa, or preventing the diffusion of decomposing microorganisms outside the purified soil area. doing.
[0024]
As the survival functional material, many microbial carriers used in bioreactors such as the pharmaceutical industry, the food industry, and wastewater treatment systems can be used. For example, porous glass, ceramics, metal oxides, activated carbon, kaolinite, bentonite, zeolite, silica gel, alumina, anthracite and other spherical carriers, starch, agar, chitin, chitosan, polyvinyl alcohol, alginic acid, polyacrylamide, carrageenan, agarose Gelatin carriers such as gelatin, cellulose, glutaraldehyde, polyacrylic acid and polyurethane, polymer resins and ion exchange resins. Further, for example, paper made of cotton, hemp, pulp material, etc. mainly composed of cellulose, and cloth made of a modified polymer such as polyester, polyurethane, or polyacetate are also effective. In addition, compost material is useful as a material that has both a growth function and a survival function. Examples thereof include cereals such as wheat straw, sawdust, rice bran, okara, sugar cane, crab and shrimp shells.
[0025]
The volatile organic compound adsorbent material is intended to adsorb and trap gaseous volatile organic compounds (pollutants) extracted from the contaminated soil area, and the adsorbed pollutants are gradually decomposed by decomposing microorganisms. It helps. The volatile organic compound adsorbing material is appropriately selected depending on the type of contaminant, and a nonpolar material is preferable, and a polymer compound that does not have a crystal structure is particularly preferable. For example, a vinyl copolymer containing styrene, (meth) acrylic acid alkyl ester and derivatives thereof as main components is preferable.
[0026]
Volatile organic compound adsorbing materials are dispersed or dissolved in organic solvents because they themselves cause pollution, there is a risk of fire in handling, and there are concerns about damage to decomposing microorganisms. It is preferable that the medium is not water. Among these, a water-dispersible polymer compound is particularly preferable because the liquid viscosity is suppressed during injection for forming a purification region.
[0027]
The fine polymer particles are preferably negatively charged on the surface. As a result, the fine polymer particles are freely dispersed in water at the initial stage of the purification region formation, but the dispersibility decreases as the purification region is formed. That is, the polymer fine particles diffuse freely in the liquid injection range at the time of injection, but are fixed in the purification region after the injection, and it is possible to avoid washing away by rain water, ground water, etc. or subsequent liquid injection. .
[0028]
The decrease in dispersibility during the purification zone formation is due to neutralization of the charge on the surface of the fine particles by polyvalent metal ions such as magnesium ions and calcium ions in the soil. Compared to the metal ion concentration in the vicinity of the inlet, as the injection solution diffuses into the soil and expands the purification region, the relative concentration rapidly increases and the dispersion stability is considered to decrease.
[0029]
The particle diameter of the polymer fine particles is preferably from 0.01 μm to 5 μm.
[0030]
If it is less than 0.01 μm, the viscosity of the dispersion increases and the injection efficiency decreases. On the other hand, if it exceeds 5 μm, it becomes difficult for the polymer fine particles to enter the gap between the soil particles.
[0031]
In order to form a purified soil region containing the above-described microbial material, volatile organic compound adsorbing material, etc., for example, an injection pipe 42 having an inlet 43 is inserted into the contaminated soil region as shown in FIG. A method of injecting an injection liquid containing an organic compound adsorbing material or the like into a contaminated soil region by a liquid injection unit 41 comprising a liquid feed pump, etc., a stirring blade 53 used in the ground improvement method as shown in FIG. A method for supplying an injection solution containing a microbial material, a volatile organic compound adsorbing material, etc. into the excavated soil while excavating the contaminated soil area using a construction machine having a supply system 51, as shown in FIG. It is possible to use any method such as a method in which the excavation hole 61 is provided in the region and the soil containing the decomposed microbial material, the volatile organic compound adsorbing material, etc. is backfilled therein.
[0032]
In particular, the inlet should be removed from the viewpoint of preventing volatilization of pollutants into the atmosphere and the ease of forming the purified soil area and the ease of circulating the extracted gas containing the pollutants to the purified soil area. A method is preferred in which an injection pipe is inserted into the contaminated soil region, and an injection solution containing microbial material, volatile organic compound adsorbing material and the like is injected into the contaminated soil region with a liquid feed pump.
[0033]
In order to extract gas containing pollutants from the contaminated soil area, there is a vacuum extraction method in which an extraction well is provided in the contaminated soil area to forcibly generate an air flow in the contaminated soil area and discharge volatile pollutants along with the air flow. Preferably used.
[0034]
The extracted gas containing the pollutant is circulated to the contaminated soil area through an injection well provided in the purified soil area. The extracted gas is preferably circulated to the contaminated soil area after appropriately measuring the oxygen concentration, carbon dioxide gas concentration, pollutants, and degradation products of the pollutants, and adjusting the components. Of these, the oxygen concentration has a great effect on the resolution of degrading microorganisms, so it is particularly preferable to measure the oxygen concentration in the extracted gas and adjust it to the optimum oxygen concentration according to the results, and then circulate to the contaminated soil area. .
[0035]
An example of a system suitable for carrying out the present invention is shown in FIG. 1, and a purification flow of contaminated soil using the system will be described.
[0036]
Purified soil area by injecting an injection solution containing decomposing microorganism material, volatile organic compound adsorbing material and the like into a contaminated soil area 17 measured and set in advance via an injection pipe 13 having an inlet 14 by a liquid injection unit 11 18 is provided. Contaminants in the contaminated soil region via an extraction pipe 15 embedded in or near the contaminated soil region 17 and having a suction port 16 connected to the gas circulation unit 12 (including a suction element, component measurement element, and gas injection element) The gas containing is extracted. The extracted gas is appropriately measured for the gas component composition by the component measuring element, adjusted for the gas component by the component adjusting element as necessary, and then circulated again to the purified soil region 18 via the injection pipe 13.
[0037]
The series of operations from gas extraction to re-injection / circulation can be either continuous or intermittent. However, it is preferable to take a continuous operation in order to efficiently promote the purification effect.
[0038]
Alternatively, the gas containing the pollutant in the contaminated soil region may be sucked and extracted from the inlet 14 and circulated to the purified soil region through the gas circulation unit 12 and the suction port 16.
Hereinafter, the present invention will be described in detail by way of examples.
[0039]
【Example】
[0040]
[Example 1]
(Create test soil tank)
2 and 3, an injection pipe 25 having an injection port 26 at a depth of 300 mm in the center, four extraction pipes 27 (each having five suction ports with strainers) and a soil layer 21 in the vicinity of the wall surface A gravel layer 22 (40 mm) is placed in the lower layer of a 200-liter drum equipped with a stainless steel tube (not shown) for sampling the gas, and a fine soil and silt test soil layer 21 (750 mm) containing 12 ppm of trichlorethylene is placed thereon. Further, a gravel layer 23 (40 mm) and a sealing layer 24 (40 mm) made of polyurethane were provided as an upper layer to make a test soil tank.
[0041]
(Synthesis of volatile organic compound adsorption materials)
In a 300 ml polymerization vessel equipped with a reflux condenser, a stirrer and a thermometer, 160 ml of water and 2 grams of an anionic surfactant (sodium dodecylbenzenesulfonate) were added and heated to 72 ° C. Next, 2.5 grams of potassium persulfate was added and dissolved, and then 50 grams of a monomer mixture consisting of styrene, butyl acrylate, methyl methacrylate, acrylic acid, acrylamide (40: 30: 24: 4: 2 by weight) and dodecylbenzene. 3 g of sodium sulfonate was mixed and continuously injected in 2 hours, and after completion of addition, the mixture was polymerized at 72 ° C. for 3 hours to obtain an aqueous dispersion of anionic polymer particles having a particle size of about 0.2 μm (resin solids). Min. 25%).
[0042]
(Formation of purified soil area)
A colony of Corynebacterium sp. J1 (Accession No .: FERM BP-5102) on M9 agar medium containing 0.5% sodium malate contains 1.0% sodium malate in the Sakaguchi flask 3 L of M9 medium was inoculated and cultured with shaking at 25 ° C. for 24 hours. 2 times the concentration of M9 medium containing 3% sodium malate and 0.3g / L phenol for J1 inducement, 3L of the above culture solution and 160g of an anionic polymer particle aqueous dispersion obtained by the above method. The mixture was mixed to prepare an injection solution. A spherical purified soil region 29 having an injection radius of about 200 mm was formed by an injection pump (not shown) through the injection pipe 25 of the test soil tank.
[0043]
(Gas extraction, circulation purification)
Immediately after the formation of the purified soil region, the gas in the test soil tank 21 is sucked (5 L / min.) By the air pump 27 through the extraction pipe 27, and at the same time, the sucked gas is injected and circulated into the purified soil region 28 through the injection pipe 25. It was. Every hour after the start of circulation, the gas in the soil tank is sampled from a stainless steel tube (not shown) inserted in the upper part of the test soil tank 21, the vicinity of the inlet and the lower part of the test soil tank, and the concentration of trichlorethylene contained in the gas is determined. Measurement was performed by gas chromatography (FID detector). The time course of the average concentration is shown in FIG.
[0044]
[Comparative Example 1]
A test soil tank similar to the example was prepared, and the same purified soil region as that of the example was formed except that the anionic polymer particle aqueous dispersion was not included in the injected solution. After the formation of the purified soil area, gas extraction and circulation are performed in the same manner as in the example, and the gas in the soil tank is sampled from the stainless steel tube every hour, and the concentration of trichlorethylene contained in the gas is measured by gas chromatography (FID detector). It was measured. The time course of the average concentration is shown in FIG.
[0045]
[Comparative Example 2]
A test soil tank similar to the example was prepared, and the same purified soil region was formed as in the example except that the J1 strain was not included in the injection solution. After the formation of the purified soil area, gas extraction and circulation are performed in the same manner as in the example, and the gas in the soil tank is sampled from the stainless steel tube every hour, and the concentration of trichlorethylene contained in the gas is measured by gas chromatography (FID detector). It was measured. The time course of the average concentration is shown in FIG.
[0046]
[Comparative Example 3]
A test soil tank similar to that of the example was prepared, and the same purified soil region as that of the example was formed except that the anionic polymer particle aqueous dispersion and J1 were not contained in the injection solution. After the formation of the purified soil area, gas extraction and circulation are performed in the same manner as in the example, and the gas in the soil tank is sampled from the stainless steel tube every hour, and the concentration of trichlorethylene contained in the gas is measured by gas chromatography (FID detector). It was measured. The time course of the average concentration is shown in FIG.
[0047]
[Example 2]
The same test soil tank as in Example 1 was prepared. In Example 1, the infusate did not contain phenol for inducing, and instead of J1, Inducerless JM1 (Life Technologies Research Institute accession number: FERM BP -5352) was used to form the same purified soil area except that the colony was used. After the formation of the purified soil area, gas extraction and circulation were performed as in Example 1, and the gas in the soil tank was sampled from the stainless tube every hour, and the concentration of trichlorethylene contained in the gas was gas chromatographed (FID detector). Measured with The time course of the average concentration is shown in FIG.
[0048]
【The invention's effect】
The purification method of the present invention has enabled efficient purification by a simple construction method and operation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a system that can implement the method of the present invention. FIG. 2 is a schematic diagram of a cross section of a test soil tank used in Examples and Comparative Example 2. FIG. Schematic view from the top of the test soil tank [Fig. 4] Graph showing the change in the concentration of trochlorethylene contained in the test soil obtained in Examples and Comparative Examples 1 and 2 [Fig. 5] Purification using an injection pipe Schematic diagram showing a method for forming a soil area [Fig. 6] Schematic diagram showing a method for forming a purified soil area using a construction machine used for ground improvement [Fig. 7] Using a construction machine used for ground improvement FIG. 8 is a conceptual diagram showing a method for forming a purified soil area by forming excavation holes. FIG. 9 is a diagram showing a method for forming a purified soil area by providing excavation holes. Conceptual diagram [Simple explanation of symbols]
11 Liquid injection unit 12 Gas circulation unit 13 Injection pipe 14 Injection port 15 Extraction pipe 16 Suction port 17 Contaminated soil region 18 Purified soil region 21 Test soil layer 22 Lower gravel layer 23 Upper gravel layer 24 Seal layer 25 Injection pipe 26 Note Inlet 27 Extraction pipe 28 Purified soil area 29 Air pump 41 Liquid injection unit 42 Injection pipe 43 Inlet 44 Contaminated soil area 45 Purified soil area 51 Injection chemical supply system 52 Stirring power 53 Stirring blade 54 Contaminated soil area 55 Purified soil area 61 Excavation Hole 62 Purified soil area 63 Contaminated soil area

Claims (6)

揮発性有機化合物で汚染された土壌の微生物の分解作用を利用した浄化方法であって、汚染土壌領域に分解微生物材料および該揮発性有機化合物を吸着する特性を有する材料(以下揮発性有機化合物吸着材料)を含む浄化土壌域を形成する工程および汚染土壌域から汚染物質を含む気体を抽出し抽出気体を該浄化土壌域を経由して汚染土壌領域に循環させる工程を含むことを特徴とする汚染土壌の浄化方法。This is a purification method that utilizes the decomposition action of microorganisms in soil contaminated with volatile organic compounds, and has a property of adsorbing the decomposed microbial materials and the volatile organic compounds to the contaminated soil region (hereinafter referred to as volatile organic compound adsorption). Including a step of forming a purified soil region containing a material) and a step of extracting a gas containing a pollutant from the contaminated soil region and circulating the extracted gas to the contaminated soil region through the purified soil region Soil purification method. 揮発性有機化合物吸着材料が水分散性の高分子化合物微粒子からなる請求項1に記載の方法。The method according to claim 1, wherein the volatile organic compound adsorbing material comprises water-dispersible polymer compound fine particles. 高分子微粒子の表面荷電がマイナスである請求項2に記載の方法。The method according to claim 2, wherein the surface charge of the polymer fine particles is negative. 高分子微粒子の粒子径が0.01μmから5μmである請求項2又は3のいずれかに記載の方法。4. The method according to claim 2, wherein the polymer fine particles have a particle diameter of 0.01 to 5 [mu] m. 揮発性有機化合物が揮発性有機塩素系化合物である請求項1乃至4のいずれかに記載の方法。The method according to claim 1, wherein the volatile organic compound is a volatile organochlorine compound. 揮発性有機塩素系化合物がトリクロロエチレンである請求項5に記載の方法。6. The method according to claim 5, wherein the volatile organochlorine compound is trichlorethylene.
JP09149396A 1996-04-12 1996-04-12 Purification method for contaminated soil Expired - Lifetime JP3645651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09149396A JP3645651B2 (en) 1996-04-12 1996-04-12 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09149396A JP3645651B2 (en) 1996-04-12 1996-04-12 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JPH09276839A JPH09276839A (en) 1997-10-28
JP3645651B2 true JP3645651B2 (en) 2005-05-11

Family

ID=14027946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09149396A Expired - Lifetime JP3645651B2 (en) 1996-04-12 1996-04-12 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP3645651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2342805A1 (en) * 1999-06-22 2000-12-28 Director General Of National Institute Of Agro-Environmental Sciences, The Ministry Of Agriculture, Forestry And Fisheries Of Japan A method of restoring contaminated soil
JP2006198476A (en) * 2005-01-18 2006-08-03 Penta Ocean Constr Co Ltd Method for making contaminated deposit harmless
ITMO20070391A1 (en) * 2007-12-13 2009-06-14 3000 S R L SYSTEM AND METHOD OF REMOVAL OF THE UNDERLYING
JP5779346B2 (en) * 2010-12-10 2015-09-16 新日鉄住金エンジニアリング株式会社 In-situ purification method for contaminated soil

Also Published As

Publication number Publication date
JPH09276839A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3420949B2 (en) Soil purification device and method for repairing contaminated soil
EP0785035B1 (en) Process for remediating soil
Semprini Strategies for the aerobic co-metabolism of chlorinated solvents
JP3450518B2 (en) Novel microorganism J1, biodegradation treatment method for aromatic compound and / or organochlorine compound using the same and environmental restoration method
JP3478619B2 (en) Novel microorganism KB2 and biodegradation treatment method of aromatic compound and / or volatile organochlorine compound using the same
US5487834A (en) Methods for microbial filtration of fluids
EP0780166B1 (en) Method of introducing microorganisms into a contaminated soil for its decontamination
JPH09276841A (en) Method and apparatus for purifying contaminated soil
JPH0796289A (en) Apparatus and method for purifying contaminated ground water due to soil contamination
JP3530588B2 (en) Method of forming in-situ microbial degradation region
JP3645651B2 (en) Purification method for contaminated soil
Mulder et al. Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene
JP3402699B2 (en) Soil remediation method using microorganisms
EP0715903B1 (en) A process for remedying an environment using microorganism and a process for treating soil
JP3693740B2 (en) Purification method for contaminated soil
JP2003311258A (en) On-site restoration method and apparatus of contaminated soil by means of micro-organism
O'Reilly et al. Utilization of immobilized-bacteria to degrade aromatic compounds common to wood-treatment wastewaters
JPH11179337A (en) Microbiological purification method and apparatus of polluted soil and underground water using floating granular carrier
JP2003326244A (en) Method and apparatus for restoring contaminated soil by microbe on-site
JPH0910794A (en) Biological decomposition and purification of pollutant discharged to environment
JPH09271750A (en) Method of injecting chemical into soil
JPH11169839A (en) Soil decontamination method and device therefor
JP2000197881A (en) Method and apparatus for decomposing pollutant in soil
Wang et al. Biodegradation of plasticizer di‐n‐butyl phthalate (DBP) by immobilized microbial cells
JP2000202480A (en) Method for cleaning soil and underground water contaminated

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term