JPH08222269A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH08222269A
JPH08222269A JP7024132A JP2413295A JPH08222269A JP H08222269 A JPH08222269 A JP H08222269A JP 7024132 A JP7024132 A JP 7024132A JP 2413295 A JP2413295 A JP 2413295A JP H08222269 A JPH08222269 A JP H08222269A
Authority
JP
Japan
Prior art keywords
battery
lithium
negative electrode
secondary battery
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7024132A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Kaoru Inoue
薫 井上
Hide Koshina
秀 越名
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7024132A priority Critical patent/JPH08222269A/en
Publication of JPH08222269A publication Critical patent/JPH08222269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte lithium secondary battery which is excellent in thermal stability in the last stage of the cycle service life and having a carbon negative electrode by using a material which is formed by dissolving electrolyte in a mixed solvent containing an ethylene carbonate by a specific quantity and is dissolved by blowing in carbon dioxide under normal pressure, as electrolytic solution. CONSTITUTION: In manufacturing a nonaqueous electrolyte secondary battery having a positive electrode composed of a lithium-containing metallic oxide, a negative electrode composed of a carbon material which can intercalate and deintercalate lithium and nonaqueous electrolyte, the following means is used. That is, an electrolytic solution which is formed by dissolving inorganic salt being electrolyte in a mixed solvent containing an ethylene carbonate by 20 to 40% in the volume ratio and is dissolved by blowing in carbon dioxide under normal pressure, is injected by a specific quantity into a battery can in which a power generating element is housed. Solvent of the nonaqueous electrolyte is preferable to be a mixed solvent containing at least a single kind of an ethylene carbonate and a chain carbonate or aliphatic carboxylic acid ester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の製
造法、更に詳しくは小型、軽量で新規な非水電解液二次
電池の安全性の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly to improving the safety of a new non-aqueous electrolyte secondary battery which is small and lightweight.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化、コードレ
ス化が急速に進み、その駆動用電源を担う高エネルギー
密度を有する二次電池の開発が急がれている。
2. Description of the Related Art In recent years, electronic devices have been rapidly reduced in size and weight and have become cordless, and there has been an urgent need to develop a secondary battery having a high energy density which serves as a power source for driving the electronic device.

【0003】このような要望に応える電池としてリチウ
ム二次電池の開発が進められている。従来、リチウム二
次電池の正極活物質には、二酸化マンガン、五酸化バナ
ジウムなどの3V級の活物質が用いられてきた。これら
の正極と、リチウム負極および有機電解液とで電池を構
成し、充放電を繰り返していた。
A lithium secondary battery is being developed as a battery that meets such demands. Conventionally, 3V class active materials such as manganese dioxide and vanadium pentoxide have been used as positive electrode active materials of lithium secondary batteries. A battery was constituted by these positive electrodes, a lithium negative electrode and an organic electrolytic solution, and charging and discharging were repeated.

【0004】ところが、一般に負極にリチウム金属を用
いたリチウム二次電池では、充電時に負極表面上に生成
するデンドライト状リチウムによる内部短絡によって電
池の発熱、発火が起こったり、また、電池を加熱した場
合にリチウム負極と電解液との化学反応による発熱が起
こり、熱暴走状態となって発火に至る可能性があり、安
全性の確保が非常に困難な状態にある。
However, generally, in a lithium secondary battery using lithium metal for the negative electrode, when the battery is heated or ignited by an internal short circuit due to dendrite-like lithium generated on the surface of the negative electrode during charging, or when the battery is heated. In addition, heat is generated due to a chemical reaction between the lithium negative electrode and the electrolytic solution, which may lead to ignition due to thermal runaway, and it is very difficult to ensure safety.

【0005】最近になって、リチウムを可逆的にインタ
ーカレート/デインターカレートし得る炭素材料がリチ
ウム二次電池の負極材料として注目をあび、一部実用化
されるまでに至っている。炭素材料を負極として用いる
ことによって、充電時には活物質であるリチウムは負極
炭素層間にインターカレートされるために、金属リチウ
ムの析出は起こらず、上述のようなデンドライト状リチ
ウムによる内部短絡やリチウム金属と電解液との化学反
応といった問題は防止できるようになった。
Recently, a carbon material capable of reversibly intercalating / deintercalating lithium has attracted attention as a negative electrode material of a lithium secondary battery and has been partially put into practical use. When a carbon material is used as the negative electrode, lithium, which is the active material during charging, is intercalated between the negative electrode carbon layers, so that metal lithium does not precipitate, and an internal short circuit or lithium metal due to the dendrite-like lithium as described above occurs. The problem of chemical reaction between the electrolyte and the electrolyte can now be prevented.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこれら炭
素材料を負極に用いた場合、充放電サイクルを繰り返す
につれ徐々に負極の劣化が始まり、充電時のリチウムの
受入れ性が低下するという問題があった。そしてサイク
ル寿命末期においてはリチウムは炭素層間に2ndステ
ージまでしかインターカレートせず、残りのリチウムは
負極表面上に金属リチウムとして析出していた。これは
負極が劣化した状態ではインターカレートするよりも析
出する方が容易に進行することによるものである。この
ようなサイクル寿命末期の電池を加熱した場合、前述の
如く析出したリチウム金属と電解液との化学反応によっ
て発熱が起こり、熱暴走状態となり電池の発火に至る場
合があった。
However, when these carbon materials are used for the negative electrode, there is a problem that the negative electrode gradually deteriorates as the charge and discharge cycles are repeated, and the lithium acceptability during charging is lowered. At the end of the cycle life, lithium intercalated only between the carbon layers up to the 2nd stage, and the remaining lithium was deposited as metallic lithium on the surface of the negative electrode. This is because in the deteriorated state of the negative electrode, precipitation proceeds more easily than intercalation. When the battery at the end of the cycle life is heated, heat may be generated due to the chemical reaction between the deposited lithium metal and the electrolytic solution as described above, resulting in a thermal runaway state and ignition of the battery.

【0007】本発明は、このような課題を解決するもの
であり、炭素材料を用いた負極に関し、負極表面上に析
出した金属リチウムを不活性化し、サイクル寿命末期に
おいても熱安全性に優れた非水電解液二次電池の製造法
を提供するものである。
The present invention is to solve such a problem, and relates to a negative electrode using a carbon material, which inactivates metallic lithium deposited on the surface of the negative electrode and is excellent in thermal safety even at the end of cycle life. The present invention provides a method for manufacturing a non-aqueous electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の非水電解液二次電池の製造法は、エチレン
カーボネートを体積比で20%〜40%含む混合溶媒に
電解質である無機塩を溶解すると共に炭酸ガスを常圧下
で吹き込むことにより溶解した電解液を、リチウム含有
金属酸化物からなる正極と、リチウムをインターカレー
ト/デインターカレートし得る炭素材からなる負極の発
電要素を収納した電池缶内に一定量注液するものであ
る。
In order to solve the above problems, the method for producing a non-aqueous electrolyte secondary battery according to the present invention uses an electrolyte in a mixed solvent containing 20% to 40% by volume of ethylene carbonate. Power generation of a positive electrode made of a lithium-containing metal oxide and an anode made of a carbon material capable of intercalating / deintercalating lithium in an electrolytic solution obtained by dissolving an inorganic salt and blowing carbon dioxide gas under normal pressure. A certain amount of liquid is poured into a battery can containing the elements.

【0009】[0009]

【作用】負極にリチウムをインターカレート/デインタ
ーカレートし得る炭素材料を用いた非水電解液二次電池
では、前述の如くサイクル寿命末期になると負極炭素表
面上に金属リチウムの析出が見られるようになる。しか
しながら、本発明の炭酸ガスを常圧下で溶解したECを
含む電解液を電池缶内に一定量注液した後真空引きを行
い、その後炭酸ガスを系内に充填することで常圧に戻す
工程を経て製造した非水電解液二次電池では、析出した
金属リチウムは電解液中の炭酸ガスと穏やかに反応を起
こし、一部、熱的に不活性な炭酸リチウムを生成するこ
とで負極の熱的な安定性が増す。したがって、サイクル
寿命末期の電池を加熱した場合に、析出したリチウムと
電解液の反応は起こりにくくなり、その結果200℃程
度までの温度領域においては電池が熱暴走し、発火する
といった現象は見られなくなる。
[Function] As described above, in the non-aqueous electrolyte secondary battery using a carbon material capable of intercalating / deintercalating lithium in the negative electrode, metal lithium deposition is observed on the negative electrode carbon surface at the end of the cycle life as described above. Will be available. However, a step of returning to normal pressure by injecting a certain amount of an electrolytic solution containing EC in which carbon dioxide gas of the present invention is dissolved under normal pressure into a battery can and then evacuating and then filling the system with carbon dioxide gas In the non-aqueous electrolyte secondary battery manufactured through the above, the deposited metal lithium reacts gently with carbon dioxide gas in the electrolyte solution, and partly produces thermally inactive lithium carbonate, so that the negative electrode heat Stability is increased. Therefore, when the battery at the end of the cycle life is heated, the reaction between the precipitated lithium and the electrolytic solution is less likely to occur, and as a result, a phenomenon such as thermal runaway and ignition of the battery is observed in the temperature range up to about 200 ° C. Disappear.

【0010】本発明においては、溶媒の選択が非常に重
要であり、炭酸ガスが主にエチレンカーボネート(以下
ECと略す)に溶解することで効果が得られるため、E
Cを含むことが要求される。しかしながら、ECは非常
に高融点であり常温では固体であるために単独溶媒での
使用は困難である。これらのことより、ECの比率とし
ては体積比で20%〜40%であることが好ましく、更
に好ましくは25%〜35%である。20%未満では炭
酸ガスを充分に溶解することができず、本発明の効果が
得られない。反対に40%を超えた場合、ECの高融点
の性質が大きくなり、高率での充放電特性が劣る結果と
なる。この溶融点の性質を改善するために、低融点であ
り且つ低粘性の溶媒である鎖状カーボネートのジエチル
カーボネート(以下DECと略す)とプロピオン酸メチ
ル(以下MPと略す)などの脂肪族カルボン酸エステル
を混合した3成分系電解液の使用が好ましい。また、D
ECと同様な鎖状カーボネートであるエチルメチルカー
ボネート(以下EMCと略す)も使用可能であり、EC
との2成分系あるいはこれに脂肪族カルボン酸エステル
を加えた3成分系電解液の使用が好ましい。
In the present invention, the selection of the solvent is very important, and the effect can be obtained by dissolving carbon dioxide gas mainly in ethylene carbonate (hereinafter abbreviated as EC).
It is required to include C. However, since EC has a very high melting point and is a solid at room temperature, it is difficult to use it as a single solvent. From these facts, the EC ratio is preferably 20% to 40% by volume, and more preferably 25% to 35%. If it is less than 20%, carbon dioxide cannot be sufficiently dissolved, and the effect of the present invention cannot be obtained. On the other hand, when it exceeds 40%, the high melting point property of EC becomes large, resulting in poor charge and discharge characteristics at a high rate. In order to improve the property of this melting point, a chain carbonate having a low melting point and a low viscosity such as diethyl carbonate (hereinafter abbreviated as DEC) and an aliphatic carboxylic acid such as methyl propionate (hereinafter abbreviated as MP) It is preferable to use a three-component electrolytic solution in which an ester is mixed. Also, D
Ethyl methyl carbonate (hereinafter abbreviated as EMC), which is a chain carbonate similar to EC, can also be used.
It is preferred to use a two-component system or a three-component system electrolytic solution in which an aliphatic carboxylic acid ester is added.

【0011】電解液に溶解する炭酸ガスであるが、上記
混合溶媒中に電解質であるリチウムの無機塩を溶解する
と共に炭酸ガスを常圧下で吹き込む(バブリング)こと
により溶解することが要求される。特開平6−1509
75号公報に電池内部に電解液を炭酸ガスで加圧充填す
ることが開示されているが、このような方法では炭酸ガ
スはほとんど電解液には溶解せず、本発明の効果は得ら
れない。
Although carbon dioxide gas is dissolved in the electrolytic solution, it is required to dissolve the inorganic salt of lithium as the electrolyte in the above mixed solvent and to dissolve the carbon dioxide gas by bubbling carbon dioxide gas under normal pressure. JP-A-6-1509
Japanese Patent Laid-Open No. 75-75 discloses that an electrolyte solution is pressurized and filled with carbon dioxide gas in the battery. However, in such a method, the carbon dioxide gas is hardly dissolved in the electrolyte solution and the effect of the present invention cannot be obtained. .

【0012】また、本発明は負極材料にも関係してお
り、負極としてはリチウムをインターカレート/デイン
ターカレートし得る炭素材料であることが求められる。
中でも黒鉛層構造の発達した材料が高容量を得る上で有
利であり、メソフェーズ小球体を高温で黒鉛化したもの
などが使用できる。特開昭59−134567号公報に
負極に金属リチウムを用い、炭酸ガスを溶解した有機電
解液を使用することが開示されているが、このような金
属リチウムやリチウム合金などを負極に用いた場合には
本発明の効果は得られない。これは、本発明の効果は黒
鉛表面上に析出したリチウムに対して黒鉛が触媒作用と
して働き、炭酸ガスが穏やかに反応を起こしリチウムが
不活性化するものと考えられるため、負極に黒鉛が存在
しない系においては炭酸ガスは反応性を失い、リチウム
の不活性化に寄与しないためと考えられる。
The present invention also relates to a negative electrode material, and the negative electrode is required to be a carbon material capable of intercalating / deintercalating lithium.
Among them, a material having a developed graphite layer structure is advantageous in obtaining a high capacity, and mesophase small spheres graphitized at a high temperature can be used. Japanese Unexamined Patent Publication No. 59-134567 discloses that metallic lithium is used for the negative electrode and an organic electrolytic solution in which carbon dioxide gas is dissolved is used. When such metallic lithium or lithium alloy is used for the negative electrode. The effect of the present invention cannot be obtained. It is considered that the effect of the present invention is that graphite acts as a catalyst for lithium deposited on the surface of graphite, carbon dioxide gas reacts gently to inactivate lithium, and therefore graphite exists in the negative electrode. It is considered that carbon dioxide gas loses reactivity in the non-operating system and does not contribute to the inactivation of lithium.

【0013】電解液に溶解するリチウムの無機塩は特に
限定されるものではなく、LiPF 6、LiBF4、Li
ClO4など従来より公知のものがいずれも使用可能で
ある。
The inorganic salt of lithium, which is soluble in the electrolyte, is especially
Without limitation, LiPF 6, LiBFFour, Li
ClOFourAny of the conventionally known ones can be used.
is there.

【0014】[0014]

【実施例】【Example】

(実施例1)以下、図面とともに実施例により本発明を
詳しく説明する。
(Embodiment 1) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

【0015】図1に本実施例で用いた円筒形電池の縦断
面図を示す。図において、1は耐有機電解液性のステン
レス鋼板を加工した電池ケース、2は安全弁を設けた封
口板、3は絶縁パッキングを示す。4は極板群であり、
正極および負極がセパレータを介して複数回渦巻状に巻
回されて電池ケース1内に収納されている。そして上記
正極からは正極リード5が引き出されて封口板2に接続
され、負極からは負極リード6が引き出されて電池ケー
ス1の底部に接続されている。7は絶縁リングで極板群
4の上下部にそれぞれ設けられている。以下正、負極等
について詳しく説明する。
FIG. 1 shows a vertical sectional view of a cylindrical battery used in this embodiment. In the figure, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. 4 is a plate group,
The positive electrode and the negative electrode are spirally wound a plurality of times with a separator interposed therebetween and housed in the battery case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided on the upper and lower portions of the electrode plate group 4, respectively. The positive and negative electrodes will be described in detail below.

【0016】正極はLi2CO3とCo34とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にした。このペ
ーストを厚さ0.03mmのアルミ箔の両面に塗工し、
乾燥後圧延して厚さ0.18mm、幅37mm、長さ2
40mmの正極板とした。
The positive electrode is a mixture of Li 2 CO 3 and Co 3 O 4 ,
100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours, 3 parts by weight of acetylene black and 7 parts by weight of fluororesin binder were mixed and suspended in an aqueous carboxymethylcellulose solution to form a paste. . Apply this paste to both sides of 0.03mm thick aluminum foil,
After drying, it is rolled to a thickness of 0.18 mm, a width of 37 mm, and a length of 2.
It was a 40 mm positive electrode plate.

【0017】負極はメソフェーズ小球体を2800℃の
高温で黒鉛化したもの(以下メソフェーズ黒鉛と称す)
を使用した。広角X線回折による(d002)は3.3
7Åであった。このメソフェーズ黒鉛100重量部にス
チレン/ブタジエンゴム3重量部を混合し、カルボキシ
メチルセルロース水溶液に懸濁させてペースト状にし
た。そしてこのペーストを厚さ0.02mmの銅箔の両
面に塗工し乾燥後、厚さ0.20mm、幅39mm、長
さ260mmの負極板とした。
The negative electrode is formed by graphitizing mesophase small spheres at a high temperature of 2800 ° C. (hereinafter referred to as mesophase graphite).
It was used. (D002) by wide-angle X-ray diffraction is 3.3
It was 7Å. 100 parts by weight of this mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber and suspended in an aqueous carboxymethyl cellulose solution to form a paste. Then, this paste was applied to both sides of a copper foil having a thickness of 0.02 mm, dried, and used as a negative electrode plate having a thickness of 0.20 mm, a width of 39 mm and a length of 260 mm.

【0018】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ730mmのポリエ
チレン製セパレータを介して渦巻状に巻回し、直径1
4.0mm、高さ50mmの電池ケースに納入した。
Aluminum leads are attached to the positive electrode plate, and nickel leads are attached to the negative electrode plate. The leads are spirally wound through a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 730 mm, and a diameter is formed. 1
It was delivered to a battery case with a height of 4.0 mm and a height of 50 mm.

【0019】電解液にはECとDECとMPとを30:
50:20の体積比で混合した溶媒に電解質として1モ
ル/lのLiPF6を溶解した。そして充分に乾燥、脱
水処理を施した炭酸ガスを1l/min.の速度で約3
0分間、室温常圧下で吹き込むことにより電解液中に溶
解した。このようにして調整した電解液2.0ccを電
池ケース内に注液し真空引きを約1分間行った後、炭酸
ガスを系内に充填することで電池を常圧に戻し封口を行
い、実施例1の電池とした。
As the electrolytic solution, EC, DEC and MP are 30:
1 mol / l of LiPF 6 was dissolved as an electrolyte in a solvent mixed in a volume ratio of 50:20. Then, the carbon dioxide gas that had been sufficiently dried and dehydrated was treated with 1 l / min. At the speed of about 3
It was dissolved in the electrolytic solution by blowing at room temperature and atmospheric pressure for 0 minutes. After injecting 2.0 cc of the electrolyte solution thus adjusted into the battery case and evacuating for about 1 minute, the system was filled with carbon dioxide gas to return the battery to normal pressure and sealed. The battery of Example 1 was used.

【0020】(実施例2)実施例1の電池において、電
解液の溶媒としてECとEMCを20:80の体積比で
混合した溶媒を用いた以外は実施例1と同様に電池を構
成し、実施例2の電池とした。
(Example 2) A battery was constructed in the same manner as in Example 1 except that a solvent obtained by mixing EC and EMC in a volume ratio of 20:80 was used as the solvent of the electrolytic solution. The battery of Example 2 was used.

【0021】(比較例1)実施例1の電池の電解液に代
えて、電解質である1モル/lのLiPF6を溶解した
後、炭酸ガスを溶解する工程を経ない電解液を用いた。
この電解液を室温常圧下で極板群を納入した電池ケース
内に注液を行い、真空引きを約1分間行った後、ドライ
エアーを系内に充填することで電池を常圧に戻し封口を
行い、比較例1の電池とした。
Comparative Example 1 Instead of the electrolytic solution of the battery of Example 1, an electrolytic solution was used in which 1 mol / l of LiPF 6 as an electrolyte was dissolved and then carbon dioxide gas was not dissolved.
This electrolyte is poured into the battery case that has delivered the electrode plate group at room temperature and atmospheric pressure, and after evacuation for about 1 minute, the system is returned to normal pressure by filling dry air into the system and sealed. Then, the battery of Comparative Example 1 was obtained.

【0022】(比較例2)実施例1の電池において、極
板群を納入した電池ケースを真空引きした後、電解質で
ある1モル/lのLiPF6を溶解した電解液を12k
g/cm2の圧力で炭酸ガスを用いて加圧充填し注液を
行った。そして封口を行い、比較例2の電池とした。
(Comparative Example 2) In the battery of Example 1, the battery case to which the electrode plate group was delivered was evacuated, and then 12 k of the electrolyte solution in which 1 mol / l of LiPF 6 as the electrolyte was dissolved was used.
The solution was pressurized and filled with carbon dioxide at a pressure of g / cm 2 to inject the solution. Then, the battery was sealed to obtain a battery of Comparative Example 2.

【0023】(比較例3)実施例1の電池において、電
解液の溶媒としてECとDECとMPとを10:60:
30の体積比で混合した溶媒を用いた以外は実施例1と
同様に電池を構成し、比較例3の電池とした。
(Comparative Example 3) In the battery of Example 1, EC, DEC, and MP were used as solvents for the electrolytic solution at 10:60:
A battery was constructed in the same manner as in Example 1 except that the solvent mixed in a volume ratio of 30 was used, and the battery of Comparative Example 3 was obtained.

【0024】(比較例4)実施例1の電池において、電
解液の溶媒としてECとDECとMPとを50:30:
20の体積比で混合した溶媒を用いた以外は実施例1と
同様に電池を構成し、比較例4の電池とした。
(Comparative Example 4) In the battery of Example 1, EC, DEC, and MP were used as the solvent of the electrolytic solution at 50:30:
A battery was constructed in the same manner as in Example 1 except that a solvent mixed in a volume ratio of 20 was used, and a battery of Comparative Example 4 was obtained.

【0025】次に、本実施例および比較例の電池を各2
セル用意して充放電サイクル試験を行った。充放電試験
は20℃において充電電圧4.1V、充電時間2時間の
定電圧充電を行い、制限電流を350mAとし、放電は
放電電流500mA、放電終止電圧3.0Vの定電流放
電を行った。そして、それぞれ10サイクル目の放電容
量を初期容量とし、初期容量の半分以下の容量に劣化し
た時点をサイクル寿命末期として充電状態でサイクル試
験を中止した。サイクル寿命末期の電池は2個のうち1
つは分解し、負極板上への金属リチウムの析出の有無を
調べた。もう一方の電池はUL規格による加熱試験(室
温から毎分5℃で165℃まで昇温し、10分間維持)
を行い、発火の有無を調べた。初期容量、サイクル寿命
末期の負極上への金属リチウムの析出有無、加熱試験に
よる発火の有無の結果を(表1)に示す。
Next, each of the batteries of this example and the comparative example was replaced with two batteries.
A cell was prepared and a charge / discharge cycle test was performed. In the charge / discharge test, constant voltage charging was performed at 20 ° C. with a charging voltage of 4.1 V and a charging time of 2 hours, the limiting current was 350 mA, and the discharging was a constant current discharge with a discharge current of 500 mA and a discharge end voltage of 3.0 V. Then, the discharge capacity at the 10th cycle was set as the initial capacity, and when the capacity deteriorated to half or less of the initial capacity, the end of the cycle life was determined and the cycle test was stopped in the charged state. One of two batteries at the end of cycle life
One was decomposed, and it was examined whether metallic lithium was deposited on the negative electrode plate. The other battery has a UL standard heating test (room temperature rises from 5 ° C to 165 ° C at 5 ° C / min and is maintained for 10 minutes).
Then, the presence or absence of ignition was examined. The results of the initial capacity, the presence / absence of metallic lithium deposition on the negative electrode at the end of the cycle life, and the presence / absence of ignition in the heating test are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】分解したサイクル寿命末期電池の負極表面
には本発明の電池および、比較例の電池すべてに金属リ
チウムの析出が観察された。
Precipitation of metallic lithium was observed on the surface of the negative electrode of the disassembled battery at the end of cycle life in the battery of the present invention and all the batteries of the comparative examples.

【0028】本発明の実施例1および実施例2の電池で
は初期容量が500mAh以上と大きく、サイクル寿命
末期電池の加熱試験においても発火は見られなかった。
このサイクル寿命末期電池の負極表面の赤外線吸収スペ
クトル測定を行ったところ、炭酸リチウムに帰属する吸
収スペクトルが検出された。このことから、負極上に析
出した金属リチウムが電解液中に溶解している炭酸ガス
と反応し、熱的に不活性になったため発火しなかったも
のと考えられる。一方、比較例1の電池では加熱試験に
おいて発火に至っており、これは析出した金属リチウム
が熱的に活性であるために電解液と化学反応を起こし、
熱暴走状態となって発火したものと考えられる。また、
比較例2の電池においても加熱試験において発火に至っ
ており、これは前述のように電解液を炭酸ガスで加圧充
填する方法では炭酸ガスは十分に電解液に溶解しないた
め、本発明の効果が得られないものと考えられる。比較
例3の電池も加熱試験において発火しているが、これは
電解液の溶媒成分中に占めるECの比率が10%と低い
ために炭酸ガスが十分に溶解していないことに起因する
ものと考えられる。これら比較例1〜3の電池ではサイ
クル寿命末期電池の負極表面からは炭酸リチウムの存在
は認められなかった。比較例4の電池ではサイクル寿命
末期電池の加熱試験において発火は見られなかったが、
初期容量が450mAhと小さくなった。これは電解液
中のECの占める比率が50%と大きいために電解液の
粘性が増し、1時間率といった高率放電下では電池の分
極が大きくなり容量低下を伴うものと考えられる。
In the batteries of Examples 1 and 2 of the present invention, the initial capacity was as large as 500 mAh or more, and no ignition was observed in the heating test of the battery at the end of cycle life.
When the infrared absorption spectrum of the negative electrode surface of this end-of-cycle battery was measured, an absorption spectrum attributable to lithium carbonate was detected. From this, it is considered that the metallic lithium deposited on the negative electrode reacted with the carbon dioxide gas dissolved in the electrolytic solution, became thermally inactive, and did not ignite. On the other hand, the battery of Comparative Example 1 has ignited in the heating test, which causes a chemical reaction with the electrolytic solution because the deposited metal lithium is thermally active,
It is probable that a fire occurred due to thermal runaway. Also,
The battery of Comparative Example 2 also ignited in the heating test. This is because the carbon dioxide gas is not sufficiently dissolved in the electrolyte solution in the method of pressurizing and filling the electrolyte solution with carbon dioxide gas as described above. It is thought that it cannot be obtained. The battery of Comparative Example 3 also ignited in the heating test, but this is because the carbon dioxide gas was not sufficiently dissolved because the ratio of EC in the solvent component of the electrolytic solution was as low as 10%. Conceivable. In the batteries of Comparative Examples 1 to 3, the presence of lithium carbonate was not recognized from the surface of the negative electrode of the battery at the end of cycle life. In the battery of Comparative Example 4, no ignition was observed in the heating test of the battery at the end of cycle life,
The initial capacity was reduced to 450 mAh. It is considered that this is because the ratio of EC in the electrolytic solution is as large as 50%, so that the viscosity of the electrolytic solution is increased, and the polarization of the battery is increased under a high rate discharge of 1 hour rate and the capacity is reduced.

【0029】なお、本実施例では電解液の溶媒の鎖状カ
ーボネイトとしてジエチルカーボネイト、エチルメチル
カーボネイトを、脂肪族カルボン酸エステルとしてプロ
ピオン酸メチルを用いたが、他の鎖状カーボネイトおよ
び脂肪族カルボン酸エステルを用いてもほぼ同様の効果
が得られる。
In this example, diethyl carbonate and ethyl methyl carbonate were used as the chain carbonate of the solvent of the electrolytic solution, and methyl propionate was used as the aliphatic carboxylic acid ester. However, other chain carbonates and aliphatic carboxylic acids were used. Almost the same effect can be obtained by using an ester.

【0030】なお、本実施例および比較例では正極にL
iCoO2を用いたが、他のリチウム含有金属酸化物を
用いた場合もほぼ同様な効果が得られる。
In this embodiment and the comparative example, the positive electrode is L
Although iCoO 2 is used, almost the same effect can be obtained when another lithium-containing metal oxide is used.

【0031】[0031]

【発明の効果】以上のように本発明の製造法によれば、
サイクル寿命末期に負極上に析出した金属リチウムを熱
的に不活性化することが可能であり、サイクル寿命末期
においても安全性に優れた非水電解液二次電池を提供す
ることができる。
As described above, according to the production method of the present invention,
It is possible to thermally inactivate metallic lithium deposited on the negative electrode at the end of the cycle life, and it is possible to provide a non-aqueous electrolyte secondary battery having excellent safety even at the end of the cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulation Packing 4 Electrode Plate Group 5 Positive Electrode Lead 6 Negative Electrode Lead 7 Insulation Ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akikatsu Morita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウム含有金属酸化物からなる正極と、
リチウムをインターカレート/デインターカレートし得
る炭素材からなる負極と、非水電解液とを備えた非水電
解液二次電池の製造法であり、 エチレンカーボネートを体積比で20%〜40%含む混
合溶媒中に電解質である無機塩を溶解すると共に炭酸ガ
スを常圧下で吹き込むことにより溶解した電解液を、発
電要素を収納した電池缶内に一定量注液する非水電解液
二次電池の製造法。
1. A positive electrode comprising a lithium-containing metal oxide,
A method for producing a non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolyte, wherein ethylene carbonate is contained in a volume ratio of 20% to 40%. % A non-aqueous electrolyte secondary solution that dissolves an inorganic salt that is an electrolyte in a mixed solvent containing carbon dioxide and injects a fixed amount of the dissolved electrolyte solution into a battery can containing a power generation element by blowing carbon dioxide gas under normal pressure. Battery manufacturing method.
【請求項2】上記非水電解液の溶媒がエチレンカーボネ
ートと、鎖状カーボネートまたは脂肪族カルボン酸エス
テルの中の少なくとも一種を含む混合溶媒である請求項
1記載の非水電解液二次電池の製造法。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the solvent of the non-aqueous electrolyte is a mixed solvent containing ethylene carbonate and at least one of a chain carbonate and an aliphatic carboxylic acid ester. Manufacturing method.
【請求項3】上記鎖状カーボネートがジエチルカーボネ
ートあるいはエチルメチルカーボネートである請求項2
記載の非水電解液二次電池の製造法。
3. The chain carbonate is diethyl carbonate or ethyl methyl carbonate.
A method for producing the non-aqueous electrolyte secondary battery described.
JP7024132A 1995-02-13 1995-02-13 Manufacture of nonaqueous electrolyte secondary battery Pending JPH08222269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7024132A JPH08222269A (en) 1995-02-13 1995-02-13 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7024132A JPH08222269A (en) 1995-02-13 1995-02-13 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH08222269A true JPH08222269A (en) 1996-08-30

Family

ID=12129791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7024132A Pending JPH08222269A (en) 1995-02-13 1995-02-13 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH08222269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123870A (en) * 1998-10-19 2000-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123870A (en) * 1998-10-19 2000-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JP2002117895A (en) Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JPH04328278A (en) Nonaqueous electrolyte secondary battery
WO1992020112A1 (en) Nonaqueous electrolyte secondary battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3885227B2 (en) Non-aqueous secondary battery
JP3512846B2 (en) Non-aqueous electrolyte battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JP3493962B2 (en) Lithium ion secondary battery
JP3456771B2 (en) Non-aqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH08222269A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP4795509B2 (en) Non-aqueous electrolyte battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JPH08306391A (en) Nonaqueous electrolyte secondary battery
JP2000188132A5 (en)
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP2003086243A (en) Manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery