JPH08220050A - Electrolyte analyzer - Google Patents

Electrolyte analyzer

Info

Publication number
JPH08220050A
JPH08220050A JP2010895A JP2010895A JPH08220050A JP H08220050 A JPH08220050 A JP H08220050A JP 2010895 A JP2010895 A JP 2010895A JP 2010895 A JP2010895 A JP 2010895A JP H08220050 A JPH08220050 A JP H08220050A
Authority
JP
Japan
Prior art keywords
concentration
internal standard
standard solution
solution
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010895A
Other languages
Japanese (ja)
Inventor
Noriko Yoshioka
範子 吉岡
Naoto Oki
直人 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010895A priority Critical patent/JPH08220050A/en
Publication of JPH08220050A publication Critical patent/JPH08220050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE: To use one kind of sample as a high- and lowconcentration solutions for plotting calibration curve and an internal standard solution so as to easily change the concentration ranges of the solutions for plotting calibration curve and the internal standard solution by changing the rate of dilution of the internal standard solution. CONSTITUTION: An internal standard solution used as a reagent is used as a low-concentration solution for plotting calibration curve and a solution obtained by diluting the internal standard solution at a rate of dilution of 1.5-3.0 is used as a low-concentration curve for plotting calibration curve. Therefore, only three kinds of solutions of the internal standard solution, diluted internal standard solution, and comparison electrode solution are required. Namely, a calibration curve is plotted by automatically setting the concentration of the low- concentration solution by inputting the rate of dilution of the internal standard solution on the screen of a CRT. Then, by alternately measuring the diluted sample of a specimen and internal standard solution, the concentration of the specimen is calculated from the slope sensitivity and the potential difference between the internal standard solution and specimen. Therefore, no special reagent is required for plotting calibration curve and automatic calibration can be performed. In addition, the concentration range of calibration curves and the concentration of the internal standard solution can be easily changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイオン電極法による電解
質分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte analyzer by the ion electrode method.

【0002】[0002]

【従来の技術】典型的な従来の測定手順のフローチャー
トを図1に示す。従来技術では検量線の作成は、検量線
作成用低濃度液,高濃度液の2種類の試薬を測定し行っ
ている。この方法では検体の濃度算出のために、検量線
作成用高濃度液,検量線作成用低濃度液,希釈液及び内
部標準液,比較電極液の4種類の試薬が最低必要であ
る。
2. Description of the Related Art A flow chart of a typical conventional measurement procedure is shown in FIG. In the prior art, a calibration curve is created by measuring two kinds of reagents, a low-concentration solution and a high-concentration solution for creating a calibration curve. In this method, four kinds of reagents, a high-concentration solution for preparing a calibration curve, a low-concentration solution for preparing a calibration curve, a diluting solution, an internal standard solution, and a reference electrode solution, are required at least for calculating the concentration of a sample.

【0003】[0003]

【発明が解決しようとする課題】従来技術では測定条件
を変えるためには上記した多種類の試薬,繁雑なマニュ
アル操作に多大の時間を要した。
In the prior art, in order to change the measurement conditions, it took a great deal of time for the above-mentioned various kinds of reagents and complicated manual operation.

【0004】本発明の目的は検量線濃度範囲・内部標準
液濃度変更の簡便化,試薬管理の簡便化及びルーチンコ
ストの低減を図ることにある。
An object of the present invention is to simplify the change of the calibration curve concentration range / internal standard solution concentration, the reagent management, and the routine cost reduction.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するた
め、本発明は電位ドリフト補正用内部標準液の試薬の希
釈倍率を変える。
To achieve the above object, the present invention changes the dilution ratio of the reagent of the internal standard solution for correcting potential drift.

【0006】[0006]

【作用】本発明は、電位ドリフト補正用内部標準液の希
釈倍率を変えることにより、1種類の試薬が検量線作成
用高濃度液,検量線作成用低濃度液及び内部標準液を兼
ね、検量線濃度範囲及び内部標準液濃度の変更が容易に
できる。
According to the present invention, by changing the dilution ratio of the internal standard solution for correcting potential drift, one kind of reagent serves as a high-concentration solution for preparing a calibration curve, a low-concentration solution for preparing a calibration curve, and an internal standard solution. It is possible to easily change the linear concentration range and the concentration of the internal standard solution.

【0007】[0007]

【実施例】本発明の第一の実施例は臨床用電解質分析装
置である。測定手順のフローチャートを図2に、系統図
を図3に示した。検体分注用ノズル1,希釈槽2,ナト
リウム・カリウム・塩素イオン三項目一体電極3,比較
電極4,シッパーシリンジ5,希釈液シリンジ7,一体
電極用二方電磁弁8,比較電極液用二方電磁弁9,シッ
パーシリンジ吸引用二方電磁弁10,シッパーシリンジ
廃液用二方電磁弁11,希釈液吐出用二方電磁弁14,
希釈液吸引用二方電磁弁15,比較電極液ボトル16,
希釈液ボトル18,内部標準液吐出用二方電磁弁19,
内部標準液シリンジ20,内部標準液吸引用二方電磁弁
21,内部標準液ボトル22より構成される。イオン選
択性電極の起電力は数1によって表される。
EXAMPLE A first example of the present invention is a clinical electrolyte analyzer. The flowchart of the measurement procedure is shown in FIG. 2, and the system diagram is shown in FIG. Sample dispensing nozzle 1, dilution tank 2, sodium / potassium / chlorine ion three-item integrated electrode 3, reference electrode 4, sipper syringe 5, diluent syringe 7, two-way solenoid valve for integrated electrode 8, two for reference electrode liquid One-way solenoid valve 9, two-way solenoid valve 10 for sipper syringe suction, two-way solenoid valve 11 for sipper syringe waste liquid, two-way solenoid valve 14 for diluting liquid discharge,
Two-way solenoid valve for diluting liquid suction, reference electrode liquid bottle 16,
Diluent bottle 18, two-way solenoid valve for discharging internal standard solution 19,
It is composed of an internal standard solution syringe 20, an internal standard solution suction two-way solenoid valve 21, and an internal standard solution bottle 22. The electromotive force of the ion-selective electrode is represented by Equation 1.

【0008】[0008]

【数1】 E=E0+SL・logC …(数1) E :測定電位 E0 :基準電位 SL:スロープ感度 C :濃度 血液中電解質測定の場合、臨床医の側からは、測定精度
として1%以内であることが要求されており、これは、
例えば、血清中のナトリウムイオンの測定の場合では、
正常範囲(基準範囲)が135〜146mmol/l 前後
であるため±1.4mmol/l以内である。従って、装置
由来の測定誤差は少なくとも±0.5mmol/l 以内で
あることが要求される。この±0.5mmol/lの誤差は
起電力に換算すると数2より±0.1mV 以内である。
[Equation 1] E = E 0 + SL·logC (Equation 1) E: Measurement potential E 0 : Reference potential SL: Slope sensitivity C: Concentration In the case of blood electrolyte measurement, from the clinician side, the measurement accuracy is 1 % Is required, which is
For example, in the case of measuring sodium ion in serum,
Since the normal range (reference range) is around 135 to 146 mmol / l, it is within ± 1.4 mmol / l. Therefore, the measurement error due to the device is required to be at least ± 0.5 mmol / l or less. The error of ± 0.5 mmol / l is within ± 0.1 mV from Eq. 2 when converted to electromotive force.

【0009】[0009]

【数2】 [Equation 2]

【0010】数3よりスロープ感度が60mV/decade
の時、高濃度域試料として電位補正用内部標準液を用い
た場合、検量線低濃度液(120mmol/l )と高濃度
液(140mmol/l)との起電力の差は4.02mV
である。
From equation 3, slope sensitivity is 60 mV / decade
When the internal standard solution for electric potential correction was used as the high-concentration range sample, the difference in electromotive force between the calibration curve low-concentration solution (120 mMol / l) and the high-concentration solution (140 mmol / l) was 4.02 mV.
Is.

【0011】[0011]

【数3】 (Equation 3)

【0012】また、この時の検量線低濃度液と高濃度液
の比は数4より1.31 となる。
The ratio of the low concentration liquid to the high concentration liquid in the calibration curve at this time is 1.31 from the equation (4).

【0013】[0013]

【数4】 [Equation 4]

【0014】同様にカリウムイオン,クロールイオンに
ついて必要な上記の濃度比が算出できる。それぞれの装
置由来の測定誤差を±0.05mmol/l,±0.5mmol
/lと仮定するとカリウムイオン,クロールイオンそれ
ぞれの検量線高濃度液と低濃度液の比は1.26,1.3
9となる。このことからナトリウム,カリウム,クロー
ルイオンを同時に測定する場合、検量線低濃度液と高濃
度液の希釈倍率の比は、1.39以上となることが必要
であリ、本発明では希釈倍率の比を1.5に設定した。
なお、高濃度液の希釈倍率は1であるため、最低の有効
希釈倍率は1.5になる。また、検量線低濃度の下限値
は、安定した直線範囲が得られる濃度を検討した結果よ
り、ナトリウムイオン,カリウムイオン,クロールイオ
ンでそれぞれ30mmol/l,1mmol/l,30mmol
/l であり、また、内部標準液のナトリウム,カリウ
ム,クロールイオンの濃度が140.0,5.0,100
mmol/lであることから、クロールの下限値を限界と
考え、希釈倍率の上限は3倍とした。本発明で用いる試
薬は内部標準液が検量線高濃度液を兼ね、また内部標準
液を希釈したものを検量線低濃度液とする。すなわち、
必要とする試薬は内部標準液,希釈液,比較電極液の3
種類である。CRTの画面より任意の内部標準液希釈倍
率を入力することによって検量線作成用低濃度液の濃度
を自動設定し検量線を作成する。検体の希釈試料と内部
標準液が交互に測定される。検体の分注量は、20μ
l、希釈液が580μlで希釈倍率は30倍固定であ
る。検体濃度はスロープ感度と内部標準液と検体の電位
差から算出される。用いた試薬の組成を表1に、血清用
希釈倍率設定条件を表2に示す。
Similarly, the required concentration ratios described above for potassium ions and chlor ions can be calculated. Measurement error due to each device is ± 0.05mmol / l, ± 0.5mmol
Assuming 1 / l, the calibration curves for potassium ion and chlorion ion are respectively 1.26 and 1.3 for the high concentration liquid and the low concentration liquid.
It becomes 9. From this fact, when simultaneously measuring sodium, potassium and chlorion, the ratio of the dilution ratio of the calibration curve low concentration liquid and the high concentration liquid must be 1.39 or more. The ratio was set to 1.5.
Since the dilution ratio of the high concentration liquid is 1, the minimum effective dilution ratio is 1.5. In addition, the lower limit of the calibration curve low concentration is 30 mMol / l, 1 mMol / l, 30 mMol for sodium ion, potassium ion, and chlorion ion, respectively, from the results of studying the concentration that can obtain a stable linear range.
/ L, and the sodium, potassium, and chlorion concentrations of the internal standard solution are 140.0, 5.0, 100.
Since it is mmol / l, the lower limit of chlor was considered to be the limit, and the upper limit of the dilution ratio was set to 3 times. In the reagent used in the present invention, the internal standard solution also serves as the high-concentration-calibration-concentration solution, and the diluted internal standard solution is used as the low-calibration-curve solution. That is,
The required reagents are the internal standard solution, diluent, and reference electrode solution.
It is a kind. By inputting an arbitrary dilution ratio of the internal standard solution on the screen of the CRT, the concentration of the low-concentration liquid for preparing the calibration curve is automatically set and the calibration curve is prepared. The diluted sample of the sample and the internal standard solution are measured alternately. Dispense amount of sample is 20μ
1, the diluent was 580 μl, and the dilution ratio was fixed at 30 times. The sample concentration is calculated from the slope sensitivity and the potential difference between the internal standard solution and the sample. The composition of the reagents used is shown in Table 1, and the dilution factor setting conditions for serum are shown in Table 2.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】本発明の第二の実施例は、内部濃縮液の希
釈倍率を変えることによって任意に検量線作成用試薬の
濃度を設定することができる臨床用電解質分析装置であ
る。測定手順のフローチャートを図4に、流路図を図5
に示した。流路は検体分注用ノズル1,希釈槽2,ナト
リウム・カリウム・塩素イオン三項目一体電極3,比較
電極4,シッパーシリンジ5,内部濃縮液シリンジ6,
希釈液シリンジ7,一体電極用二方電磁弁8,比較電極
液用二方電磁弁9,シッパーシリンジ吸引用二方電磁弁
10,シッパーシリンジ廃液用二方電磁弁11,内部濃
縮液吐出用二方電磁弁12,内部濃縮液吸引用二方電磁
弁13,希釈液吐出用二方電磁弁14,希釈液吸引用二
方電磁弁15,比較電極液ボトル16,内部濃縮液ボト
ル17,希釈液ボトル18,内部標準液吐出用二方電磁
弁19,内部標準液シリンジ20,内部標準液吸引用二
方電磁弁21,内部標準液ボトル22より構成される。
The second embodiment of the present invention is a clinical electrolyte analyzer capable of arbitrarily setting the concentration of the calibration curve producing reagent by changing the dilution ratio of the internal concentrated liquid. The flow chart of the measurement procedure is shown in FIG. 4, and the flow path diagram is shown in FIG.
It was shown to. The flow path is a sample dispensing nozzle 1, a diluting tank 2, sodium / potassium / chlorine ion three-item integrated electrode 3, a reference electrode 4, a sipper syringe 5, an internal concentrate syringe 6,
Diluent syringe 7, two-way solenoid valve for integrated electrode 8, two-way solenoid valve for reference electrode solution 9, two-way solenoid valve for suction of sipper syringe 10, two-way solenoid valve for waste of sipper syringe 11, discharge of internal concentrated solution One-way solenoid valve 12, two-way solenoid valve for sucking internal concentrated liquid 13, two-way solenoid valve for discharging diluting liquid 14, two-way solenoid valve for sucking diluted liquid 15, reference electrode liquid bottle 16, internal concentrated liquid bottle 17, diluting liquid A bottle 18, a two-way solenoid valve 19 for discharging an internal standard solution, an internal standard solution syringe 20, a two-way solenoid valve 21 for sucking an internal standard solution, and an internal standard solution bottle 22.

【0018】CRTの画面より任意の内部濃縮液希釈倍
率を入力することによって検量線作成用低濃度液,検量
線作成用高濃度液の濃度を自動設定し検量線を作成す
る。検体の希釈試料と内部標準液が交互に測定される。
検体の分注量は、20μl、希釈液が580μlで希釈
倍率は30倍固定である。検体濃度はスロープ感度と内
部標準液と検体の電位差から算出される。用いた試薬の
組成を表3に示す。
By inputting an arbitrary dilution ratio of the internal concentrate on the CRT screen, the concentrations of the low-concentration liquid for preparing the calibration curve and the high-concentration liquid for preparing the calibration curve are automatically set to prepare the calibration curve. The diluted sample of the sample and the internal standard solution are measured alternately.
The amount of the sample dispensed is 20 μl, the diluent is 580 μl, and the dilution ratio is fixed at 30 times. The sample concentration is calculated from the slope sensitivity and the potential difference between the internal standard solution and the sample. Table 3 shows the composition of the reagents used.

【0019】[0019]

【表3】 [Table 3]

【0020】血清用希釈倍率設定条件を表4に示す。Table 4 shows the conditions for setting the dilution ratio for serum.

【0021】[0021]

【表4】 [Table 4]

【0022】例えば、ナトリウムイオン項目では112
〜168mmol/l の濃度範囲で検量線を作成し、14
0mmol/l の内部標準液との電位差から検体の濃度が
算出される。同様に尿用希釈倍率設定条件を表5に示
す。
For example, for sodium ion items, 112
Create a calibration curve in the concentration range of ~ 168 mmol / l, and
The concentration of the sample is calculated from the potential difference from the internal standard solution of 0 mmol / l. Similarly, Table 5 shows the conditions for setting the dilution ratio for urine.

【0023】[0023]

【表5】 [Table 5]

【0024】血清用検量線に比べナトリウムイオン項目
は84〜280mmol/l と濃度範囲を広げた。
Compared with the calibration curve for serum, the concentration range of sodium ion items was expanded to 84 to 280 mmol / l.

【0025】本発明の第3の実施例は校正濃度範囲を固
定あるいは任意のいずれかを設定できる臨床用電解質分
析装置であり、流路図を図6に、測定手順のフローチャ
ートを図7に示す。流路は検体分注用ノズル1,希釈槽
2,ナトリウム・カリウム・塩素イオン三項目一体電極
3,比較電極4,シッパーシリンジ5,内部濃縮液シリ
ンジ6,希釈液シリンジ7,一体電極用二方電磁弁8,
比較電極液用二方電磁弁9,シッパーシリンジ吸引用二
方電磁弁10,シッパーシリンジ廃液用二方電磁弁1
1,内部濃縮液吐出用二方電磁弁12,内部濃縮液吸引
用二方電磁弁13,希釈液吐出用二方電磁弁14,希釈
液吸引用二方電磁弁15,比較電極液ボトル16,内部
濃縮液ボトル17,希釈液ボトル18より構成される。
CRTの画面より任意の内部濃縮液希釈倍率を入力する
ことによって検量線作成用低濃度液,検量線作成用高濃
度液,内部標準液の濃度を自動設定し検量線を作成す
る。検体の希釈試料と内部標準液が交互に測定される。
検体の分注量は、20μl、希釈液が580μlで希釈
倍率は30倍固定である。検体濃度はスロープ感度と内
部標準液と検体の電位差から算出される。用いた試薬の
組成を表6に示す。
The third embodiment of the present invention is a clinical electrolyte analyzer in which the calibration concentration range can be fixed or arbitrary. The flow chart is shown in FIG. 6 and the flow chart of the measurement procedure is shown in FIG. . The flow path is a sample dispensing nozzle 1, a diluting tank 2, a sodium / potassium / chlorine ion three-item integrated electrode 3, a reference electrode 4, a sipper syringe 5, an internal concentrated liquid syringe 6, a diluted liquid syringe 7, and a two-way integrated electrode. Solenoid valve 8,
Two-way solenoid valve for reference electrode liquid 9, two-way solenoid valve for sipper syringe suction, two-way solenoid valve for sipper syringe waste liquid 1
1, two-way solenoid valve for discharging internal concentrated liquid 12, two-way solenoid valve for sucking internal concentrated liquid 13, two-way electromagnetic valve for diluting liquid discharging 14, two-way solenoid valve for sucking diluting liquid 15, comparison electrode liquid bottle 16, It is composed of an internal concentrate bottle 17 and a diluent bottle 18.
By inputting an arbitrary dilution ratio of the internal concentrate on the CRT screen, the concentrations of the low-concentration solution for creating the calibration curve, the high-concentration solution for creating the calibration curve, and the internal standard solution are automatically set to create the calibration curve. The diluted sample of the sample and the internal standard solution are measured alternately.
The amount of the sample dispensed is 20 μl, the diluent is 580 μl, and the dilution ratio is fixed at 30 times. The sample concentration is calculated from the slope sensitivity and the potential difference between the internal standard solution and the sample. The composition of the reagents used is shown in Table 6.

【0026】[0026]

【表6】 [Table 6]

【0027】まず、検体の種別を血清,尿,任意の3種
のモードの中から選択する。血清,尿の場合は、表7,
表8の希釈倍率に従って自動的に検量線用高濃度液,低
濃度液,内部標準液が調整され試料の測定が行われる。
First, the type of sample is selected from among three modes, serum, urine, and arbitrary. For serum and urine, Table 7,
The high-concentration solution, low-concentration solution, and internal standard solution for the calibration curve are automatically adjusted according to the dilution ratio in Table 8 to measure the sample.

【0028】[0028]

【表7】 [Table 7]

【0029】[0029]

【表8】 [Table 8]

【0030】また、任意を選択した場合は、ナトリウム
イオンでは70〜420mmol/l、カリウムイオンで
は2.5〜15mmol/l、クロールイオンでは50〜3
00mmol/l の範囲内で、どれか一つの検量線用高濃
度液,低濃度液の濃度を任意に設定すると、その検量線
濃度範囲の中心に自動的に内部標準液濃度が設定され、
検体の測定が行われる。
When any is selected, 70 to 420 mmol / l for sodium ion, 2.5 to 15 mmol / l for potassium ion, and 50 to 3 for chlor ion.
If the concentration of any one of the high-concentration solution and the low-concentration solution for the calibration curve is arbitrarily set within the range of 00 mmol / l, the internal standard solution concentration is automatically set at the center of the calibration curve concentration range.
The measurement of the sample is performed.

【0031】[0031]

【発明の効果】検量線作成用試薬が不要であり、自動キ
ャリブレーションが可能である。また、検量線の濃度範
囲の変更、内部標準液濃度の変更が容易にできる。試薬
管理及びルーチンコストの低減を容易にする。
EFFECTS OF THE INVENTION A reagent for preparing a calibration curve is unnecessary, and automatic calibration is possible. Further, it is possible to easily change the concentration range of the calibration curve and the concentration of the internal standard solution. Facilitates reagent management and reduced routine costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の測定手順のフローチャート。FIG. 1 is a flowchart of a conventional measurement procedure.

【図2】本発明の第一の実施例のフローチャート。FIG. 2 is a flowchart of the first embodiment of the present invention.

【図3】本発明の第一の実施例の装置の系統図。FIG. 3 is a systematic diagram of an apparatus according to the first embodiment of the present invention.

【図4】本発明の第二の実施例の測定手順のフローチャ
ート。
FIG. 4 is a flowchart of the measurement procedure of the second embodiment of the present invention.

【図5】本発明の第二の実施例の装置の系統図。FIG. 5 is a system diagram of an apparatus according to a second embodiment of the present invention.

【図6】本発明の第三の実施例の装置の系統図。FIG. 6 is a system diagram of an apparatus according to a third embodiment of the present invention.

【図7】本発明の第三の実施例の測定手順のフローチャ
ート。
FIG. 7 is a flowchart of the measurement procedure of the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…検体分注用ノズル、2…希釈槽、3…ナトリウム・
カリウム・塩素イオン三項目一体電極、4…比較電極、
5…シッパーシリンジ、6…内部濃縮液シリンジ、7…
希釈液シリンジ、8…一体電極用二方電磁弁、9…比較
電極液用二方電磁弁、10…シッパーシリンジ吸引用二
方電磁弁、11…シッパーシリンジ廃液用二方電磁弁、
12…内部濃縮液吐出用二方電磁弁、13…内部濃縮液
吸引用二方電磁弁、14…希釈液吐出用二方電磁弁、1
5…希釈液吸引用二方電磁弁、16…比較電極液ボト
ル、17…内部濃縮液ボトル、18…希釈液ボトル、1
9…内部標準液吐出用二方電磁弁、20…内部標準液シ
リンジ、21…内部標準液吸引用二方電磁弁、22…内
部標準液ボトル。
1 ... Nozzle for sample dispensing, 2 ... Diluting tank, 3 ... Sodium
Potassium / chlorine ion three-item integrated electrode, 4 ... comparison electrode,
5 ... Shipper syringe, 6 ... Internal concentrate syringe, 7 ...
Diluent syringe, 8 ... Two-way solenoid valve for integrated electrode, 9 ... Two-way solenoid valve for reference electrode solution, 10 ... Two-way solenoid valve for suction of sipper syringe, 11 ... Two-way solenoid valve for waste of sipper syringe,
12 ... Two-way solenoid valve for discharging internal concentrated solution, 13 ... Two-way solenoid valve for sucking internal concentrated solution, 14 ... Two-way solenoid valve for discharging diluted solution, 1
5 ... Two-way solenoid valve for sucking diluent, 16 ... Comparative electrode solution bottle, 17 ... Internal concentrate bottle, 18 ... Diluent bottle, 1
9 ... Two-way solenoid valve for discharging internal standard solution, 20 ... Internal standard solution syringe, 21 ... Two-way solenoid valve for sucking internal standard solution, 22 ... Internal standard solution bottle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希釈電位差法による電解質分析装置におい
て、電位ドリフト補正用内部標準液により、検量線作成
用高濃度液,低濃度液及び内部標準液を調製することを
特徴とする電解質分析装置。
1. An electrolyte analyzer according to the dilution potential difference method, characterized in that a high-concentration solution, a low-concentration solution and an internal standard solution for preparing a calibration curve are prepared by an internal standard solution for potential drift correction.
【請求項2】請求項1において、希釈倍率を1.5ない
し3.0と変えることにより、検量線作成用高濃度液と
低濃度液の濃度範囲内で任意に内部標準液の濃度が設定
可能な電解質分析装置。
2. The concentration of the internal standard solution can be arbitrarily set within the concentration range of the high-concentration liquid and the low-concentration liquid for preparing the calibration curve by changing the dilution ratio from 1.5 to 3.0. Possible electrolyte analyzer.
【請求項3】請求項1において、校正濃度範囲を固定あ
るいは任意設定のいずれかを選択できる機能をもつ電解
質分析装置。
3. The electrolyte analyzer according to claim 1, which has a function of selecting either fixed or arbitrary setting of the calibration concentration range.
JP2010895A 1995-02-08 1995-02-08 Electrolyte analyzer Pending JPH08220050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010895A JPH08220050A (en) 1995-02-08 1995-02-08 Electrolyte analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010895A JPH08220050A (en) 1995-02-08 1995-02-08 Electrolyte analyzer

Publications (1)

Publication Number Publication Date
JPH08220050A true JPH08220050A (en) 1996-08-30

Family

ID=12017932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010895A Pending JPH08220050A (en) 1995-02-08 1995-02-08 Electrolyte analyzer

Country Status (1)

Country Link
JP (1) JPH08220050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057367A (en) * 2005-08-24 2007-03-08 Hitachi High-Technologies Corp Method and device for measuring electrolyte
JP2018017543A (en) * 2016-07-26 2018-02-01 株式会社日立ハイテクノロジーズ Electrolyte concentration measuring device
WO2023013222A1 (en) * 2021-08-03 2023-02-09 株式会社日立ハイテク Electrolyte analysis apparatus and analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057367A (en) * 2005-08-24 2007-03-08 Hitachi High-Technologies Corp Method and device for measuring electrolyte
JP4620551B2 (en) * 2005-08-24 2011-01-26 株式会社日立ハイテクノロジーズ Electrolyte measuring device
JP2018017543A (en) * 2016-07-26 2018-02-01 株式会社日立ハイテクノロジーズ Electrolyte concentration measuring device
WO2023013222A1 (en) * 2021-08-03 2023-02-09 株式会社日立ハイテク Electrolyte analysis apparatus and analysis method

Similar Documents

Publication Publication Date Title
Jones et al. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures
US8871080B2 (en) Management system for an electrolyte analyzer
US3551109A (en) Method and apparatus for the titration of chloride and bicarbonate in serum
EP2151682B1 (en) Substrate concentration measurement method and substrate concentration measurement apparatus
JPH08220050A (en) Electrolyte analyzer
US5288374A (en) Method and apparatus for electrochemical analysis and an aqueous solution for use therein
JP2873170B2 (en) Method of mixing two types of starting solutions and apparatus for performing the same
JPS62294959A (en) Measurement of ion activity
JP3206999B2 (en) Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same
CN111788479B (en) Automatic analysis device and automatic analysis method
US20120228158A1 (en) Method and Apparatus for Electrolyte Measurements
CA2593815A1 (en) Amperometric sensor comprising counter electrode isolated from liquid electrolyte
JP3311113B2 (en) Analysis equipment
JP6671213B2 (en) Automatic analyzer and automatic analysis method
JPH0627723B2 (en) Electrode method for measuring electrolytes in blood or urine
Malmstadt et al. Determination of chloride in blood serum, plasma, or other biologic fluids by a new rapid precision method
JPH03140844A (en) Multi-item analysis of minute sample
JPS6348016B2 (en)
WO2023013222A1 (en) Electrolyte analysis apparatus and analysis method
JPS63732B2 (en)
JPH06265512A (en) Method for calibrating electrolyte analyzer
WO2022146570A1 (en) Simultaneous and selective washing and detection in ion selective electrode analyzers
JPH0572168A (en) Analysis device for electrolyte
JPH1062375A (en) Electrolytic analyzer
JPH05209857A (en) Ion measuring sample diluent and ion measuring method