JP3299718B2 - Self-excited semiconductor power converter - Google Patents

Self-excited semiconductor power converter

Info

Publication number
JP3299718B2
JP3299718B2 JP11458898A JP11458898A JP3299718B2 JP 3299718 B2 JP3299718 B2 JP 3299718B2 JP 11458898 A JP11458898 A JP 11458898A JP 11458898 A JP11458898 A JP 11458898A JP 3299718 B2 JP3299718 B2 JP 3299718B2
Authority
JP
Japan
Prior art keywords
voltage
converter
current
self
semiconductor power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11458898A
Other languages
Japanese (ja)
Other versions
JPH11308868A (en
Inventor
誠二 田中
英俊 相澤
庄一郎 古関
敏之 林
昌洋 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP11458898A priority Critical patent/JP3299718B2/en
Publication of JPH11308868A publication Critical patent/JPH11308868A/en
Application granted granted Critical
Publication of JP3299718B2 publication Critical patent/JP3299718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自励式半導体電力変
換装置にかかわり、特に複数の電圧形自励変換器の交流
電圧を変換装置用変圧器の交流巻線で直列に接続して加
算することにより多重化した自励式半導体電力変換装
置。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited semiconductor power converter, and more particularly, to a method in which AC voltages of a plurality of voltage-type self-excited converters are connected in series by an AC winding of a transformer for the converter and added. Self-excited semiconductor power converter multiplexed by

【0002】[0002]

【従来の技術】一般に多重構成の自励式半導体電力変換
装置では、複数の変換器の交流側は直列に、直列側は並
列に接続される。しかし用途によっては直流側も直列接
続して直流電圧を高くする必要のある場合がある。この
場合、平7年電学産応全国大会No.I−51の「電圧形
自励変換器の直列接続」で記されているように各変換器
ごとに変調度(振幅)と力率角(制御角)を変えること
により交流電圧を補正調整して電圧分担制御することが
可能である。簡単化のため添付図3のように2台の変換
器が直列接続されている場合を考える。装置全体は制御
装置200からの信号Vcにより制御される。各変換器
のパルス制御は、通常はPWM(パルス幅変調)制御が
用いられる。すなわち、Vcは各変換器のPWMパルス
発生器21,22に入力され、そこで変換器のオン,オ
フパルスが発生され、それに従って変換器41,42が
動作する。これにより、各変換器41,42は、変換装
置用変圧器51,52の直流巻線にそれぞれ交流電圧V
c1とVc2を発生する。各変換器の直流電圧をEd1
d2、各変換器の変換電力をP1,P2とすると各変換器
の直流電流はそれぞれ
2. Description of the Related Art Generally, in a self-excited semiconductor power converter of a multiplex configuration, a plurality of converters are connected in series on the AC side and in parallel on the series side. However, in some applications, it is necessary to connect the DC side in series to increase the DC voltage. In this case, the degree of modulation (amplitude) and the power factor angle of each converter are described as described in "Series connection of voltage-type self-excited converters" in the 2007 National Electrotechnical Industry Conference No. I-51. By changing the (control angle), it is possible to correct and adjust the AC voltage to perform voltage sharing control. For the sake of simplicity, consider the case where two converters are connected in series as shown in FIG. The entire device is controlled by a signal Vc from the control device 200. The pulse control of each converter normally uses PWM (pulse width modulation) control. That is, Vc is input to the PWM pulse generators 21 and 22 of each converter, where ON / OFF pulses of the converters are generated, and the converters 41 and 42 operate accordingly. As a result, the converters 41 and 42 apply the AC voltage V to the DC windings of the converter transformers 51 and 52, respectively.
generate c1 and Vc2 . The DC voltage of each converter is E d1 ,
Assuming that E d2 and the conversion power of each converter are P 1 and P 2 , the DC current of each converter is

【0003】[0003]

【数1】 Id1=P1/Ed1、Id2=P2/Ed2 …(1) 各変換器の交流電圧は図6に示すようにI d1 = P 1 / E d1 , I d2 = P 2 / E d2 (1) The AC voltage of each converter is as shown in FIG.

【0004】[0004]

【数2】 Vc1=K・Ed1・a1、Vc2=K・Ed2・a2 …(2) Kは比例定数(サブハーモニック変調では0.612
)、a1,a2は各変換器の変調度である。変換装置用
変圧器の交流側は直列に接続しているので交流電流Ic
は共通であり
V c1 = K · E d1 · a 1 , V c2 = K · E d2 · a 2 (2) K is a proportionality constant (0.612 in sub-harmonic modulation)
), A 1 and a 2 are modulation degrees of each converter. Since the AC side of the converter transformer is connected in series, the AC current I c
Are common

【0005】[0005]

【数3】 P1=√3Vc1・Ic・cosφ1=√3K・Ed1・Ic・a1・cosφ12=√3Vc2・Ic・cosφ2=√3K・Ed2・Ic・a2・cosφ2 …(3) ここでφ1,φ2は各変換器の力率角である。P 1 = √3V c1 · I c · cos φ 1 = √3K · E d1 · I c · a 1 · cos φ 1 P 2 = √3V c2 · I c · cos φ 2 = √3K · E d2 · I c・ a 2・ cosφ 2 (3) Here, φ 1 and φ 2 are power factor angles of the respective converters.

【0006】これを(1)式に代入して[0006] Substituting this into equation (1)

【0007】[0007]

【数4】 Id1=√3K・Ic・a1・cosφ1 d2=√3K・Ic・a2・cosφ2 …(4) 各変換器のacosφ をこの値に対して交流電流と同方向
に±△mだけ補正すると
[Expression 4] I d1 = √3K · I c · a 1 · cos φ 1 I d2 = √3K · I c · a 2 · cos φ 2 (4) When a cos φ of each converter is corrected to this value by ± Δm in the same direction as the alternating current.

【0008】[0008]

【数5】 Id1=Id+△Id d2=Id−△Id …(5)## EQU5 ## I d1 = I d + △ I d I d2 = I d − △ I d (5)

【0009】[0009]

【数6】 Id=√3K・Ic・a・cosφ △Id =√3K・Ic・△m …(6) したがって上記方法により各変換器の直流電流が調整さ
れ電圧分担を制御できる。
DC current of each converter can be controlled regulated voltage shared by Equation 6] I d = √3K · I c · a · cosφ △ I d = √3K · I c · △ m ... (6) Therefore the method .

【0010】ここで、φは変換器1と変換器2の合成ベ
クトルと交流電流Ic とがなす力率角である。
[0010] Here, phi is the resultant vector and the AC current I c and forms power factor angle of the transducer 1 and the converter 2.

【0011】同じく直流電圧多重を実現する方法を平9
年電学全国大会No−949「自励式HVDC直流カス
ケード接続方式における直流電圧のバランス制御」に記
載されている。この方式は図4に示すように7種類の電
圧ベクトルを発生することができ、4多重の場合、変換
器は電圧指令に対応して61種類の出力電圧ベクトルを
発生する。図5に示すようにこの出力可能ベクトルの集
合から電圧指令ベクトルに最も近い合成電圧ベクトルを
選択する。選択された合成電圧ベクトルは単位変換器が
出力する互いに60°の角をなす電圧ベクトルVaとV
bの組み合わせに分解され、これらの電圧ベクトルを各
単位変換器に割り付けることにより単位変換器のスイッ
チング動作を決定する。この方式では各単位変換器は交
流側の変換器用変圧器において直列接続されているた
め、交流電流は各単位変換器に共通である。電圧ベクト
ルVaとして有効電力を変換器から系統に供給するよう
な位相を選択すると直流電圧が下がり、電圧ベクトルV
bとして有効電力を系統から注入するような位相を割り
付けると直流電圧が上がる。従って各単位変換器の直流
電圧を検出し、目標値との偏差を補償する方向の電圧ベ
クトルを割り付けることにより、直流電圧を段間で均一
化することができる。しかしながら、この方式は2多重
変換器の場合19種類の出力電圧ベクトルしか出力でき
ないため、精度良い制御を行うには多重数を大きくする
必要がある。多重数を増やすと変換装置用変圧器が増え
るのでコストが増加する等の問題がでてくる。
A method of realizing DC voltage multiplexing is described in
No. 949, "DC voltage balance control in self-excited HVDC DC cascade connection system". This system can generate seven types of voltage vectors as shown in FIG. 4, and in the case of four multiplexing, the converter generates 61 types of output voltage vectors in response to a voltage command. As shown in FIG. 5, a synthesized voltage vector closest to the voltage command vector is selected from the set of output possible vectors. The selected combined voltage vector is a voltage vector Va and V that form an angle of 60 ° with each other and output from the unit converter.
b, and the switching operation of the unit converter is determined by allocating these voltage vectors to each unit converter. In this method, since each unit converter is connected in series in the converter transformer on the AC side, the AC current is common to each unit converter. When a phase is selected such that active power is supplied from the converter to the system as the voltage vector Va, the DC voltage decreases and the voltage vector V
When a phase is assigned as b to inject active power from the system, the DC voltage increases. Therefore, by detecting the DC voltage of each unit converter and allocating a voltage vector in a direction for compensating the deviation from the target value, the DC voltage can be made uniform between stages. However, this method can output only 19 types of output voltage vectors in the case of a two-multiplex converter, so that it is necessary to increase the number of multiplexes in order to perform accurate control. Increasing the number of multiplexes increases the number of transformers for the conversion device, which causes problems such as an increase in cost.

【0012】[0012]

【発明が解決しようとする課題】以上説明したように上
記制御方式では出力交流電流と同じ方向に電圧分担調整
用補正電圧を加える必要がある。ところが電流形変換器
の場合には交流電圧が系統電圧であってほぼ一定であり
位相の基準になるのに対し、電圧形では交流電流が制御
対象であるために変動し、かつその交流制御と併せて電
圧分担制御を行う必要があり、以下の課題がある。
As described above, in the above-described control system, it is necessary to apply a voltage sharing adjustment correction voltage in the same direction as the output AC current. However, in the case of a current source converter, the AC voltage is a system voltage and is almost constant and serves as a reference for the phase. In addition, it is necessary to perform voltage sharing control, and there are the following problems.

【0013】 補正電圧の位相を制御対象である交流
電流と同相に制御する必要がある。
It is necessary to control the phase of the correction voltage to be in phase with the AC current to be controlled.

【0014】 各変換器の直流電流が交流電流に比例
するため交流電流の大きさに応じて実効補正量が変動す
る。電流が0になると制御できなくなってしまう。
Since the DC current of each converter is proportional to the AC current, the effective correction amount varies depending on the magnitude of the AC current. When the current becomes 0, control becomes impossible.

【0015】本発明の目的はこの課題を解決することに
ある。
An object of the present invention is to solve this problem.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明の自励式電力変換装置では、各変換器ごとに
その直流電圧と全変換器の直流電圧の平均値との差電圧
から各変換器の交流電圧を補正する補正信号を生成し、
この補正信号を変換装置の制御信号に加算し、この加算
により各変換器の交流電圧を補正して直流電圧の調整を
行い、直流電圧を平均値に一致させる制御を行うように
したものである。
In order to solve the above-mentioned problems, in a self-excited power converter according to the present invention, a voltage difference between a DC voltage of each converter and an average value of DC voltages of all converters is calculated. Generate a correction signal for correcting the AC voltage of each converter,
This correction signal is added to the control signal of the converter, and the AC voltage of each converter is corrected by the addition to adjust the DC voltage, thereby performing control for making the DC voltage equal to the average value. .

【0017】また、本発明の自励式電力変換装置では、
補正信号を交流電流設定値から生成するように構成し、
この補正電圧ベクトルの大きさを交流電流の大きさに反
比例させるようにしたものである。
Further, in the self-excited power converter of the present invention,
Configured to generate the correction signal from the AC current set value,
The magnitude of the correction voltage vector is made to be inversely proportional to the magnitude of the alternating current.

【0018】また、本発明の自励式電力変換装置では、
全変換器の直流電圧の平均値との差電圧から補正信号を
生成する制御回路にリミッタを設け、このリミッタを交
流電流が0付近で補正量が過大とならないように設定す
るようにしたものである。
Further, in the self-excited power converter of the present invention,
A limiter is provided in a control circuit that generates a correction signal from a difference voltage from the average value of the DC voltages of all converters, and the limiter is set so that the correction amount does not become excessive when the AC current is near zero. is there.

【0019】このように、本発明は、交流系統間の電力
制御を行う電圧形自励変換器の直流側を直列接続して多
重構成した変換装置において、交流電流と同じ位相にな
るように電圧分担制御用補正電圧を発生し、それを交流
電圧に加算することにより電圧分担制御を行う。また補
正量は電流の大きさに逆比例させて線形化するように制
御ブロックを構成するものである。さらに電流が0に近
い領域では常に電圧補正がかかるように制御ブロックを
構成し、制御がかからない状態でも電圧分担ができない
ために直流電圧の変動が問題ないレベルに抑制するため
の電圧補正量にリミッタを施すように構成する。
As described above, according to the present invention, in a converter in which the DC side of a voltage source self-excited converter for controlling power between AC systems is connected in series and multiplexed, the voltage is controlled so that the phase becomes the same as that of the AC current. Voltage sharing control is performed by generating a sharing control correction voltage and adding it to the AC voltage. The control block is configured to linearize the correction amount in inverse proportion to the magnitude of the current. Furthermore, a control block is configured so that voltage correction is always applied in a region where the current is close to 0, and a voltage correction amount for suppressing fluctuations in DC voltage to a level at which there is no problem because voltage sharing cannot be performed even when control is not applied. Is configured to be applied.

【0020】[0020]

【発明の実施の形態】本発明の一実施例を図1に示す。
この実施例は変換器が2多重の場合である。図1におい
て変換器41,42、直流コンデンサ61,62、変換
装置用変圧器51,52、交流系統電源(以後系統と呼
ぶ)10、変流器30、電圧検出用変圧器20、有効電
力基準設定器80A、無効電力基準設定器81Bであ
る。その他のブロックはこの変換器を正常に動作させる
ために必要な制御ブロックである。以下詳細に動作を説
明する。系統電圧の瞬時値は電圧検出用変圧器20か
ら、系統電流の瞬時値は変流器30からそれぞれ検出さ
れP,Q演算回路16で瞬時P,Qが演算される。この
瞬時P,Qは各々減算器31C,31Iで有効電力基準
設定器80Aの出力Pdp、無効電力基準設定器80Bの
出力Qdpと差をとられ、APR回路110、AQR回路
120によりその偏差が0となるように制御する有効電
流指令Ipk、無効電流指令Iqkとなる。有効電流指令I
pkは直流電圧制御回路17の下限リミッタに印加され
る。変換器41の直流電圧Ed1と変換器42の直流電圧
d2を直流電圧検出器71,72により検出し、加算器
31Aで加算することにより変換器が電力変換に使う直
流電圧Ed を求め、直流電圧基準値設定器80Cの出力
dpと減算器31Dで差をとり、直流電圧制御回路17
の入力信号△Ed とする。この直流電圧制御回路17は
この差△Ed を零にするように働き、直流電圧Ed がE
dpに等しくなるようにする。これより直流電圧制御回路
17の出力Idkは全体の電圧が基準電圧に等しくするに
必要な有効電流指令値である。変流器30により検出し
た系統電流の瞬時値は3相/2相変換回路14で3相/
2相変換後、d/q軸変換回路15で有効電流軸成分電
流Idh、無効電流軸成分Iqhとして検出される。この検
出を正しく行うために系統電圧の位相を検出する同期信
号発生回路13を設けている。減算器31Eにて有効電
流指令Idkと有効電流軸成分Idhの差を求め、電流制御
回路18Aに印加すると電流制御回路18Aはこの差を
零にするように働くので、結果として平均直流電圧Ed
が平均直流電圧基準値Edpに等しくなる。電流制御回路
18Aとしては比例積分演算を行う回路がよく用いられ
るが、この限りでなく種々の演算を行う回路が用いられ
る。同様に無効電力指令Iqkは減算器31Jで無効電流
軸成分Iqhと差をとられ電流制御回路18Bに加えられ
る。電流制御回路18Bはこの差を零にするように働く
ので無効電力基準設定値に等しい無効電力を変換器は発
生する。
FIG. 1 shows an embodiment of the present invention.
This embodiment is a case where the number of converters is two. In FIG. 1, converters 41 and 42, DC capacitors 61 and 62, converter transformers 51 and 52, AC system power supply (hereinafter referred to as system) 10, current transformer 30, voltage detection transformer 20, active power reference A setter 80A and a reactive power reference setter 81B. The other blocks are control blocks necessary for operating this converter normally. The operation will be described in detail below. The instantaneous value of the system voltage is detected from the voltage detecting transformer 20, and the instantaneous value of the system current is detected from the current transformer 30, and the instantaneous P and Q are calculated by the P and Q calculation circuit 16. The instants P and Q are subtracted by the subtracters 31C and 31I from the output P dp of the active power reference setter 80A and the output Q dp of the reactive power reference setter 80B, respectively, and the deviation is calculated by the APR circuit 110 and the AQR circuit 120. Becomes an active current command I pk and a reactive current command I qk that control so as to become 0. Effective current command I
pk is applied to the lower limiter of the DC voltage control circuit 17. The DC voltage E d2 of the DC voltage E d1 transducer 42 of the transducer 41 is detected by DC voltage detector 71 and 72, obtains a DC voltage E d the converter used in the power conversion by adder 31A taking the difference in the subtracter 31D and the output E dp DC voltage reference value setter 80C, DC voltage control circuit 17
And of the input signal △ E d. The DC voltage control circuit 17 works to make the difference ΔE d zero, and the DC voltage E d
Make it equal to dp . Thus, the output I dk of the DC voltage control circuit 17 is an effective current command value necessary for making the entire voltage equal to the reference voltage. The instantaneous value of the system current detected by the current transformer 30 is calculated by the three-phase / two-phase conversion circuit
After the two-phase conversion, the d / q axis conversion circuit 15 detects the current I dh as the active current axis component and the current I qh as the reactive current axis component. To perform this detection correctly, a synchronization signal generating circuit 13 for detecting the phase of the system voltage is provided. When the difference between the effective current command I dk and the effective current axis component I dh is obtained by the subtractor 31E and applied to the current control circuit 18A, the current control circuit 18A operates to make this difference zero, and as a result, the average DC voltage Ed
Becomes equal to the average DC voltage reference value Edp . As the current control circuit 18A, a circuit that performs a proportional-plus-integral operation is often used, but not limited thereto, a circuit that performs various operations is used. Similarly reactive power command I qk is added to the reactive current axis taken the components I qh and differential current control circuit 18B by the subtracter 31J. Since the current control circuit 18B operates to make this difference zero, the converter generates reactive power equal to the reactive power reference set value.

【0021】一方各変換器の直流電圧の分担制御を行う
には、次の構成にする必要がある。図6に示す電圧分担
補正分ΔV,−ΔVと各変換器の交流電圧Vc1、Vc2
合成電圧Vc との間には下記の関係がある。
On the other hand, in order to perform the DC voltage sharing control of each converter, the following configuration is required. Shared voltage correction amount ΔV shown in FIG. 6, a relationship of the following between the AC voltage V c1, V c2 of -ΔV and each transducer and the resultant voltage V c.

【0022】[0022]

【数7】 (Equation 7)

【0023】ここで、ΔVは交流電流と同相に選んだの
でKを抵抗の次元を持つ比例係数とすると下記の関係式
が成りたつ。
Here, .DELTA.V is selected to have the same phase as that of the alternating current. Therefore, if K is a proportional coefficient having a resistance dimension, the following relational expression is obtained.

【0024】[0024]

【数8】 (Equation 8)

【0025】ただし、Id:有効電流成分,Iq:無効電
流成分 また各変換器の交流電圧Vc1,Vc2、及びΔVを有効電
流,無効電流成分で表すと
Where I d : active current component, I q : reactive current component, and the AC voltages V c1 , V c2 , and ΔV of each converter are expressed by active current and reactive current components.

【0026】[0026]

【数9】 VP1=Vd+ΔVd,VQ1=Vq+ΔVq,VP2=Vd−ΔVd,VQ2=Vq−ΔVq …(9) これより変換器1で発生する電力P1 V P1 = V d + ΔV d , V Q1 = V q + ΔV q , V P2 = V d −ΔV d , V Q2 = V q −ΔV q ... (9) From this, the power P 1 generated in the converter 1 is

【0027】[0027]

【数10】 P1≒(Vd+ΔVd)・Id+(Vq+ΔVq)・Iq ≒(Vdd+Vqq)+(ΔVdd+ΔVqq)=P+ΔP …(10) ただし、Pは各変換器が融通する電力、ΔPは変換器1
が電圧分担するために必要な電力である。ここで、ΔV
d=A・Id/(I2 d+I2 q),ΔVq=A・Iq/(I2 d
2 q)とすると(10)式の第2項はAとなり、これは
直流電圧分担用の電力ΔPと同じになる。すなわち直流
電圧分担制御を行うにはAを操作量として使えばよい。
これより操作量Aとして各変換器の直流電圧誤差信号を
PIブロックで変換した信号とする。
[Number 10] P 1 ≒ (V d + ΔV d) · I d + (V q + ΔV q) · I q ≒ (V d I d + V q I q) + (ΔV d I d + ΔV q I q) = P + ΔP .. (10) where P is the power that each converter accommodates and ΔP is the converter 1
Is the power required to share the voltage. Where ΔV
d = A · I d / ( I 2 d + I 2 q), ΔV q = A · I q / (I 2 d +
If I 2 q ), the second term in equation (10) is A, which is the same as the power ΔP for DC voltage sharing. That is, in order to perform the DC voltage sharing control, A may be used as an operation amount.
From this, the manipulated variable A is a signal obtained by converting the DC voltage error signal of each converter by the PI block.

【0028】直流電圧分担制御を安定に行うには直流電
圧検出器71,72により変換器41の直流電圧Ed1
変換器42の直流電圧Ed2を検出し、減算器31Bで減
算することにより各インバータ間の直流電圧差を求め、
直流電圧制御回路11に印加し、電圧分担差電圧△Ed1
を得る。ただし、その出力が系統電流が流れないときに
電圧分担制御が働かないために直流電圧の不平衡を所定
量以下にするリミッタをこの直流電圧制御回路11にも
たせる。加えて、電圧分担は上述したように各変換器の
直流コンデンサに蓄積された電力を操作することにより
行うため操作指令は有効電流指令値Idkと無効電流指令
値Iqkの自乗和となるので、自乗和回路22で電圧分担
用の指令値△Edpを作成する。この後、図7に示す電流
指令値を所定量以下の場合は固定値にするリミッタ回路
19Bに加え、割算回路23で電圧分担電圧差△Ed1
割り、図8に示す所定量以下では有効電流指令値Idk
無効電流指令値Iqkを固定値にするリミッタ回路19
A,19Cを通った信号25A,25Bと掛算回路22
A,22Bにて掛け算することによりd軸,q軸電圧補
正信号Ddv,Qdvを生成する。こうして得た電圧補正信
号Ddv,Qdvは加算器31Fでd軸電流制御回路出力と
変換装置用変圧器のインピーダンスによる電圧降下補正
を行うためのインピーダンス回路21Bとq軸電流指令
値Iqkを掛け算した出力信号、系統電圧からd軸のフィ
ードフォワード電圧Vdhとを図に示す符号で加算する。
その後、この31F出力にDdvを加算器31Gで加算す
ると変換器41の三相PWMのd軸電圧指令値が得られ
る。同じようにq軸電圧指令値も加算器31Kでq軸電
流制御回路出力と変換装置用変圧器のインピーダンスに
よる電圧降下補正を行うためのインピーダンス回路21
Aとd軸電流指令値Idkを掛け算した出力信号、系統電
圧からq軸のフィードフォワード電圧Vqhとを図に示す
符号で加算したものに加算器31Lで加算することによ
り求めることができる。一方変換器42のd軸電圧指令
値とq軸電圧指令値は逆に上記のフィードフォワード電
圧Vdh,Vqh、インピーダンス補正回路出力の加算した
ものから電圧補正信号Ddv,Qdvを引き算することによ
り得る。このように変換器41と変換器42で電圧補正
信号を逆に加算することにより全体として直流電圧補正
の影響を変換器出力に与えないようにすることができ
る。
In order to stably perform the DC voltage sharing control, the DC voltage detectors 71 and 72 detect the DC voltage E d1 of the converter 41 and the DC voltage E d2 of the converter 42, and subtract the difference by a subtractor 31B. Find the DC voltage difference between each inverter,
The voltage is applied to the DC voltage control circuit 11 and the voltage sharing difference voltage ΔE d1
Get. However, since the voltage sharing control does not work when the output does not flow the system current, the DC voltage control circuit 11 is provided with a limiter for reducing the unbalance of the DC voltage to a predetermined amount or less. In addition, since the voltage sharing is performed by operating the power stored in the DC capacitor of each converter as described above, the operation command is the sum of squares of the active current command value I dk and the reactive current command value I qk . , A command value △ E dp for voltage sharing is created by the square sum circuit 22. Thereafter, in addition to the limiter circuit 19B for setting the current command value shown in FIG. 7 to a fixed value when the current command value is less than the predetermined amount, the voltage sharing voltage difference ΔE d1 is divided by the divider circuit 23. Effective current command value I dk ,
Limiter circuit 19 for setting reactive current command value I qk to a fixed value
A, signals 25A and 25B passing through 19C and the multiplication circuit 22
A and 22B are multiplied to generate d-axis and q-axis voltage correction signals D dv and Q dv . The voltage correction signals D dv and Q dv obtained in this way are used by an adder 31F to provide an impedance circuit 21B for performing a voltage drop correction by the output of the d-axis current control circuit and the impedance of the transformer for the converter, and the q-axis current command value I qk . The feedforward voltage V dh of the d-axis is added from the multiplied output signal and the system voltage by the code shown in FIG.
Then, d-axis voltage command value of three-phase PWM the transducer 41 to adder 31G the D dv is obtained in this 31F output. Similarly, the q-axis voltage command value is also added by the adder 31K to the impedance circuit 21 for correcting the voltage drop by the output of the q-axis current control circuit and the impedance of the transformer for the converter.
The output signal obtained by multiplying the A and the d-axis current command value I dk can be obtained by adding the q-axis feedforward voltage V qh from the system voltage with the sign shown in the figure by the adder 31L. On the other hand, the d-axis voltage command value and the q-axis voltage command value of the converter 42 are inversely calculated by subtracting the voltage correction signals D dv and Q dv from the sum of the feedforward voltages V dh and V qh and the output of the impedance correction circuit. Gain by doing. In this way, by adding the voltage correction signals in the converter 41 and the converter 42 in reverse, it is possible to prevent the influence of the DC voltage correction on the converter output as a whole.

【0029】このようにして得たd軸電圧指令値とq軸
電圧指令値を使ってPWMパルス発生回路21,22が
変換器41,42のオン,オフパルスを発生して直流電
圧分担制御を行った変換器制御を行うことができる。こ
こで本実施例では直流電圧の差電圧から直流電圧分担制
御を行うようにしているが、各変換器ごとに直流電圧と
平均電圧の差電圧から制御してもゲインが2分の1とな
ることを除けば上記と同じである。
Using the d-axis voltage command value and the q-axis voltage command value thus obtained, the PWM pulse generation circuits 21 and 22 generate ON / OFF pulses for the converters 41 and 42 to perform DC voltage sharing control. Converter control can be performed. Here, in the present embodiment, the DC voltage sharing control is performed based on the difference voltage of the DC voltage. However, even if the control is performed based on the difference voltage between the DC voltage and the average voltage for each converter, the gain is reduced to one half. Except for this, it is the same as above.

【0030】図2は、本発明の第2実施例に係る電圧形
自励多重変換装置の制御構成図である。本実施例では、
変換器の直流回路41,42が並列接続され、これら2
つの回路が直列接続されている。また変換器41,42
の直流電圧と平均電圧の差電圧から補正信号を生成する
ようにしている。その他の構成は上述した図1の構成と
同じである。直流電源70はREC側の変換器を模擬し
たもので、INV側の変換器の電力を供給する。このよ
うな装置構成においても上述した実施例と同等の効果を
得ることが可能になる。
FIG. 2 is a control block diagram of a voltage source self-excited multiplex converter according to a second embodiment of the present invention. In this embodiment,
The DC circuits 41 and 42 of the converter are connected in parallel.
Two circuits are connected in series. Also, converters 41 and 42
The correction signal is generated from the difference voltage between the DC voltage and the average voltage. The other configuration is the same as the configuration of FIG. 1 described above. The DC power supply 70 simulates a converter on the REC side, and supplies power to the converter on the INV side. Even with such an apparatus configuration, it is possible to obtain the same effect as that of the above-described embodiment.

【0031】[0031]

【発明の効果】本実施例によれば、直列に接続された変
換器の間での電圧分担が制御されるため、電圧分担を均
等化できる効果がある。またその結果、変換器の直列接
続が容易になり、直列接続によって直流電圧を高電圧と
した変換装置を容易に提供できる効果がある。
According to the present embodiment, since the voltage sharing between the converters connected in series is controlled, the voltage sharing can be equalized. As a result, the converters can be easily connected in series, and there is an effect that a converter in which the DC voltage is increased by the series connection can be easily provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明する図。FIG. 1 illustrates an embodiment of the present invention.

【図2】本発明の第2実施例に係る電圧形自励多重変換
装置の構成図。
FIG. 2 is a configuration diagram of a voltage source self-excited multiplex converter according to a second embodiment of the present invention.

【図3】従来の他の半導体電力変換装置を説明する図。FIG. 3 is a diagram illustrating another conventional semiconductor power converter.

【図4】単位変換器の出力ベクトル図。FIG. 4 is an output vector diagram of a unit converter.

【図5】近似ベクトル出力の原理説明。FIG. 5 illustrates the principle of approximation vector output.

【図6】電圧分担制御方法。FIG. 6 is a voltage sharing control method.

【図7】自乗和用リミッタ特性。FIG. 7 shows a limiter characteristic for sum of squares.

【図8】リミッタ特性。FIG. 8 shows limiter characteristics.

【符号の説明】[Explanation of symbols]

10…交流系統、20…電圧検出用変圧器、21,22
…パルス発生装置、30…変流器、41,42,43,
44…変換器、51,52,53,54…変換装置用変
圧器、61,62…直流コンデンサ、200…制御装
置。
10: AC system, 20: Transformer for voltage detection, 21, 22
... Pulse generator, 30 ... Current transformer, 41,42,43,
44: converter, 51, 52, 53, 54: transformer for converter, 61, 62: DC capacitor, 200: controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古関 庄一郎 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 林 敏之 東京都狛江市岩戸北2丁目11番1号 財 団法人 電力中央研究所 狛江研究所内 (72)発明者 高崎 昌洋 東京都狛江市岩戸北2丁目11番1号 財 団法人 電力中央研究所 狛江研究所内 (56)参考文献 特開 平9−37553(JP,A) 特開 平9−172783(JP,A) 特開 平7−288197(JP,A) 特開 平6−233537(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/19 H02M 7/155 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoichiro Furuseki 3-1-1, Komachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Inside the Hitachi Plant (72) Inventor Toshiyuki Hayashi 2--11, Iwatokita, Komae-shi, Tokyo No. 1 Inside the Central Research Institute of Electric Power Industry Komae Research Center (72) Inventor Masahiro Takasaki 2-1-1, Iwatokita, Komae City, Tokyo, Japan Inside the Komae Research Center Central Electricity Research Institute (56) References JP 9 -37553 (JP, A) JP-A-9-172783 (JP, A) JP-A-7-288197 (JP, A) JP-A-6-233537 (JP, A) (58) Fields investigated (Int. . 7, DB name) H02M 7/19 H02M 7/155

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の変換器の交流電圧が変換装置用変圧
器の交流巻線側で直列に接続されて多重化され、各変換
器の直流回路が直列に接続された自励式半導体電力変換
装置において、各変換器ごとにその直流電圧と全変換器
の直流電圧の平均値との差電圧から各変換器の交流電圧
を補正する補正信号を生成し、該補正信号を変換装置の
制御信号に加算し、該加算により各変換器の交流電圧を
補正して直流電圧の調整を行い、直流電圧を平均値に一
致させる制御を行うことを特徴とする自励式半導体電力
変換装置。
1. A self-excited semiconductor power converter in which AC voltages of a plurality of converters are serially connected and multiplexed on an AC winding side of a converter transformer, and DC circuits of the respective converters are connected in series. In the device, a correction signal for correcting the AC voltage of each converter is generated from a difference voltage between the DC voltage of each converter and the average value of the DC voltages of all converters, and the correction signal is used as a control signal of the converter. A self-excited semiconductor power converter, wherein the DC voltage is adjusted by correcting the AC voltage of each converter by the addition, and the DC voltage is adjusted to an average value.
【請求項2】請求項第1項の自励式半導体電力変換装置
において、補正信号を交流電流設定値から生成するよう
に構成し、該補正電圧ベクトルの大きさを交流電流の大
きさに反比例させるようにし、かつ交流電流が0付近で
は補正量が過大にならないように該反比例の処理を行わ
ないことを特徴とする自励式半導体電力変換装置。
2. The self-excited semiconductor power converter according to claim 1, wherein a correction signal is generated from an AC current set value, and the magnitude of said correction voltage vector is made inversely proportional to the magnitude of the AC current. A self-excited semiconductor power converter, wherein the inversely proportional processing is not performed so that the correction amount does not become excessive when the AC current is near zero.
【請求項3】請求項第1項の自励式半導体電力変換装置
において、全変換器の直流電圧の平均値との差電圧から
補正信号を生成する制御回路にリミッタを設け、該リミ
ッタを交流電流が0付近で補正量が過大とならないよう
に設定するように構成したことを特徴とする自励式半導
体電力変換装置。
3. A self-excited semiconductor power converter according to claim 1, wherein a limiter is provided in a control circuit for generating a correction signal from a difference voltage between a DC voltage and an average value of all converters. A self-excited semiconductor power conversion device characterized in that the correction amount is set so as not to become excessive near 0.
JP11458898A 1998-04-24 1998-04-24 Self-excited semiconductor power converter Expired - Fee Related JP3299718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11458898A JP3299718B2 (en) 1998-04-24 1998-04-24 Self-excited semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11458898A JP3299718B2 (en) 1998-04-24 1998-04-24 Self-excited semiconductor power converter

Publications (2)

Publication Number Publication Date
JPH11308868A JPH11308868A (en) 1999-11-05
JP3299718B2 true JP3299718B2 (en) 2002-07-08

Family

ID=14641622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11458898A Expired - Fee Related JP3299718B2 (en) 1998-04-24 1998-04-24 Self-excited semiconductor power converter

Country Status (1)

Country Link
JP (1) JP3299718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311957B (en) * 2013-06-28 2015-10-07 阳光电源股份有限公司 A kind of net side converter control method and system

Also Published As

Publication number Publication date
JPH11308868A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP2679411B2 (en) Parallel operation control device for AC output converter
US5115386A (en) Circuit for controlling an electric power supply apparatus, a method therefor and an uninterruptible power supply
CA2285846C (en) Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system
KR101846212B1 (en) The V/F droop parallel operation inverter controlling apparatus based on active damping and repetition controlling compensation, and the method thereof
JP6919058B2 (en) Power converter
JP2018129963A (en) Controller of power converter
KR100231266B1 (en) Control device for controlling a servo motor
JP2733724B2 (en) Current control device for multi-winding AC motor
US6084791A (en) Control system for supply recovery of energy from a three-phase network into a converter with a variable voltage link
JP2006271045A (en) Multi-phase serial multiplex power converter
US5151853A (en) Cycloconverter and the method of controlling the same
KR101704377B1 (en) The each phase output voltage controller for 3 phase space vector pulse width modulation inverter
JP3236986B2 (en) Power conversion system
US4074348A (en) Circuit arrangement with a number of cycloconverters, particularly direct cycloconverters in y-connection
JP3299718B2 (en) Self-excited semiconductor power converter
JP3296065B2 (en) Control circuit of PWM converter
WO2019106903A1 (en) Voltage compensation device
JP3316860B2 (en) Power converter
US11855548B2 (en) Power conversion device and power conversion control device
JP3262160B2 (en) Inverter control method and inverter device
JP3229898B2 (en) Voltage source inverter device
JP2019097366A (en) Method for suppressing and controlling leakage current of power converter
JP3267988B2 (en) PWM controller for power converter
JP2000125570A (en) Power converter controller
WO2023214462A1 (en) Power conversion device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees