JPH08223940A - Voltage-fed self-excited multiple conversion apparatus and its power conversion method - Google Patents

Voltage-fed self-excited multiple conversion apparatus and its power conversion method

Info

Publication number
JPH08223940A
JPH08223940A JP7021838A JP2183895A JPH08223940A JP H08223940 A JPH08223940 A JP H08223940A JP 7021838 A JP7021838 A JP 7021838A JP 2183895 A JP2183895 A JP 2183895A JP H08223940 A JPH08223940 A JP H08223940A
Authority
JP
Japan
Prior art keywords
voltage
converter
excited
correction signal
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7021838A
Other languages
Japanese (ja)
Other versions
JP3557687B2 (en
Inventor
Shoichiro Koseki
庄一郎 古関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02183895A priority Critical patent/JP3557687B2/en
Publication of JPH08223940A publication Critical patent/JPH08223940A/en
Application granted granted Critical
Publication of JP3557687B2 publication Critical patent/JP3557687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To connect DC circuits in series and to increase a DC voltage in a voltage-fed self-excited multiple conversion apparatus which uses a plurality of voltage-fed self-excited converters and in which AC windings for a transformer for the conversion apparatus are connected in series so as to be multiple. CONSTITUTION: DC voltages of respective converters 41, 42 are detected by detectors 71, 72, their difference voltage is found by a control circuit 11, and a voltage share is controlled so as to be uniform. The phase and the amplitude of an AC current are detected by a detector 30. On the basis of the control output of the control circuit 11, a sine-wave correction signal whose phase is equal to that of the AC current and whose amplitude is in inverse proportion to the amplitude of the AC current is generated from a correction signal generator 12, the signal is added to, or subtracted from, input signals of PWM phase generators 21, 22 for the respective converters 41, 42, and AC voltages of the respective converters 41, 42 are corrected. Thereby, in a constitution in which DC circuits are connected in series, a voltage share can be controlled so as to be uniform, and a DC voltage can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体電力変換装置に係
り、特に、複数の電圧形自励変換器の交流電圧を変換装
置用変圧器の交流巻線で直列に接続して加算することに
より多重化した電圧形自励多重変換装置とその電力変換
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor power converter, and more particularly, to a method of connecting AC voltages of a plurality of voltage source self-exciting converters in series with AC windings of a converter transformer and adding the AC voltages. The present invention relates to a multiplexed voltage type self-excited multiplex converter and its power conversion method.

【0002】[0002]

【従来の技術】図9は、複数の電圧形自励変換器を用い
て多重化した電圧形自励多重変換装置の構成図である。
すなわち、各変換器41,42の直流回路は並列に接続
されており、一方、各変換器の交流側は変換装置用変圧
器51,52に接続されており、この変換装置用変圧器
51,52の交流巻線は直列に接続されている。従っ
て、交流電圧は加算される。
2. Description of the Related Art FIG. 9 is a block diagram of a voltage type self-excited multiplex converter which is multiplexed by using a plurality of voltage type self-excited converters.
That is, the DC circuits of the converters 41, 42 are connected in parallel, while the AC side of each converter is connected to the transformers 51, 52 for the converter, and the transformer 51, 52 for the converter is connected. The 52 AC windings are connected in series. Therefore, the AC voltage is added.

【0003】この図9に示す従来の変換装置の構成で
は、変換器41,42の直流回路を並列に接続するた
め、直流電圧を高くすることが困難である。このため、
直流電圧を高くする必要のある場合には、図8または図
7に示す様に、直流回路を直列接続する構成が考えられ
る。しかしこれらの構成によると、変換器41と変換器
42の変換電力が制御の誤差などの影響によって必ずし
も等しくなくなり、直流電圧の分担ができなくなる問題
が発生する。この問題を解決するため、直流電圧分担を
均一化する制御が必要となる。
In the configuration of the conventional converter shown in FIG. 9, since the DC circuits of the converters 41 and 42 are connected in parallel, it is difficult to increase the DC voltage. For this reason,
When it is necessary to increase the DC voltage, a configuration in which DC circuits are connected in series can be considered as shown in FIG. 8 or 7. However, according to these configurations, the converted powers of the converter 41 and the converter 42 are not necessarily equal due to the influence of a control error or the like, which causes a problem that the DC voltage cannot be shared. In order to solve this problem, it is necessary to control the DC voltage distribution to be uniform.

【0004】図8の構成の場合、二つの変換器は変換装
置用変圧器の交流側が並列接続となっているため独立に
制御が可能であり、それぞれで電圧分担を制御すること
は容易に可能である。しかしながら、交流側が並列接続
であることから、変換装置用変圧器51,52を介して
2台の変換器間で横流が発生する欠点がある。特に大電
力の変換器では、パルス数を低くするため、横流抑制が
困難であり採用には多くの問題がある。
In the case of the configuration of FIG. 8, the two converters can be independently controlled because the AC side of the transformer for the converter is connected in parallel, and the voltage sharing can be easily controlled by each converter. Is. However, since the AC side is connected in parallel, there is a drawback that a cross current is generated between the two converters via the transformers 51 and 52 for the converter. Particularly in a high-power converter, since the number of pulses is reduced, it is difficult to suppress the cross current, and there are many problems in its adoption.

【0005】図7の構成の場合、変換装置用変圧器5
1,52の交流巻線が直列に接続されており、交流電流
が共通になるため、2台の変換器を独立に制御できず、
電圧分担制御を行うことが困難である。このため、例え
ば昭和63年電気学会全国大会S.7-5新エネルギーとパ
ワーエレクトロニクスに示されるような構成があるが、
回路が複雑化するという問題がある。また直列数が3以
上の場合には採用できないという問題もある。
In the case of the configuration shown in FIG. 7, the transformer 5 for the conversion device is used.
Since the AC windings of 1,52 are connected in series and the AC current is common, the two converters cannot be controlled independently,
It is difficult to perform voltage sharing control. For this reason, for example, there is a structure shown in S.7-5 New Energy and Power Electronics in the 1988 National Congress of the Institute of Electrical Engineers of Japan,
There is a problem that the circuit becomes complicated. There is also a problem that it cannot be adopted when the number of series is three or more.

【0006】[0006]

【発明が解決しようとする課題】高い直流電圧を取り扱
うには直流回路を3つ以上直列に接続する必要が生じる
が、実機に適用するには、回路構成を簡単にししかも直
流分圧分担を均一化しなければならないという問題があ
る。この問題は上述した従来技術では解決できず、新た
な技術を開発する必要がある。
In order to handle a high DC voltage, it is necessary to connect three or more DC circuits in series. However, in order to apply it to an actual machine, the circuit configuration is simplified and the DC voltage sharing is uniform. There is a problem that it has to be realized. This problem cannot be solved by the above-mentioned conventional technique, and a new technique needs to be developed.

【0007】本発明の目的は、直流回路が直列接続さ
れ、変換装置用変圧器の交流巻線が直列接続された多重
の電圧形自励多重変換装置において、簡単な回路構成で
直流電圧の均一化を可能とする電圧形自励多重変換装置
とその電力変換方法を提供することにある。
An object of the present invention is to provide a uniform DC voltage with a simple circuit configuration in a multiple voltage type self-excited multiplex converter in which DC circuits are connected in series and AC windings of a transformer for a converter are connected in series. To provide a voltage-type self-excited multiplex conversion device that can be realized and a power conversion method thereof.

【0008】[0008]

【問題を解決するための手段】上記目的は、複数の変換
器の交流電圧が変換装置用変圧器の交流巻線側で直列に
接続されて多重化され、各変換器の直流回路が直列に接
続された電圧形自励多重変換装置において、各変換器ご
とにその直流電圧と全変換器の直流電圧の平均値との差
電圧とから各変換器の交流電圧を補正する補正信号を生
成し、該補正信号を変換装置の制御信号に加算し、該加
算により各変換器の交流電圧を補正して直流電圧の調整
を行い直流電圧を平均値に一致させることで、達成され
る。
The object of the above is to connect the AC voltages of a plurality of converters in series on the AC winding side of a transformer for a converter and to multiplex the DC voltage of each converter in series. In the connected voltage type self-exciting multiplex converter, a correction signal for correcting the AC voltage of each converter is generated from the difference voltage between the DC voltage of each converter and the average value of the DC voltage of all converters. This is achieved by adding the correction signal to the control signal of the converter, correcting the AC voltage of each converter by the addition, adjusting the DC voltage, and matching the DC voltage to the average value.

【0009】上記目的は、好適には、交流電流の位相を
検出し、前記補正信号の位相を前記検出した位相と同相
とすることで、達成される。
The above-mentioned object is preferably achieved by detecting the phase of the alternating current and making the phase of the correction signal the same as the detected phase.

【0010】上記目的は、好適には、交流電流の振幅を
検出し、前記補正信号の振幅を前記検出した振幅に反比
例させることで、達成される。
The above object is preferably accomplished by detecting the amplitude of the alternating current and making the amplitude of the correction signal inversely proportional to the detected amplitude.

【0011】上記目的は、好適には、前記補正信号を正
弦波とすることで、達成される。
The above object is preferably achieved by making the correction signal a sine wave.

【0012】[0012]

【作用】各変換器の交流電流は共通であり、各変換器の
交流電圧を補正することにより、各変換器の変換電力を
補正して電圧分担の均一化を図ることができる。その
際、補正電圧は全変換器分の合計では0となるようにし
て、電圧分担制御と変換装置の制御との干渉がないよう
にできる。
The alternating current of each converter is common, and by correcting the alternating voltage of each converter, it is possible to correct the conversion power of each converter and make the voltage sharing uniform. At that time, the correction voltage can be set to 0 in total for all converters, so that there is no interference between the voltage sharing control and the control of the converter.

【0013】また、補正電圧を交流電流位相に同期させ
ると、各変換器の変換電力の方向によらず補正が可能と
なる。
Further, when the correction voltage is synchronized with the AC current phase, the correction can be performed regardless of the direction of the conversion power of each converter.

【0014】更に、補正電圧の大きさを交流電流の大き
さに反比例させることにより、補正制御が電流の大きさ
の影響を受けないようにして電圧分担の均等化を図るこ
とが可能となる。
Further, by making the magnitude of the correction voltage inversely proportional to the magnitude of the alternating current, the correction control is not affected by the magnitude of the current, and the voltage sharing can be equalized.

【0015】更にまた、補正電圧波形を正弦波とするこ
とにより、出力電圧のひずみを発生させず電圧分担の均
一化が可能となる。
Furthermore, by making the correction voltage waveform a sine wave, it is possible to make the voltage distribution uniform without causing distortion of the output voltage.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。まず、実施例の説明の前に、電圧分担の問題に
ついて詳細に検討してみる。簡単化のため図7のように
2台の変換器が直列接続されている場合を考える。制御
装置も含めた構成を図6に示す。装置全体は制御装置2
0からの信号Vcにより制御される。各変換器のパルス
制御は、通常はPWM(パルス幅変調)制御が用いられ
る。すなわち、Vcは各変換器のPWMパルス発生器2
1,22に入力され、そこで変換器のオン,オフパルス
が発生され、それに従って変換器41,42が動作す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, before describing the embodiments, the problem of voltage sharing will be examined in detail. For simplification, consider a case where two converters are connected in series as shown in FIG. The configuration including the control device is shown in FIG. The entire device is the control device 2
It is controlled by the signal Vc from 0. PWM (pulse width modulation) control is usually used for the pulse control of each converter. That is, Vc is the PWM pulse generator 2 of each converter
1, 22 to generate ON / OFF pulses of the converters, and the converters 41, 42 operate accordingly.

【0017】これにより、各変換器41,42は、変換
装置用変圧器51,52の直流巻線にそれぞれ交流電圧
v1とv2とを発生する。基本波成分だけを取出してそれ
を v1=√2・V1・sin(ωt) (1) v2=√2・V2・sin(ωt) (2) とする。V1,V2は、交流電圧実効値、ωは角周波数、
tは時間である。なお図では三相変換装置であるが、そ
の場合は上記電圧はその正相成分と考えればよい。
As a result, the converters 41 and 42 generate AC voltages v1 and v2 in the DC windings of the converter transformers 51 and 52, respectively. Only the fundamental wave component is extracted and defined as v1 = √2 · V1 · sin (ωt) (1) v2 = √2 · V2 · sin (ωt) (2). V1 and V2 are effective values of AC voltage, ω is angular frequency,
t is time. In the figure, a three-phase converter is used, but in that case, the above voltage may be considered as its positive phase component.

【0018】変換装置用変圧器の交流巻線は直列に接続
されており、各変換器の交流電流iは共通の値 i=√2・I・sin(ωt+φ) (3) となっている。Iは交流電流の実効値、φは電圧に対す
る位相である。各変換器の出力電力は 変換器41 P1=V1・I・cosφ (4) 変換器42 P2=V2・I・cosφ (5) となる。
The AC windings of the converter transformers are connected in series, and the AC current i of each converter has a common value i = √2 · I · sin (ωt + φ) (3). I is the effective value of the alternating current, and φ is the phase with respect to the voltage. The output power of each converter is: converter 41 P1 = V1 · I · cosφ (4) converter 42 P2 = V2 · I · cosφ (5)

【0019】ところで変換器の出力電圧は前述のように
一般にはPWMで制御される。各変換器の直流電圧をE
d1,Ed2とし、PWMの変調率をkとしたとき、各変換
器の交流電圧実効値は V1=A・k・Ed1 (6) V2=A・k・Ed2 (7) となる。ただしAは比例定数である。これを(4)(5)式
に代入して P1=A・k・Ed1・I・cosφ (8) P2=A・k・Ed2・I・cosφ (9) 各変換器の直流電流は Id1=P1/Ed1=A・k・I・cosφ (10) Id2=P2/Ed2=A・k・I・cosφ (11) となる。これから直流電圧が異なっていても基本的には
Id1とId2とは等しくなることが分かる。
By the way, the output voltage of the converter is generally controlled by PWM as described above. DC voltage of each converter is E
When d1 and Ed2 are set and the PWM modulation rate is k, the AC voltage effective value of each converter is V1 = A · k · Ed1 (6) V2 = A · k · Ed2 (7). However, A is a proportional constant. Substituting this into Eqs. (4) and (5), P1 = A · k · Ed1 · I · cosφ (8) P2 = A · k · Ed2 · I · cosφ (9) The DC current of each converter is Id1 = P1 / Ed1 = A · k · I · cosφ (10) Id2 = P2 / Ed2 = A · k · I · cosφ (11) From this, it can be seen that Id1 and Id2 are basically the same even if the DC voltage is different.

【0020】実際には、変換器はPWMの誤差などの影
響を受け、上記の理想的な値から異なってくる。このた
めId1とId2とに差が発生し、電圧分担の不平衡が発生
する。不平衡が発生しても、上記結果のように電圧が高
い方が電流が低減して電圧分担を補正するという機能は
なく、不平衡は補正されないまま拡大していくことにな
る。
In practice, the converter is affected by PWM error and the like, and differs from the above ideal value. As a result, a difference occurs between Id1 and Id2, causing an imbalance in voltage sharing. Even if an imbalance occurs, the higher voltage does not have the function of reducing the current and correcting the voltage sharing as in the above result, and the imbalance expands without being corrected.

【0021】また別の方式として、図5に示すように、
各変換器の交流電圧が直流電圧の影響を受けないよう
に、制御信号VcをPWMパルス発生器入力において基
準直流電圧Edに正規化する方式がある。これは、各変
換器の直流電圧を直流電圧検出器71,72で検出し、
Vcを演算器26,27で(Ed/Edn)倍(n=1,2)す
る方式である。この場合、各変換器の変調率がk(Ed/
Ed1)、k(Ed/Ed2)となるため V1=A・k・Ed (12) V2=A・k・Ed (13) Id1=P1/Ed1=A・k(Ed/Ed1)I・cosφ (14) Id2=P2/Ed2=A・k(Ed/Ed2)I・cosφ (15) となり、直流電圧が高くなると電流の絶対値が小さくな
り、順変換(cosφが正)の場合にはかえって電圧分担不
平衡を増大させてしまう。
As another method, as shown in FIG.
There is a method of normalizing the control signal Vc to the reference DC voltage Ed at the PWM pulse generator input so that the AC voltage of each converter is not affected by the DC voltage. This is to detect the DC voltage of each converter with the DC voltage detectors 71 and 72,
This is a method of multiplying Vc by (Ed / Edn) times (n = 1, 2) in the arithmetic units 26 and 27. In this case, the modulation factor of each converter is k (Ed /
Since Ed1) and k (Ed / Ed2), V1 = A · k · Ed (12) V2 = A · k · Ed (13) Id1 = P1 / Ed1 = A · k (Ed / Ed1) I · cosφ ( 14) Id2 = P2 / Ed2 = A · k (Ed / Ed2) I · cosφ (15), the absolute value of the current becomes smaller as the DC voltage becomes higher, and in the case of forward conversion (cosφ is positive), the voltage becomes rather It increases the sharing imbalance.

【0022】そこで、本発明の第1実施例では、図1に
示す構成とすることで、電圧分担の平衡を図っている。
図1において、2台の変換器41,42の直流回路は直
列に接続され、また各変換器41,42に接続される変
換装置用変圧器51,52の交流巻線も直列に接続され
ている。
Therefore, in the first embodiment of the present invention, the configuration shown in FIG. 1 is used to balance the voltage sharing.
In FIG. 1, the DC circuits of the two converters 41, 42 are connected in series, and the AC windings of the converter transformers 51, 52 connected to the converters 41, 42 are also connected in series. There is.

【0023】変換装置全体は制御装置20により制御さ
れる。この制御として、例えば変換装置の有効・無効電
力制御や、直列合計での直流電圧制御がある。各変換器
41,42の制御用パルスは、PWMパルス発生器2
1,22で発生する。各変換器41,42の直流電圧
は、直流電圧分担制御装置10によって均一化される。
直流電圧を検出するために、直流電圧検出器71,72
が用いられる。交流電流位相検出器30は、交流電流検
出器81,82,83で検出された交流電流の位相と振
幅とを算出する。
The entire converter is controlled by the controller 20. Examples of this control include active / reactive power control of the converter and direct-current voltage control with total series. The control pulse of each converter 41, 42 is generated by the PWM pulse generator 2
1 and 22 occur. The DC voltage of each converter 41, 42 is made uniform by the DC voltage sharing control device 10.
In order to detect the DC voltage, the DC voltage detectors 71, 72
Is used. The alternating current phase detector 30 calculates the phase and amplitude of the alternating current detected by the alternating current detectors 81, 82 and 83.

【0024】次に、図1に示す電圧形自励多重変換装置
の動作を説明する。制御装置の出力信号Vcは、大きさ
は変調度kに比例しかつ交流電圧位相に同期しており、
正弦波変調では Vc=k・sin(ωt) (16) である。
Next, the operation of the voltage type self-excited multiplex converter shown in FIG. 1 will be described. The output signal Vc of the control device has a magnitude proportional to the modulation factor k and synchronized with the AC voltage phase,
In sinusoidal modulation, Vc = k · sin (ωt) (16).

【0025】直流電圧分担制御装置10には、直流電圧
検出器71,72から各変換器の直流電圧Ed1,Ed2が
入力される。差電圧制御回路11は、直流電圧の差Ed1
−Ed2を求め、偏差分を0にするための制御演算を行
い、演算出力ΔUを出力する。
The DC voltage sharing control device 10 receives DC voltages Ed1 and Ed2 of the converters from the DC voltage detectors 71 and 72, respectively. The difference voltage control circuit 11 detects the difference in DC voltage Ed1.
-Ed2 is obtained, a control operation for making the deviation zero is performed, and the operation output ΔU is output.

【0026】交流電流位相検出器30は、交流電圧の基
準位相信号ωtを用いて、交流電流検出器81,82,
83で検出された交流電流を例えばフーリエ変換するこ
とにより、交流電流の位相φと振幅(実効値)Iとを求め
る。
The AC current phase detector 30 uses the reference phase signal ωt of the AC voltage to detect the AC current detectors 81, 82,
The phase φ and amplitude (effective value) I of the alternating current are obtained by, for example, Fourier transforming the alternating current detected at 83.

【0027】補正信号発生器12は、ΔUとφとIとか
ら C=(ΔU/I)sin(ωt+φ) (17) の補正信号を発生させ、これを制御装置の出力信号Vc
に加減算する。PWM制御装置21にはVc+Cが、P
WM制御装置22にはVc−Cが入力される。すなわち
各入力信号は Vc1=k・sin(ωt)+(ΔU/I)sin(ωt+φ) (18) Vc2=k・sin(ωt)−(ΔU/I)sin(ωt+φ) (19) となる。各変換器の交流電圧は、基本波分だけ取出す
と、PWM制御装置の入力に対して振幅が√2・A・Edn
(n=1,2)倍となり、基本波分は、瞬時値では v1=√2・A・Ed1{k・sin(ωt)+(ΔU/I)sin(ωt+φ)} (20) v2=√2・A・Ed2{k・sin(ωt)−(ΔU/I)sin(ωt+φ)} (21) となる。合計電圧は v1+v2=2√2・A・(Ed1+Ed2)・k・sin(ωt) +√2・A・(Ed1―Ed2)・(ΔU/I)・sin(ωt+φ) (22) となり、Ed1≒Ed2であるので、合計電圧は補正信号の
影響をほとんど受けない。
The correction signal generator 12 generates a correction signal of C = (ΔU / I) sin (ωt + φ) (17) from ΔU, φ, and I, which is output signal Vc of the controller.
Add or subtract to. In the PWM control device 21, Vc + C is P
Vc-C is input to the WM control device 22. That is, each input signal is Vc1 = k.sin (ωt) + (ΔU / I) sin (ωt + φ) (18) Vc2 = k · sin (ωt)-(ΔU / I) sin (ωt + φ) (19) When the AC voltage of each converter is extracted by the fundamental wave, the amplitude is √2 · A · Edn with respect to the input of the PWM control device.
(n = 1, 2) times, and the fundamental wave component is v1 = √2 · A · Ed1 {k · sin (ωt) + (ΔU / I) sin (ωt + φ)} (20) v2 = √ 2 · A · Ed2 {k · sin (ωt) − (ΔU / I) sin (ωt + φ)} (21) The total voltage is v1 + v2 = 2√2 ・ A ・ (Ed1 + Ed2) ・ k ・ sin (ωt) + √2 ・ A ・ (Ed1-Ed2) ・ (ΔU / I) ・ sin (ωt + φ) (22), and Ed1 ≒ Since it is Ed2, the total voltage is hardly affected by the correction signal.

【0028】交流電流が i=√2・I・sin(ωt+φ) (23) であることから、変換電力は P1=A・Ed1(k・I・cosφ+ΔU) (24) P2=A・Ed2(k・I・cosφ−ΔU) (25) となる。各変換器の直流電流は Id1=P1/Ed1=A(k・I・cosφ+ΔU) (26) Id2=P2/Ed2=A(k・I・cosφ−ΔU) (27) となる。これからΔUによって各変換器の直流電流を補
正でき、ΔUは直流電圧の差電圧から差電圧制御回路1
1で制御されているので、電圧分担の均一化が図れる。
Since the alternating current is i = √2 · I · sin (ωt + φ) (23), the converted power is P1 = A · Ed1 (k · I · cosφ + ΔU) (24) P2 = A · Ed2 (k)・ I · cosφ-ΔU) (25) The direct current of each converter is Id1 = P1 / Ed1 = A (k.I.cos.phi. +. DELTA.U) (26) Id2 = P2 / Ed2 = A (k.I.cos.phi .-. DELTA.U) (27). From this, the DC current of each converter can be corrected by ΔU, and ΔU can be calculated from the differential voltage of the DC voltage by the differential voltage control circuit 1
Since it is controlled by 1, the voltage sharing can be made uniform.

【0029】本実施例では、補正を行っても、合計電圧
は補正の影響をほとんど受けない。補正信号は、交流電
流の位相に同期させているので、交流電流の位相すなわ
ち電力変換の方向,有効・無効電力の状況によらず、同
じ極性で補正が可能である。補正信号は、電流の振幅に
反比例させたので、電流の大きさによらず一定の補正が
可能である。補正信号は、正弦波としたので、出力電圧
にひずみを発生させない。
In this embodiment, even if correction is performed, the total voltage is hardly affected by the correction. Since the correction signal is synchronized with the phase of the alternating current, the correction can be performed with the same polarity regardless of the phase of the alternating current, that is, the direction of power conversion and the status of active / reactive power. Since the correction signal is inversely proportional to the amplitude of the current, constant correction is possible regardless of the magnitude of the current. Since the correction signal is a sine wave, the output voltage is not distorted.

【0030】尚、交流電流は、検出値の代わりに設定値
を用いてもよい。交流電流が0の場合には制御ができな
くなるので、最小電流にリミッタを設定する。この場
合、力率を0とすれば、有効電力は出力させないでおく
ことができる。
As the alternating current, a set value may be used instead of the detected value. When the AC current is 0, control cannot be performed, so the limiter is set to the minimum current. In this case, if the power factor is set to 0, it is possible to prevent the active power from being output.

【0031】尚、本実施例では、直流電圧の差電圧から
制御するようにしたが、平均直流電圧 EdAV=(Ed1+Ed2)/2 (28) を算出し、各変換器ごとに直流電圧と平均電圧との差電
圧から制御しても同じである。例えば、ゲインKの比例
制御では、各変換器の制御演算結果は ΔU1=K(Ed1−EdAV)=K(Ed1−Ed2)/2 (29) ΔU2=K(Ed2−EdAV)=K(Ed2−Ed1)/2=−ΔU1 (30) となり、ゲインが二分の一となることを除けば上記と同
じである。
In the present embodiment, the control is performed from the differential voltage of the DC voltage, but the average DC voltage EdAV = (Ed1 + Ed2) / 2 (28) is calculated and the DC voltage and the average voltage are calculated for each converter. It is the same even if controlled from the voltage difference between For example, in the proportional control of the gain K, the control calculation result of each converter is ΔU1 = K (Ed1-EdAV) = K (Ed1-Ed2) / 2 (29) ΔU2 = K (Ed2-EdAV) = K (Ed2- Ed1) / 2 = -ΔU1 (30), which is the same as the above except that the gain is halved.

【0032】図2は、本発明の第2実施例に係る電圧形
自励多重変換装置の構成図である。本実施例では、平均
直流電圧検出器13で平均直流電圧を算出し、制御信号
を平均直流電圧で正規化しており、図5の従来例のよう
に、電力変換の極性の影響を受けずに補正制御が可能で
あり、かつ正規化の機能も可能である。
FIG. 2 is a block diagram of a voltage type self-excited multiplex converter according to a second embodiment of the present invention. In this embodiment, the average DC voltage is calculated by the average DC voltage detector 13 and the control signal is normalized by the average DC voltage, so that the polarity of power conversion is not affected as in the conventional example of FIG. Correction control is possible and a normalization function is also possible.

【0033】図3は、本発明の第3実施例に係る電圧形
自励多重変換装置の構成図である。本実施例では、4台
の変換器を直列に接続した場合を示すが、一般に3台以
上の変換器を直列接続した場合に適用可能である。本実
施例では、平均直流電圧検出器13で各変換器の直流電
圧の平均値 EdAV=(Ed1+Ed2+Ed3+Ed4)/4 (31) を算出し、各変換器を、直流電圧Edn(n=1〜4)と平
均値EdAVとの差電圧で制御している。その他の構成
は、前述した実施例と同様である。
FIG. 3 is a block diagram of a voltage type self-excited multiplex converter according to a third embodiment of the present invention. Although this embodiment shows the case where four converters are connected in series, it is generally applicable to a case where three or more converters are connected in series. In the present embodiment, the average DC voltage detector 13 calculates the average value of the DC voltage of each converter EdAV = (Ed1 + Ed2 + Ed3 + Ed4) / 4 (31), and each converter is supplied with the DC voltage Edn (n = 1 to 4). And the average value EdAV. Other configurations are similar to those of the above-described embodiment.

【0034】図4は、本発明の第4実施例に係る電圧形
自励多重変換装置の構成図である。本実施例では、変換
器の直流回路41,42が並列接続され、直流回路4
3,44が並列接続され、これら2つの並列回路が直列
接続されている。その他の構成は、上述した他の実施例
と同様である。
FIG. 4 is a block diagram of a voltage type self-excited multiplex converter according to a fourth embodiment of the present invention. In this embodiment, the DC circuits 41 and 42 of the converter are connected in parallel, and the DC circuit 4
3, 44 are connected in parallel, and these two parallel circuits are connected in series. Other configurations are the same as those of the other embodiments described above.

【0035】[0035]

【発明の効果】本発明によれば、直列に接続された変換
器の間での電圧分担が制御されるため、電圧分担を均等
化できる効果がある。またその結果、変換器の直列接続
が容易に可能となり、直列接続によって直流電圧を高電
圧とした変換装置を容易に提供できる効果がある。
According to the present invention, since the voltage sharing among the converters connected in series is controlled, the voltage sharing can be equalized. As a result, the converters can be easily connected in series, and there is an effect that a converter in which the DC voltage is high can be easily provided by the series connection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る電圧形自励多重変換
装置の構成図である。
FIG. 1 is a configuration diagram of a voltage type self-exciting multiplex converter according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る電圧形自励多重変換
装置の構成図である。
FIG. 2 is a configuration diagram of a voltage type self-excited multiplex converter according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る電圧形自励多重変換
装置の構成図である。
FIG. 3 is a configuration diagram of a voltage type self-exciting multiplex conversion device according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係る電圧形自励多重変換
装置の構成図である。
FIG. 4 is a configuration diagram of a voltage type self-exciting multiplex converter according to a fourth embodiment of the present invention.

【図5】従来の半導体電力変換装置を示す図である。FIG. 5 is a diagram showing a conventional semiconductor power conversion device.

【図6】従来の他の半導体電力変換装置を示す図であ
る。
FIG. 6 is a diagram showing another conventional semiconductor power conversion device.

【図7】従来の他の半導体電力変換装置を示す図であ
る。
FIG. 7 is a diagram showing another conventional semiconductor power conversion device.

【図8】従来の他の半導体電力変換装置を示す図であ
る。
FIG. 8 is a diagram showing another conventional semiconductor power conversion device.

【図9】従来の他の半導体電力変換装置を示す図であ
る。
FIG. 9 is a diagram showing another conventional semiconductor power conversion device.

【符号の説明】[Explanation of symbols]

10…電圧分担制御装置、11…差電圧制御回路、11
1,112,113,114…差電圧制御回路、12…
補正信号発生器、121,122,123,124…補
正信号発生器、13…平均直流電圧検出器、20…制御
装置、21〜24…PWM制御装置、26,27…演算
器、30…交流電流振幅・位相検出器、41〜44…変
換器、51〜54…変換装置用変圧器、60〜64…コ
ンデンサ、70…直流電源、71〜74…直流電圧検出
器、81〜83…交流電流検出器。
10 ... Voltage sharing control device, 11 ... Differential voltage control circuit, 11
1, 112, 113, 114 ... Differential voltage control circuit, 12 ...
Correction signal generator, 121, 122, 123, 124 ... Correction signal generator, 13 ... Average DC voltage detector, 20 ... Control device, 21-24 ... PWM control device, 26, 27 ... Arithmetic unit, 30 ... AC current Amplitude / phase detector, 41-44 ... Converter, 51-54 ... Transformer for transformer, 60-64 ... Capacitor, 70 ... DC power supply, 71-74 ... DC voltage detector, 81-83 ... AC current detection vessel.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の変換器の交流電圧が変換装置用変
圧器の交流巻線側で直列に接続されて多重化され、各変
換器の直流回路が直列に接続された電圧形自励多重変換
装置において、各変換器ごとにその直流電圧と全変換器
の直流電圧の平均値との差電圧とから各変換器の交流電
圧を補正する補正信号を生成する手段と、該補正信号を
変換装置の制御信号に加算する手段と、該加算により各
変換器の交流電圧を補正して直流電圧の調整を行い直流
電圧を平均値に一致させる制御を行う手段とを備えるこ
とを特徴とする電圧形自励多重変換装置。
1. A voltage type self-excited multiplex system in which AC voltages of a plurality of converters are connected in series on the AC winding side of a transformer for a converter and multiplexed, and DC circuits of the converters are connected in series. In the converter, a means for generating a correction signal for correcting the AC voltage of each converter from the difference voltage between the DC voltage of each converter and the average value of the DC voltage of all converters, and converting the correction signal. A voltage characterized by comprising means for adding to the control signal of the device, and means for controlling the DC voltage by correcting the AC voltage of each converter by the addition and controlling the DC voltage to match the average value. Self-excited multiplex converter.
【請求項2】 請求項1において、交流電流の位相を検
出する手段と、前記補正信号の位相を前記検出した位相
と同相にする手段とを備えることを特徴とする電圧形自
励多重変換装置。
2. The voltage type self-excited multiplex converter according to claim 1, further comprising means for detecting the phase of the alternating current and means for making the phase of the correction signal the same phase as the detected phase. .
【請求項3】 請求項1または請求項2において、交流
電流の振幅を検出する手段と、前記補正信号の振幅を前
記検出した振幅に反比例させる手段とを備えることを特
徴とする電圧形自励多重変換装置。
3. The voltage-type self-excitation according to claim 1, further comprising means for detecting the amplitude of the alternating current and means for making the amplitude of the correction signal inversely proportional to the detected amplitude. Multiplexing device.
【請求項4】 請求項1乃至請求項3のいずれかにおい
て、前記補正信号を生成する手段は前記補正信号を正弦
波として出力することを特徴とする電圧形自励多重変換
装置。
4. The voltage type self-excited multiplex conversion device according to claim 1, wherein the means for generating the correction signal outputs the correction signal as a sine wave.
【請求項5】 複数の変換器の交流電圧が変換装置用変
圧器の交流巻線側で直列に接続されて多重化され、各変
換器の直流回路が直列に接続された電圧形自励多重変換
装置において、各変換器ごとに、その直流電圧と全変換
器の直流電圧の平均値との差電圧とから各変換器の交流
電圧を補正する補正信号を生成し、該補正信号を変換装
置の制御信号に加算し、該加算により各変換器の交流電
圧を補正して直流電圧の調整を行い直流電圧を平均値に
一致させる制御を行うことを特徴とする電圧形自励多重
変換装置の電力変換方法。
5. A voltage-type self-excited multiplex system in which AC voltages of a plurality of converters are connected in series on an AC winding side of a transformer for a converter and multiplexed, and DC circuits of the converters are connected in series. In the converter, for each converter, a correction signal for correcting the AC voltage of each converter is generated from the difference voltage between the DC voltage and the average value of the DC voltages of all the converters, and the correction signal is used as the converter. Of the voltage-type self-excited multiplex conversion device, characterized in that the control is performed by adding the control signal to the control signal and correcting the AC voltage of each converter by the addition to adjust the DC voltage to match the DC voltage with the average value. Power conversion method.
【請求項6】 請求項5において、交流電流の位相を検
出し、前記補正信号の位相を前記検出した位相と同相に
したことを特徴とする電圧形自励多重変換装置の電力変
換方法。
6. The power conversion method for a voltage type self-excited multiplex converter according to claim 5, wherein the phase of the alternating current is detected and the phase of the correction signal is made the same as the detected phase.
【請求項7】 請求項5または請求項6において、交流
電流の振幅を検出し、前記補正信号の振幅を前記検出し
た振幅に反比例させたことを特徴とする電圧形自励多重
変換装置の電力変換方法。
7. The electric power of a voltage type self-excited multiplex converter according to claim 5, wherein the amplitude of the alternating current is detected and the amplitude of the correction signal is made inversely proportional to the detected amplitude. How to convert.
【請求項8】 請求項5乃至請求項7のいずれかにおい
て、前記補正信号を正弦波としたことを特徴とする電圧
形自励多重変換装置の電力変換方法。
8. The power conversion method for a voltage type self-excited multiplex converter according to claim 5, wherein the correction signal is a sine wave.
JP02183895A 1995-02-09 1995-02-09 Voltage source self-excited multiplex converter and its power conversion method Expired - Fee Related JP3557687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02183895A JP3557687B2 (en) 1995-02-09 1995-02-09 Voltage source self-excited multiplex converter and its power conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02183895A JP3557687B2 (en) 1995-02-09 1995-02-09 Voltage source self-excited multiplex converter and its power conversion method

Publications (2)

Publication Number Publication Date
JPH08223940A true JPH08223940A (en) 1996-08-30
JP3557687B2 JP3557687B2 (en) 2004-08-25

Family

ID=12066227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02183895A Expired - Fee Related JP3557687B2 (en) 1995-02-09 1995-02-09 Voltage source self-excited multiplex converter and its power conversion method

Country Status (1)

Country Link
JP (1) JP3557687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6671545B1 (en) * 2018-12-18 2020-03-25 三菱電機株式会社 Power converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742280B (en) * 2019-01-21 2022-03-01 东芝三菱电机产业系统株式会社 Power conversion device and power conversion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6671545B1 (en) * 2018-12-18 2020-03-25 三菱電機株式会社 Power converter
WO2020129142A1 (en) * 2018-12-18 2020-06-25 三菱電機株式会社 Power conversion device

Also Published As

Publication number Publication date
JP3557687B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
KR960000800B1 (en) Inverter system
EP2020740B1 (en) Power converter
EP2491644B1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
EP0519635B1 (en) Method and apparatus for controlling the output voltage of an AC electrical system
JP3324249B2 (en) Power converter
JP2543877B2 (en) Power converter
JP2733724B2 (en) Current control device for multi-winding AC motor
KR101704377B1 (en) The each phase output voltage controller for 3 phase space vector pulse width modulation inverter
JP3236985B2 (en) Control device for PWM converter
US5151853A (en) Cycloconverter and the method of controlling the same
JPH08223940A (en) Voltage-fed self-excited multiple conversion apparatus and its power conversion method
JP3316860B2 (en) Power converter
JPH09294380A (en) Magnetic deviation suppression controller
JPWO2018051433A1 (en) Power supply system
JPH0775342A (en) Power converter
JP3265397B2 (en) Power converter control method and power converter using the method
JP2005110335A (en) Power converter
JP3127274B2 (en) Power converter control method and device
JP3267988B2 (en) PWM controller for power converter
JP3110898B2 (en) Inverter device
JPH11225477A (en) Sine wave converter with filtering function
JPH1189237A (en) Control of inverter and inverter equipment
JP3299718B2 (en) Self-excited semiconductor power converter
JP2003033039A (en) Controller for multiconnected self-commutated converters
JP3221807B2 (en) Inverter parallel operation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees