JP3395310B2 - Semiconductor power converter - Google Patents

Semiconductor power converter

Info

Publication number
JP3395310B2
JP3395310B2 JP33492393A JP33492393A JP3395310B2 JP 3395310 B2 JP3395310 B2 JP 3395310B2 JP 33492393 A JP33492393 A JP 33492393A JP 33492393 A JP33492393 A JP 33492393A JP 3395310 B2 JP3395310 B2 JP 3395310B2
Authority
JP
Japan
Prior art keywords
transformer
current
detecting means
converter
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33492393A
Other languages
Japanese (ja)
Other versions
JPH07194141A (en
Inventor
庄一郎 古関
吉雄 江口
茂太 上田
裕成 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33492393A priority Critical patent/JP3395310B2/en
Publication of JPH07194141A publication Critical patent/JPH07194141A/en
Application granted granted Critical
Publication of JP3395310B2 publication Critical patent/JP3395310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体スイッチング素子
で構成した半導体電力変換装置に係り、特に複数箇の変
換器を変圧器を介して直列接続した多重型の半導体電力
変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor power conversion device composed of semiconductor switching elements, and more particularly to a multiplex type semiconductor power conversion device in which a plurality of converters are connected in series via a transformer.

【0002】[0002]

【従来の技術】自己消弧型半導体素子で構成した自励式
の多重型半導体電力変換装置は特開昭56−15097 号公報
に掲載されている。この電力変換装置は、低電圧の直流
電力から高電圧の交流電力を得る場合、小容量の変換器
で大容量の電力を変換する場合、高調波成分を除去する
場合に適している。
2. Description of the Related Art A self-excited multiplex type semiconductor power conversion system composed of a self-extinguishing type semiconductor device is disclosed in Japanese Unexamined Patent Publication No. 56-15097. This power converter is suitable for obtaining high-voltage AC power from low-voltage DC power, for converting large-capacity power with a small-capacity converter, and for removing harmonic components.

【0003】また、自励式のインバータ装置の出力を電
気的に絶縁して供給する場合及び出力電圧を昇圧して供
給する場合に出力側に変圧器を配置すること、その場合
変圧器に直流偏磁の問題があること、及び直流偏磁の問
題を解決するために、インバータと変圧器との間にリア
クトルを並列に配置し、リアクトルに流れる電流の直流
成分によってインバータの電圧指令値を補正することが
特開平4−322170 号公報に掲載されている。
Further, a transformer should be arranged on the output side when the output of the self-excited inverter device is electrically insulated and supplied, and when the output voltage is boosted and supplied. In order to solve the problem of magnetism and the problem of DC bias magnetization, a reactor is placed in parallel between the inverter and the transformer, and the voltage command value of the inverter is corrected by the DC component of the current flowing in the reactor. This is disclosed in Japanese Patent Laid-Open No. 4-322170.

【0004】しかしながら、自励式の多重型半導体電力
変換装置において変圧器に直流偏磁の問題が存在してい
ること及びその解決法については、これまで知られてい
なかった。
However, it has not been known so far that the problem of DC bias magnetism in the transformer in the self-excited multiplex type semiconductor power converter exists and its solution.

【0005】[0005]

【発明が解決しようとする課題】本発明は、自励式の多
重型半導体電力変換装置を採用するに当たり、変圧器に
直流偏磁の問題が存在していること、及びその問題が従
来知られている変換器及び変圧器が共に1個の場合に適
用した方法では解決できないことを発見し、発明に至っ
たものである。
SUMMARY OF THE INVENTION The present invention adopts a self-excited multiplex type semiconductor power conversion device, and there is a problem of DC bias magnetization in a transformer, and the problem has been heretofore known. The inventors have found that the method applied to the case where there is only one converter and one transformer cannot solve the problem, and have reached the invention.

【0006】本発明の目的は、複数個の自励式変換器と
複数個の変圧器を使用する場合に生じる変圧器の直流偏
磁の問題を解決した自励式の多重型半導体電力変換装置
を提供するにある。
An object of the present invention is to provide a self-excited multiplex type semiconductor power converter that solves the problem of DC bias magnetism of a transformer that occurs when a plurality of self-excited converters and a plurality of transformers are used. There is.

【0007】本発明の他の目的は、複数個の変圧器相互
間の直流偏磁のばらつきを防止した自励式の多重型半導
体電力変換装置を提供するにある。
Another object of the present invention is to provide a self-excited multiplex type semiconductor power conversion device in which variations in DC bias magnetism among a plurality of transformers are prevented.

【0008】本発明の別の目的は、以下の実施例の説明
から明らかとなろう。
Another object of the present invention will be apparent from the following description of the embodiments.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明多重型半導体電力変換装置の特徴とするところは、各
変換器と各変圧器との間に流れる電流の平均値を用いて
変換器の出力制御指令を補正するようにした点にある。
この実現のためには、各変換器と各変圧器との間に配置
した電流検出手段と、各電流検出手段で検出した電流の
平均値を検出する平均値検出手段と、平均値検出手段の
出力信号によって変換器の制御指令を補正する手段とを
準備する必要がある。
The feature of the multiplex type semiconductor power converter of the present invention that achieves the above-mentioned object is that the converter uses the average value of the current flowing between each converter. The point is that the output control command of is corrected.
In order to realize this, the current detection means arranged between each converter and each transformer, the average value detection means for detecting the average value of the current detected by each current detection means, and the average value detection means It is necessary to prepare means for correcting the control command of the converter by the output signal.

【0010】本発明多重型半導体電力変換装置の他の特
徴とするところは、上記の構成に加えて、各変換器と各
変圧器との間に流れる各電流から変圧器の励磁電流の直
流成分を求め、それを用いて各変換器の制御指令を補正
するようにした点にある。この実現のためには、変圧器
の変換器とは反対側に流れる電流を検出する交流電流検
出手段と、交流電流検出手段で検出した電流を変圧器の
変換器側に流れる電流に換算した値と各変換器と各変圧
器との間に配置した電流検出手段で検出した電流値とか
ら各変圧器の励磁電流を算出する変換器と同数の励磁電
流算出手段と、各励磁電流算出手段の出力信号から各変
圧器に流れる励磁電流の直流成分を検出する変圧器直流
成分検出手段と、該変圧器直流成分検出手段の出力信号
によって各パルス発生回路の入力信号を補正する手段と
を追加する必要がある。この場合、変圧器の変換器とは
反対側に流れる電流を検出する交流電流検出手段と、交
流電流検出手段で検出した電流を変圧器の変換器側に流
れる電流に換算した値を算出する手段の代わりに、各変
換器と各変圧器との間に配置した電流検出手段の出力信
号と各電流検出手段で検出した電流の平均値を検出する
平均値検出手段の出力信号とから各変圧器の励磁電流を
そのばらつき量として算出するようにしても良い。これ
らの場合、各変圧器に流れる励磁電流の直流成分をそれ
らの平均値によって補正するようにすることができる。
Another feature of the multiplex type semiconductor power converter of the present invention is that, in addition to the above-mentioned configuration, the DC component of the exciting current of the transformer is derived from each current flowing between each converter and each transformer. Is obtained and is used to correct the control command of each converter. In order to realize this, AC current detection means for detecting the current flowing on the side opposite to the converter of the transformer, and the value obtained by converting the current detected by the AC current detection means into the current flowing on the converter side of the transformer. And the number of exciting current calculating means for calculating the exciting current of each transformer from the current value detected by the current detecting means arranged between each converter and each transformer, and the exciting current calculating means of each exciting current calculating means. Transformer DC component detecting means for detecting the DC component of the exciting current flowing in each transformer from the output signal, and means for correcting the input signal of each pulse generating circuit by the output signal of the transformer DC component detecting means are added. There is a need. In this case, an alternating current detecting means for detecting a current flowing on the side opposite to the converter of the transformer, and a means for calculating a value obtained by converting the current detected by the alternating current detecting means into a current flowing on the converter side of the transformer. Instead of the output signal of the current detection means arranged between each converter and each transformer and the output signal of the average value detection means for detecting the average value of the current detected by each current detection means, each transformer The exciting current may be calculated as the variation amount. In these cases, the DC component of the exciting current flowing through each transformer can be corrected by their average value.

【0011】ここで言う変換器とは、交流電力を直流電
力に変換するコンバータ及び直流電力を交流電力に変換
するインバータである。
The converter mentioned here is a converter for converting AC power into DC power and an inverter for converting DC power into AC power.

【0012】[0012]

【作用】本発明多重型半導体電力変換装置は、複数個の
変換器にそれぞれ接続された複数個の変圧器の一方の巻
線に流れる電流を検出し、その平均値を用いて変換器の
出力制御指令を補正する構成であるため、各変圧器の一
方の巻線に流れる電流を正確に検出でき、その結果高い
制御精度で変圧器の直流偏磁を防止することが出来る。
また、平均値から直流成分を検出し、それを用いて変換
器の出力制御指令を補正するようにすれば、より一層高
い制御精度で変圧器の直流偏磁を防止することが出来
る。
The multiple semiconductor power converter of the present invention detects the current flowing through one winding of a plurality of transformers respectively connected to the plurality of converters, and uses the average value to detect the output of the converter. Since the control command is corrected, the current flowing through one winding of each transformer can be accurately detected, and as a result, DC bias magnetization of the transformer can be prevented with high control accuracy.
Further, if the DC component is detected from the average value and the output control command of the converter is corrected using the detected DC component, the DC bias magnetization of the transformer can be prevented with higher control accuracy.

【0013】更に、複数個の変圧器の一方の巻線に流れ
る電流から各変圧器の励磁電流を算出し、それからその
直流成分を検出し、それを用いて変換器の出力制御指令
を補正するようにすれば、各変圧器相互間での直流偏磁
のばらつきを防止することができる。この場合、励磁電
流の直流成分をその平均値から補正した上で変換器の出
力制御指令を補正するようにすれば、より一層高い制御
精度で変圧器の直流偏磁のばらつきを防止することがで
きる。
Further, the exciting current of each transformer is calculated from the current flowing through one winding of the plurality of transformers, the DC component thereof is detected, and the output control command of the converter is corrected using the detected DC component. By so doing, it is possible to prevent variations in DC bias magnetization between the transformers. In this case, if the output control command of the converter is corrected after correcting the DC component of the exciting current from its average value, it is possible to prevent the DC bias magnetization variation of the transformer with higher control accuracy. it can.

【0014】[0014]

【実施例】以下、本発明の多重型半導体電力変換装置を
実施例として示した図面を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The multiple semiconductor power converter of the present invention will be described in detail below with reference to the drawings showing the embodiments.

【0015】図1は本発明多重型半導体電力変換装置の
一実施例を示す概略構成図である。図において、T1
びT2は一対の直流主端子、T3及びT4は交流の相数に
よって決まる数の交流主端子、11,12,13及び1
4はそれぞれ一対の直流端子T11A,T11B,T12A,T
12B,T13A,T13B,T14A,T14B、交流の相数と同数
の交流端子T11C,T11D,T12C,T12D,T13C
13D,T14C,T14D、及び各直流端子間に自己消弧型
半導体素子を偶数個直列接続したブリッジ単位を交流の
相によって決まる数(またはその整数倍)並列接続して
構成されたブリッジ回路を有し、各ブリッジ単位の中点
に交流端子が接続され、一対の直流主端子T1 及びT2
に各直流端子が並列接続された4個の変換器である。2
1,22,23及び24はそれぞれ一方の巻線W21A
22A,W23A,W24Aが各変換器の交流端子に接続さ
れ、他方の巻線W21B,W22B,W23B,W24Bが直列接続
されて交流主端子T3,T4間に接続された変換器と同数
の変圧器、Cは変換器の自己消弧型半導体素子をオンオ
フ制御する制御部、30は交流主端子に流れる電流を検
出して制御部Cに付与する変流器、31,32,33及
び34は各変圧器の一方の巻線に流れる電流を検出して
制御部Cに付与する変流器、SREF は変換器の出力を制
御する指令信号である。
FIG. 1 is a schematic configuration diagram showing an embodiment of the multiplex type semiconductor power converter of the present invention. In the figure, T 1 and T 2 are a pair of DC main terminals, T 3 and T 4 are AC main terminals whose number is determined by the number of AC phases, 11, 12, 13 and 1
4 is a pair of direct current terminals T 11A , T 11B , T 12A , T
12B , T 13A , T 13B , T 14A , T 14B , AC terminals T 11C , T 11D , T 12C , T 12D , T 13C having the same number as the number of AC phases.
A bridge composed of T 13D , T 14C , T 14D , and an even number of self-extinguishing type semiconductor devices connected in series between the DC terminals, in parallel connected by a number (or an integral multiple thereof) determined by the AC phase. It has a circuit, an AC terminal is connected to the middle point of each bridge unit, and a pair of DC main terminals T 1 and T 2
4 converters in which each DC terminal is connected in parallel. Two
1, 22, 23 and 24 respectively have one winding W 21A ,
W 22A , W 23A and W 24A are connected to the AC terminals of each converter, and the other windings W 21B , W 22B , W 23B and W 24B are connected in series and connected between the AC main terminals T 3 and T 4. The same number of transformers as the number of the converted converters, C is a control unit that controls on / off of the self-extinguishing type semiconductor device of the converter, 30 is a current transformer that detects the current flowing through the AC main terminal and applies the current to the control unit C, Reference numerals 31, 32, 33, and 34 denote current transformers that detect a current flowing in one winding of each transformer and apply the current to the control unit C, and S REF is a command signal that controls the output of the converter.

【0016】以下、制御部Cの具体的回路構成を説明す
る。図2は制御部Cの一例を示す。図において、7は指
令信号SREF を受けて変換器の出力電流を制御する電流
制御回路、81,82,83及び84は電流制御回路7
からの制御信号を受けて各変換器11,12,13及び
14の自己消弧型半導体素子をオンオフ制御するパルス
発生回路、41は変流器31,32,33及び34で検
出した各変圧器の一方の巻線に流れる電流の平均値を算
出する平均値検出回路で、この平均値検出回路の出力信
号は減算器AD7によって電流制御回路7に入力される
指令信号SREFを補正する信号として機能する。変流器
31,32,33及び34,平均値検出回路41,減算
器AD7 及び電流制御回路7によって変圧器の一方の巻
線に流れる直流成分を0にする、即ち直流偏磁を低減す
る第1の制御ループが構成される。91は変流器30で
検出した交流主端子に流れる電流を変圧器の一方の巻線
に流れる電流に換算する係数器、AD61,AD62,AD
63及びAD64は変流器31,32,33及び34で検出
した各変圧器の一方の巻線に流れる電流と換算された変
流器30で検出した交流主端子に流れる電流との差から
各変圧器の励磁電流を算出する減算器、61,62,6
3及び64は減算器の出力信号から励磁電流に含まれて
いる直流成分を検出する直流成分検出回路、71,7
2,73及び74は直流成分検出回路61,62,63
及び64の出力信号に基づいて電流制御回路7の出力信
号を補正する信号を生成する制御回路、AD81,AD82,
AD83及びAD84は制御回路71,72,73及び74
の信号で電流制御回路7の出力信号を補正する減算器で
ある。変流器30,係数器91,変流器31,32,3
3及び34,減算器AD61,AD62,AD63及びA
64、制御回路71,72,73及び74,減算器AD
81,AD82,AD83及びAD84によって各変圧器相互間
の直流偏磁のばらつきを低減する第2の制御ループが構
成される。
The specific circuit configuration of the control section C will be described below. FIG. 2 shows an example of the control unit C. In the figure, 7 is a current control circuit that receives the command signal S REF and controls the output current of the converter, and 81, 82, 83 and 84 are current control circuits 7.
Pulse generator circuit for controlling on / off of the self-extinguishing type semiconductor elements of the converters 11, 12, 13 and 14 by receiving a control signal from the transformers 41, transformers detected by the current transformers 31, 32, 33 and 34 An average value detection circuit for calculating the average value of the current flowing through one of the windings, and the output signal of this average value detection circuit is a signal for correcting the command signal S REF input to the current control circuit 7 by the subtractor AD 7 . Function as. By the current transformers 31, 32, 33 and 34, the average value detection circuit 41, the subtractor AD 7 and the current control circuit 7, the DC component flowing in one winding of the transformer is set to 0, that is, the DC bias magnetism is reduced. A first control loop is constructed. Reference numeral 91 is a coefficient unit for converting the current flowing through the AC main terminal detected by the current transformer 30 into the current flowing through one winding of the transformer, AD 61 , AD 62 , and AD.
63 and AD 64 are calculated from the difference between the current flowing through one winding of each transformer detected by the current transformers 31, 32, 33 and 34 and the converted current flowing through the AC main terminal detected by the current transformer 30. Subtractors 61, 62, 6 for calculating the exciting current of each transformer
3 and 64 are DC component detection circuits for detecting the DC component contained in the exciting current from the output signal of the subtractor, 71, 7
2, 73 and 74 are DC component detection circuits 61, 62, 63
AD 81 , AD 82 , a control circuit for generating a signal for correcting the output signal of the current control circuit 7 based on the output signals of
AD 83 and AD 84 are control circuits 71, 72, 73 and 74.
Is a subtractor that corrects the output signal of the current control circuit 7 with the signal of. Current transformer 30, coefficient unit 91, current transformers 31, 32, 3
3 and 34, subtractors AD 61 , AD 62 , AD 63 and A
D 64 , control circuits 71, 72, 73 and 74, subtractor AD
81 , AD 82 , AD 83, and AD 84 constitute a second control loop for reducing the variation of DC bias magnetism among the transformers.

【0017】65は平均値検出回路41の出力信号に含
まれる直流成分を検出する直流成分検出回路、75は直
流成分検出回路65の出力信号に基づいて電流制御回路
7の出力信号を補正する信号を生成する制御回路で、制
御回路75の信号は減算器AD81,AD82,AD83及び
AD84に付与されている。92は直流成分検出回路65
と制御回路75との間に介在した負帰還にするための係
数器である。制御回路75の信号は各減算器AD81,A
82,AD83及びAD84に付与せず、電流制御回路7の
出力端に1個の減算器を設けてそこに一括して付与して
もよい。これによって、第1の制御ループの制御精度を
補足する第1の補助制御ループが構成される。
Reference numeral 65 is a DC component detection circuit for detecting a DC component contained in the output signal of the average value detection circuit 41, and 75 is a signal for correcting the output signal of the current control circuit 7 based on the output signal of the DC component detection circuit 65. The signal of the control circuit 75 is given to the subtracters AD 81 , AD 82 , AD 83 and AD 84 . 92 is a DC component detection circuit 65
And a control circuit 75, which is a coefficient unit for providing negative feedback. The signal of the control circuit 75 is the subtractor AD 81 , A
Instead of applying to D 82 , AD 83 and AD 84 , one subtractor may be provided at the output end of the current control circuit 7 and applied collectively thereto. This constitutes a first auxiliary control loop that complements the control accuracy of the first control loop.

【0018】42は直流成分検出回路61,62,63
及び64の出力信号の平均値を算出する平均値検出回
路、AD71,AD72,AD73及びAD74は平均値検出回
路42の出力信号で直流成分検出回路61,62,63
及び64の出力信号を補正するための減算器である。こ
れによって、第2の制御ループの制御精度を補足する第
2の補助制御ループが構成される。
Reference numeral 42 is a DC component detection circuit 61, 62, 63.
And the average value detecting circuit for calculating an average value of 64 output signals, AD 71, AD 72, AD 73 and the DC component detecting circuit 61, 62 and 63 by the output signal of the AD 74 is the average value detecting circuit 42
And 64 for correcting the output signals. This constitutes a second auxiliary control loop that supplements the control accuracy of the second control loop.

【0019】この例では4個の変換器及び変圧器で構成
された4多重型の半導体変換装置が示されているが、他
の任意の多重型半導体変換装置にも適用できる。
In this example, a four-multiplex type semiconductor conversion device composed of four converters and transformers is shown, but it can be applied to any other multiplex type semiconductor conversion device.

【0020】次に図2の制御部の動作について説明す
る。4台の変圧器21〜24の一方の巻線に流れる電流
は変流器31〜34により検出される。制御部Cでは4
台の変流器で検出された交流電流I1,I2,I3,I
4の平均値IAV=(I1+I2+I3+I4)/4を
平均値検出回路41で求め、その平均値を用いて電流制
御回路7で交流電流の制御を行う。この際、交流電流を
そのまま使用して制御する方式や、三相変換装置の場合
には2軸の回転座標などに座標変換して制御する方式が
ある。いずれの制御方式を使用するにしても交流電流制
御であり、第1の制御ループによって変圧器の一方の巻
線に流れる交流電流が制御されると同時に直流電流成分
も0になるように制御される。もし、変換器の特性や制
御系の性能で交流電流に直流成分が残留する場合には、
第1の補助制御ループを付加して平均値の直流成分を検
出して各パルス発生回路の入力信号を補正することによ
り、変圧器の一方の巻線に流れる直流電流成分をより確
実に低減することが出来る。例えば、変換器がPWM制
御での誤差などにより直流電圧を発生する特性を有して
いる時、第1の制御ループと第1の補助制御ループとの
併用により直流電流成分が0になるように制御される。
尚、平均値の代わりに検出した電流の合計値を用いても
係数が変わるだけであり、同じ効果を奏する。
Next, the operation of the control unit shown in FIG. 2 will be described. Currents flowing through one winding of the four transformers 21 to 24 are detected by the current transformers 31 to 34. 4 in control unit C
AC currents I1, I2, I3, I detected by the current transformer of the table
The average value IAV = (I1 + I2 + I3 + I4) / 4 of 4 is obtained by the average value detection circuit 41, and the alternating current is controlled by the current control circuit 7 using the average value. At this time, there are a method of controlling by using the AC current as it is, and a method of controlling by converting the coordinates into two-axis rotational coordinates in the case of a three-phase converter. Is also alternating current controlled to use any control method, the DC current component also controlled to be 0 at the same time when an alternating current flowing through one winding of the transformer is controlled by a first control loop To be done. If the DC component remains in the AC current due to the characteristics of the converter or the performance of the control system,
By adding the first auxiliary control loop to detect the DC component of the average value and correcting the input signal of each pulse generation circuit, the DC current component flowing in one winding of the transformer can be more reliably reduced. You can For example, when the converter has a characteristic of generating a DC voltage due to an error in PWM control, the DC current component is set to 0 by the combined use of the first control loop and the first auxiliary control loop. Controlled.
It should be noted that even if the total value of the detected currents is used instead of the average value, the coefficient only changes, and the same effect is obtained.

【0021】上述のように第1の制御ループと第1の補
助制御ループとを併用した制御を行えば変圧器全体とし
ては偏磁を防止できる。しかしながら、各変換器ごとに
出力特性にばらつきがあるため、変圧器間で直流偏磁量
にばらつきが生じ、一部の変圧器が飽和してしまうこと
がある。例えば、変換器11が正の直流電圧を発生する
特性を有し、変換器12が負の直流電圧を発生する特性
を有している場合、第1の制御ループと第1の補助制御
ループとを併用した制御によって全体としては直流電圧
の発生がなくなるが、変圧器21は正方向に、変圧器2
2は負方向にそれぞれ偏磁して飽和に至ってしまう。そ
のような場合に上述の制御に第2の制御ループを付加す
る。第2の制御ループは各変圧器の偏磁量を検出して相
互間のばらつきを防止する制御をする。偏磁量の検出方
法として、変圧器の励磁電流を検出する方法を用いてい
る。励磁電流Iexは変流器31〜34で検出した変圧器
の一方の巻線に流れる電流と変流器30で検出した交流
電流IL を変圧器の巻数比で換算した電流との差(Iexj
=Ij−kIL)から算出する。ただし、j=1〜4、kは
巻数比換算係数である。次に、その平均値(IexAV=
(Iex1+Iex2+Iex3+Iex4)/4)を平均値検出回路
42で求める。各変圧器ごとに偏磁量の平均値からの差
(ΔIexj=Iexj−IexAV)を求める。この差(ΔIex
j)が0になるように制御回路71〜74で制御し、各変
換器に補正の直流電圧を発生させる。式に示されるよう
に各変換器の直流電圧補正量は平均値に対する偏差に比
例しているので、全変換器の合計では0となり、変圧器
の一方の巻線に流れる電流の平均値の直流成分が0にな
るようにする制御との干渉は生じない。尚、本実施例の
ように変圧器の一方の巻線に流れる電流の平均値を0に
する制御を付加した場合、出力電流の制御は変流器30
の電流で行ってもよい。交流主端子側に直流電流が流出
してもよい用途などでは制御回路75の前にある係数器
92の入力を平均値検出回路42の出力とし、平均励磁
電流の直流成分を0とする制御を行ってもよい。
As described above, if the combined control of the first control loop and the first auxiliary control loop is performed, it is possible to prevent the demagnetization of the entire transformer. However, since the output characteristics vary from converter to converter, the amount of DC bias magnetism varies between the transformers, and some transformers may be saturated. For example, when the converter 11 has a characteristic of generating a positive DC voltage and the converter 12 has a characteristic of generating a negative DC voltage, the first control loop and the first auxiliary control loop are Although the DC voltage is not generated as a whole by the control in which the transformer is used in combination, the transformer 21 moves in the positive direction,
2 is demagnetized in the negative direction and reaches saturation. In such a case, the second control loop is added to the above control. The second control loop detects the amount of eccentricity of each transformer and performs control to prevent mutual variations. A method of detecting the exciting current of the transformer is used as a method of detecting the amount of magnetic bias. The exciting current Iex is the difference (Iexj) between the current flowing through one winding of the transformer detected by the current transformers 31 to 34 and the AC current IL detected by the current transformer 30 converted by the turns ratio of the transformer.
= Ij-kIL). However, j = 1 to 4 and k are turn ratio conversion factors. Next, the average value (IexAV =
The average value detection circuit 42 calculates (Iex1 + Iex2 + Iex3 + Iex4) / 4). The difference (ΔIexj = Iexj−IexAV) from the average value of the amount of magnetic bias is calculated for each transformer. This difference (ΔIex
The control circuits 71 to 74 are controlled so that j) becomes 0, and a DC voltage for correction is generated in each converter. As shown in the equation, the DC voltage correction amount of each converter is proportional to the deviation from the average value, so the sum of all converters is 0, and the DC value of the average value of the current flowing through one winding of the transformer is DC. No interference occurs with the control that causes the component to be zero. In addition, when the control for making the average value of the current flowing through one winding of the transformer 0 is added as in the present embodiment, the output current is controlled by the current transformer 30.
The current may be applied. For applications in which a DC current may flow to the AC main terminal side, the input of the coefficient unit 92 in front of the control circuit 75 is used as the output of the average value detection circuit 42, and the DC component of the average excitation current is set to 0. You can go.

【0022】更に上述の各変圧器ごとに偏磁量の平均値
からの差(ΔIexj)の式を変形すると次のようになる。
Further, if the equation of the difference (ΔIexj) from the average value of the amount of magnetic bias for each transformer is modified, it will be as follows.

【0023】 ΔIexj=(Ij−kIL)−(1/n)Σ(Ii−kIL) Σはiについて1から変圧器台数nまで加算することを
示す。その結果 ΔIexj=Ij−IAV となり、この結果は各変圧器ごとに変流器31〜34で
検出した電流とその平均値との偏差を求め、その直流成
分を検出してそれに応じて各変換器に補正電圧を加える
方式としてもよいことを意味している。この原理を適用
した実施例を図3に示す。
ΔIexj = (Ij−kIL) − (1 / n) Σ (Ii−kIL) Σ indicates that 1 is added to i for the number of transformers n. As a result, ΔIexj = Ij−IAV, and the result is that the deviation between the current detected by the current transformers 31 to 34 and its average value is obtained for each transformer, the DC component is detected, and each converter is correspondingly detected. This means that a method of applying a correction voltage to the above may be used. An embodiment to which this principle is applied is shown in FIG.

【0024】図3においては、図2の変流器30及び係
数器9からの信号の代わりに、平均値検出回路41の出
力信号を減算器AD61,AD62,AD63及びAD64に付
与する構成としている。このため、本実施例では交流主
端子に流れる電流の検出が不要になる効果がある。この
場合も第1の補助制御ループを付加してもよい。また、
本発明によれば変圧器の偏磁量が均一化されるので、直
流分を0にする制御を含む出力電流制御を代表1台の変
圧器の一方の巻線に流れる電流で行う方法も不可能では
ない。
In FIG. 3, instead of the signals from the current transformer 30 and the coefficient unit 9 of FIG. 2, the output signal of the average value detection circuit 41 is given to the subtracters AD 61 , AD 62 , AD 63 and AD 64 . It is configured to do. Therefore, in this embodiment, there is an effect that the detection of the current flowing through the AC main terminal becomes unnecessary. Also in this case, the first auxiliary control loop may be added. Also,
According to the present invention, since the amount of magnetic bias of the transformer is made uniform, there is no method for performing output current control including control for setting the direct current component to 0 by using the current flowing through one winding of one representative transformer. Not possible.

【0025】図3の実施例を三相の半導体電力変換装置
に適用した実施例を図4に示す。この実施例では変換器
及び変圧器が2台で多重型構成とした例を示している。
図を用いて説明する。半導体電力変換装置の出力に零相
分が出ないようにされているため、三相交流は二相交流
の合成に変換することができる。そこで直交した2軸座
標に変換し、各軸成分ごとに上述の制御を行えばよい。
変圧器の一方の巻線に選ばれた2相に流れる電流を変流
器31,35及び32,36で検出する。変流器31,
35及び32,36の出力信号を三相/二相変換回路5
1,52でそれを二相に変換する。二相変換としては一
般的にはαβ軸変換が使用される。三相a,b,cから
二相α,βへの変換式は次式で与えられる。
An embodiment in which the embodiment of FIG. 3 is applied to a three-phase semiconductor power converter is shown in FIG. In this embodiment, an example in which two converters and two transformers are used to form a multiplex type is shown.
It will be described with reference to the drawings. Since the output of the semiconductor power converter does not include the zero-phase component, the three-phase alternating current can be converted into the combination of the two-phase alternating current. Therefore, the coordinates may be converted into orthogonal two-axis coordinates, and the above control may be performed for each axis component.
Currents flowing in two phases selected in one winding of the transformer are detected by current transformers 31, 35 and 32, 36. Current transformer 31,
The output signals of 35, 32 and 36 are converted into a three-phase / two-phase conversion circuit 5
Convert it to two phases at 1,52. The αβ axis conversion is generally used as the two-phase conversion. The conversion formula from the three-phase a, b, c to the two-phase α, β is given by the following formula.

【0026】[0026]

【数1】 [Equation 1]

【0027】尚、図4では変流器はa,c相の電流しか
検出していないがb相の電流はIb=−Ia−Icで求め
られる。
In FIG. 4, the current transformer detects only the currents of the a and c phases, but the current of the b phase is obtained by Ib = -Ia-Ic.

【0028】変圧器がこの例のように例えば△△巻線の
ものと、△Y巻線のもので構成されている場合には、例
えばΔY巻線側の一方巻線に流れる電流の位相角を30
度進ませ、ΔΔ巻線の変圧器と同一の座標軸に合わせて
上述の制御を実施すればよい。このため位相変換回路5
5を設置している。角度θの位相変換は次式によって行
うことができる。
When the transformer is composed of, for example, a ΔΔ winding and a ΔY winding as in this example, for example, the phase angle of the current flowing through one winding on the ΔY winding side. 30
The control may be advanced and the control described above may be performed in accordance with the same coordinate axis as the transformer of the ΔΔ winding. Therefore, the phase conversion circuit 5
5 is installed. The phase conversion of the angle θ can be performed by the following equation.

【0029】[0029]

【数2】 [Equation 2]

【0030】このように位相変換を行うことによって両
変換器の二相のベクトルを同一方向にでき、各相ごとの
単相回路に分けて扱うことができるようになる。以下の
制御は図3と同様であるので省略する。制御結果は△Y
巻線側では位相角変換回路56で位相の逆変換を行って
元の位相に戻す。次に二相/三相変換回路53,54で
三相に戻して各変換器を動作させる。尚、本実施例では
出力電流の制御も制御装置7,70でα,βの2軸の二
相制御で行っているが、更に回転座標系に変換して制御
し、それをまた逆変換して実施してもよい。
By performing the phase conversion in this way, the two-phase vectors of both converters can be made to have the same direction, and can be handled separately for each phase. The following control is the same as that in FIG. Control result is △ Y
On the winding side, the phase angle conversion circuit 56 reverses the phase to restore the original phase. Next, the two-phase / three-phase conversion circuits 53 and 54 restore the three-phase to operate each converter. In the present embodiment, the control of the output current is also performed by the two-phase control of two axes of α and β by the control devices 7 and 70. However, the output current is further converted into the rotational coordinate system for control, and the inverse conversion is performed again. You may carry out.

【0031】尚、三相交流の場合、変換装置の起動時に
三相交流電圧を一斉に発生させると変圧器は初期条件が
0であっても偏磁が発生してしまう。これを防止するに
は直交した二相の各成分ごとに基本波正弦波の位相角が
90度となる時点で電圧を発生させるようにすればよ
い。初期条件が0であれば変圧器に偏磁を発生させずに
起動させることが可能となる。その波形例を図5に示
す。α,β各軸の電圧は図に示すように正弦波の位相角
90度から発生している。これを三相a,b,cの電圧
に変換して各相の電圧を発生させる。このため図4の実
施例では同期検出回路57の信号で各軸ごとに位相角9
0度で始動させる同期始動回路58,59を付加してい
る。
In the case of three-phase AC, if a three-phase AC voltage is generated all at once when the converter is started, the transformer will be biased even if the initial condition is zero. To prevent this, a voltage may be generated for each of the two orthogonal phase components at the time when the phase angle of the fundamental wave sine wave becomes 90 degrees. If the initial condition is 0, it is possible to start up the transformer without causing magnetic bias. An example of the waveform is shown in FIG. The voltages on the α and β axes are generated from the phase angle of 90 degrees of the sine wave as shown in the figure. This is converted into a voltage of three phases a, b, and c to generate a voltage of each phase. For this reason, in the embodiment shown in FIG.
Synchronous starting circuits 58 and 59 for starting at 0 degrees are added.

【0032】[0032]

【発明の効果】本発明によれば、変換器の交流主端子側
に配置された複数個の変圧器の直流偏磁を極力低減し、
これによって直流偏磁に伴う不都合を解消した多重型半
導体電力変換装置を実現出来る。
According to the present invention, the DC bias magnetism of a plurality of transformers arranged on the AC main terminal side of the converter is reduced as much as possible,
As a result, it is possible to realize a multiplex type semiconductor power conversion device which eliminates the inconvenience associated with DC bias magnetization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明半導体電力変換装置の概略構成を示す回
路図である。
FIG. 1 is a circuit diagram showing a schematic configuration of a semiconductor power conversion device of the present invention.

【図2】図1の半導体電力変換装置の制御部の詳細を示
す概略回路図である。
FIG. 2 is a schematic circuit diagram showing details of a control unit of the semiconductor power conversion device of FIG.

【図3】本発明半導体電力変換装置の他の実施例を示す
概略回路図である。
FIG. 3 is a schematic circuit diagram showing another embodiment of the semiconductor power conversion device of the present invention.

【図4】本発明半導体電力変換装置の更に他の実施例を
示す概略回路図である。
FIG. 4 is a schematic circuit diagram showing still another embodiment of the semiconductor power conversion device of the present invention.

【図5】図4の実施例の作用を説明するための波形図で
ある。
5 is a waveform chart for explaining the operation of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

10…負荷、11〜14…変換器、21〜24…変圧
器、30〜36…変流器、41〜43…平均値検出回
路、51,52…三相/二相変換回路、53,54…二
相/三相変換回路、55,56…位相変換回路、57…
同期検出回路、58,59…同期始動回路、61〜67
…直流成分検出回路、70〜77…制御回路、81〜8
4…パルス発生回路、91,92…係数器。
10 ... Load, 11-14 ... Converter, 21-24 ... Transformer, 30-36 ... Current transformer, 41-43 ... Average value detection circuit, 51, 52 ... Three-phase / two-phase conversion circuit, 53, 54 ... Two-phase / three-phase conversion circuit, 55, 56 ... Phase conversion circuit, 57 ...
Sync detection circuit, 58, 59 ... Sync start circuit, 61-67
... DC component detection circuit, 70-77 ... Control circuit, 81-8
4 ... Pulse generating circuit, 91, 92 ... Coefficient multiplier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川添 裕成 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平4−322170(JP,A) 特開 平4−261366(JP,A) 特開 平4−4756(JP,A) 特開 平5−300750(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/537 H02M 7/48 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hironari Kawazoe 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (56) Reference JP-A-4-322170 (JP, A) Kaihei 4-261366 (JP, A) JP 4-4756 (JP, A) JP 5-300750 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H02M 7 / 537 H02M 7/48

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の直流主端子と、 複数個の主交流端子と、 一対の直流端子複数個の交流端子一対の直流端子間
に、半導体スイッチング素子を偶数個直列接続したブリ
ッジ単位を複数個並列接続して構成されたブリッジ回路
からなり、各ブリッジ単位の中点に交流端子が接続さ
れ、それぞれの直流端子が一対の直流主端子に並列接続
された複数個の変換器と、 それぞれ一対の巻線を有し、一方の巻線が前記複数個の
変換器の各変換器の交流端子に接続され、他方の巻線が
直列接続されて主交流端子間に接続されている前記変換
器と同数の変圧器と、 変換器の半導体スイッチング素子をオンオフ制御する制
御部とを具備した半導体電力変換装置において、 該制御部が、 変換器の半導体スイッチング素子をオンオフするパルス
信号を発生するパルス発生回路と、 パルス発生回路に変換器の出力を制御する出力制御回路
を介して指令信号を付与する手段と、前記複数個の 変圧器それぞれの一方の巻線に流れる電流
を検出する変圧器と同数の変圧器電流検出手段と、 各変圧器電流検出手段で検出した前記各電流を合計し
て平均値を求める平均値検出手段と、 平均値検出手段の出力信号で前記指令信号を補正する
手段と、 を具備することを特徴とする半導体電力変換装置。
1. A bridge unit in which an even number of semiconductor switching elements are connected in series between a pair of DC main terminals, a plurality of main AC terminals, a pair of DC terminals , a plurality of AC terminals , and a pair of DC terminals. It consists of a plurality of bridge circuits connected in parallel, an AC terminal is connected to the middle point of each bridge unit, and a plurality of converters in which each DC terminal is connected in parallel to a pair of DC main terminals, respectively. It has a pair of windings, and one winding has a plurality of windings.
Is connected to the AC terminals of each transducer of the transducer, on-off control the same number of transformer and the transformer and the other winding are connected in series are connected between the main AC terminals, the semiconductor switching element of the transducer In the semiconductor power conversion device including a control unit, the control unit generates a pulse signal for turning on and off a semiconductor switching element of the converter, and an output for controlling the output of the converter in the pulse generation circuit. and means for applying a command signal via the control circuit, the same number of transformer current detecting means and a transformer for detecting the current flowing in one of the windings of the plurality of transformers respectively, said respective transformer current detecting means Sum the above currents detected in
The semiconductor power conversion device, characterized by comprising: a mean value detecting means for obtaining an average value, and means for correcting the command signal at the output signal of the average value detecting means, a Te.
【請求項2】請求項1において、前記平均値検出手段の
出力信号から直流成分を検出する直流成分検出手段を
、該直流成分検出手段の出力信号によって出力制御回
路の出力信号を補正することを特徴とする半導体電力変
換装置。
2. The method of claim 1, Bei the DC component detecting means for detecting a DC component from the output signal of said average value detecting means
For example, a semiconductor power conversion device and correcting the output signal of the output control circuit by an output signal of the DC component detecting means.
【請求項3】請求項1または2の何れかにおいて、主交
流端子に流れる電流を検出する交流電流検出手段交流
電流検出手段で検出した電流と各変圧器電流検出手段で
検出した電流値とから各変圧器の励磁電流を算出する変
換器と同数の励磁電流算出手段各励磁電流算出手段の
出力信号から各変圧器に流れる直流成分を検出する変圧
器直流成分検出手段を設け、該変圧器直流成分検出手段
の出力信号によって前記各パルス発生回路の入力信号を
補正することを特徴とする半導体電力変換装置。
3. The claim 1 or 2, a main AC alternating current detecting means for detecting a current flowing through the terminal, the current value detected by the current and the transformer current detecting means detected by the alternating current detecting means The same number of exciting current calculating means as the converter for calculating the exciting current of each transformer, and the transformer direct current component detecting means for detecting the direct current component flowing in each transformer from the output signal of each exciting current calculating means are provided. the semiconductor power conversion device by the output signal of the vessels DC component detecting means and corrects the input signal of the respective pulse generating circuits.
【請求項4】請求項3において、前記各変圧器直流成分
検出手段の出力信号から変圧器に流れる直流電流の平均
値を検出する直流電流平均値検出手段を設け、該直流電
流平均値検出手段の出力信号によって各変圧器直流成分
検出手段の出力信号を補正することを特徴とする半導体
電力変換装置。
4. The DC current average value detecting means for detecting the average value of the DC current flowing through the transformer from the output signal of each transformer DC component detecting means according to claim 3, and the DC current average value detecting means. A semiconductor power conversion device, characterized in that the output signal of each transformer DC component detecting means is corrected by the output signal of.
【請求項5】請求項1からの何れかにおいて、前記
導体スイッチング素子が自己消弧型半導体素子であるこ
とを特徴とする半導体電力変換装置。
5. In any one of claims 1 to 4, a semiconductor power conversion device, wherein the semi <br/> conductor switching element is a self-extinguishing type semiconductor device.
【請求項6】請求項1において、前記変換器が交流電力
を直流電力に変換するコンバータであることを特徴とす
る半導体電力変換装置。
6. The semiconductor power conversion device according to claim 1, wherein the converter is a converter that converts AC power into DC power.
【請求項7】請求項1において、前記変換器が直流電力
を交流電力に変換するインバータであることを特徴とす
る半導体電力変換装置。
7. The semiconductor power converter according to claim 1, wherein the converter is an inverter that converts DC power into AC power.
【請求項8】一対の直流主端子と、 複数個の主交流端子と、 一対の直流端子複数個の交流端子一対の直流端子間
に、半導体スイッチング素子を偶数個直列接続したブリ
ッジ単位を複数個並列接続して構成されたブリッジ回路
からなり、各ブリッジ単位の中点に交流端子が接続さ
れ、それぞれの直流端子が一対の直流主端子に並列接続
された複数個の変換器と、 それぞれ一対の巻線を有し、一方の巻線が前記複数個の
変換器の各変換器の交流端子に接続され、他方の巻線が
直列接続されて主交流端子間に接続されている前記変換
器と同数の変圧器と、 変換器の半導体スイッチング素子をオンオフ制御する制
御部とを具備した半導体電力変換装置において、 該制御部が、 変換器の半導体スイッチング素子をオンオフするパルス
信号を発生するパルス発生回路と、 パルス発生回路に変換器の出力を制御する出力制御回路
を介して指令信号を付与する手段と、前記複数個の 変圧器それぞれの一方の巻線に流れる電流
を検出する変圧器と同数の変圧器電流検出手段と、 各変圧器電流検出手段で検出した前記各電流を合計し
て平均値を求める平均値検出手段と、 平均値検出手段の出力信号で指令信号を補正する手段
と、前記 平均値検出手段の出力信号と各変換器電流検出手段
で検出した電流値とから前記各変圧器の励磁電流のばら
つきを算出する変換器と同数の励磁電流算出手段と、 各励磁電流算出手段の出力信号から各変圧器の励磁電
流のばらつきの直流成分を検出する変圧器直流成分検出
手段と、 各変圧器直流成分検出手段の出力信号によって各パル
ス発生回路の入力信号を補正する手段と、 を具備することを特徴とする半導体電力変換装置。
8. A bridge unit in which an even number of semiconductor switching devices are connected in series between a pair of DC main terminals, a plurality of main AC terminals, a pair of DC terminals , a plurality of AC terminals , and a pair of DC terminals. It consists of a plurality of bridge circuits connected in parallel, an AC terminal is connected to the middle point of each bridge unit, and a plurality of converters in which each DC terminal is connected in parallel to a pair of DC main terminals, respectively. It has a pair of windings, and one winding has a plurality of windings.
Is connected to the AC terminals of each transducer of the transducer, on-off control the same number of transformer and the transformer and the other winding are connected in series are connected between the main AC terminals, the semiconductor switching element of the transducer In the semiconductor power conversion device including a control unit, the control unit generates a pulse signal for turning on and off a semiconductor switching element of the converter, and an output for controlling the output of the converter in the pulse generation circuit. and means for applying a command signal via the control circuit, the same number of transformer current detecting means and a transformer for detecting the current flowing in one of the windings of the plurality of transformers respectively, said respective transformer current detecting means Sum the above currents detected in
From the mean value detecting means for obtaining an average value, and means for correcting the command signal with an output signal of said mean value detecting means, a current value detected by the output signal and the converter current detecting means of the average value detecting means Te a converter as many excitation current calculating means for calculating the variation of the exciting current of each transformer, the transformer DC for detecting a DC component of the variation of the exciting current of each transformer from the output signals of the respective exciting current calculation means A semiconductor power conversion device comprising: component detecting means; and means for correcting an input signal of each pulse generating circuit by an output signal of each transformer DC component detecting means.
【請求項9】請求項8において、前記半導体スイッチン
グ素子が自己消弧型半導体素子であることを特徴とする
半導体電力変換装置。
9. The semiconductor power conversion device according to claim 8, wherein the semiconductor switching element is a self-extinguishing type semiconductor element.
【請求項10】請求項8または9の何れかにおいて、
変換器が交流電力を直流電力に変換するコンバータで
あることを特徴とする半導体電力変換装置。
10. In any one of claims 8 or 9, before
The semiconductor power conversion device, wherein the serial converter is converter for converting AC power into DC power.
【請求項11】請求項8または9の何れかにおいて、
変換器が直流電力を交流電力に変換するインバータで
あることを特徴とする半導体電力変換装置。
11. A claim 8 or 9, before
The semiconductor power conversion device, wherein the serial converter is an inverter that converts DC power to AC power.
JP33492393A 1993-12-28 1993-12-28 Semiconductor power converter Expired - Fee Related JP3395310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33492393A JP3395310B2 (en) 1993-12-28 1993-12-28 Semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33492393A JP3395310B2 (en) 1993-12-28 1993-12-28 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JPH07194141A JPH07194141A (en) 1995-07-28
JP3395310B2 true JP3395310B2 (en) 2003-04-14

Family

ID=18282757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33492393A Expired - Fee Related JP3395310B2 (en) 1993-12-28 1993-12-28 Semiconductor power converter

Country Status (1)

Country Link
JP (1) JP3395310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906464B2 (en) * 2018-03-15 2021-07-21 株式会社東芝 Power converter control device and control method

Also Published As

Publication number Publication date
JPH07194141A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP2526992B2 (en) AC output converter parallel operation system
US5212630A (en) Parallel inverter system
US5091839A (en) Method and apparatus for supplying voltage to a three-phase voltage system having a load-carrying neutral conductor with a pulse width modulated three phase invertor
US20050281067A1 (en) System and method for unbalanced independent AC phase voltage control of a 3-phase, 4-wire output DC/AC inverter
US5177428A (en) Inverter control device capable of supressing dc magnetization in three-phase transformer
CA2285846C (en) Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system
US11909305B2 (en) AC-to-DC power converter which removed a common mode component form the output current
JP2607648B2 (en) Power converter
JP3395310B2 (en) Semiconductor power converter
CN109716641B (en) Power supply system
JP3316860B2 (en) Power converter
JP3369487B2 (en) Control device for power converter
JP3083214B2 (en) Transformer excitation current detection device
JPH07107744A (en) Power converter
JP3110898B2 (en) Inverter device
JP7166507B1 (en) power converter
JP3274274B2 (en) Demagnetization suppression control circuit
JPH0728538B2 (en) PWM inverter control device
JP3252634B2 (en) Inverter circuit output voltage control method
JP2533646B2 (en) Semiconductor aging equipment
JP3408961B2 (en) Power converter
JPH0487572A (en) Power unit
JPH1189237A (en) Control of inverter and inverter equipment
JP7226219B2 (en) Isolated DC/DC converter
JP3299718B2 (en) Self-excited semiconductor power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees