JPS6348016B2 - - Google Patents

Info

Publication number
JPS6348016B2
JPS6348016B2 JP13625182A JP13625182A JPS6348016B2 JP S6348016 B2 JPS6348016 B2 JP S6348016B2 JP 13625182 A JP13625182 A JP 13625182A JP 13625182 A JP13625182 A JP 13625182A JP S6348016 B2 JPS6348016 B2 JP S6348016B2
Authority
JP
Japan
Prior art keywords
sample
pump
standard
solution
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13625182A
Other languages
Japanese (ja)
Other versions
JPS5927246A (en
Inventor
Katsuhito Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13625182A priority Critical patent/JPS5927246A/en
Publication of JPS5927246A publication Critical patent/JPS5927246A/en
Publication of JPS6348016B2 publication Critical patent/JPS6348016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Description

【発明の詳細な説明】 本発明は、標準添加法を自動的に行ない得る分
析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analytical method in which a standard addition method can be performed automatically.

原子吸光分析法は、プラズマ発光法や比色法に
比べ共存物による干渉が比較的少ないと言われて
いるが、試料の粘度や比重の差等に基づく物理干
渉、難分解化合物の生成に基づく化学干渉および
低イオン化電位の共存に基づくイオン干渉などが
生ずる。
Atomic absorption spectrometry is said to have relatively little interference from coexisting substances compared to plasma emission and colorimetric methods; Chemical interference and ion interference due to the coexistence of low ionization potential occur.

このような干渉がある試料の場合、しばしば標
準添加法を適用することによつて測定誤差を低減
できる。従来の標準添加法は、試料毎に検量線を
作成するために、容器を複数個用意し、それらの
すべてに同量の特定未知試料を入れ、次に各容器
に既知濃度の標準試料液を所定濃度ずつ変わるよ
うに加える。これらの容器に水を加えて全量を一
定量にし、原子吸光測定を行ない、濃度と吸収値
の関係線を作り、外挿法により分析成分含有量を
求める。
For samples with such interference, measurement errors can often be reduced by applying the standard addition method. In the conventional standard addition method, in order to create a calibration curve for each sample, multiple containers are prepared, the same amount of specific unknown sample is placed in all of them, and then a standard sample solution of known concentration is added to each container. Add so that the predetermined concentration changes. Add water to these containers to make the total volume constant, perform atomic absorption measurements, create a relationship line between concentration and absorption value, and use extrapolation to determine the content of the analyzed components.

標準添加法は、複数の容器に一連の溶液を作製
しなければならないため、能率的な測定を行なう
ことができない。
The standard addition method cannot perform efficient measurements because a series of solutions must be prepared in multiple containers.

本発明の目的は、一連の標準添加試料を複数の
容器を用いて作る必要がなく、分析作業を能率的
に行ない得る自動標準添加分析法を提供すること
にある。
An object of the present invention is to provide an automatic standard addition analysis method that eliminates the need to prepare a series of standard addition samples using a plurality of containers and allows efficient analysis work.

本発明の自動標準添加分析法は、標準試料と希
釈液との第1混合液を流路内で得、かつこの第1
混合液に被検試料液を一定割合で混合して第2混
合液を得、第2混合液を分析部へ導くのである
が、標準試料と希釈液との混合割合は、同じ被検
試料液が供給されている間に自動的に複数段階に
変えるのである。
The automatic standard addition analysis method of the present invention obtains a first mixed solution of a standard sample and a diluent in a flow path, and
A second mixed solution is obtained by mixing the mixed solution with the test sample solution at a fixed ratio, and the second mixed solution is led to the analysis section. It automatically changes to multiple stages while it is being supplied.

第1図は本発明の一実施例の概略構成を示す図
で、フレーム原子吸光分析計に適用した例であ
る。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention, and is an example applied to a flame atomic absorption spectrometer.

ポンプ15によつて特定の被検液を供給してい
る間に、ポンプ12は複数段階に流量が変わり、
標準試料液の送液量が段階的に変化する。ポンプ
12がモータの回転によつて往復動されるポンプ
やしごきポンプであるなら、マイクロコンピユー
タを備えた制御部によつてモータの回転数を時間
に応じて変化して送液量を変える。ポンプ13,
14および15は使用時一定流量に保たれる。希
釈液10は、ポンプ13により送液され、ミキサ
ー19で標準試料と混合され、試料分取容器16
に送られる。試料分取容器16は、中央部より、
送液された試料が導入され、必要量だけ、ポンプ
14により送液され、余分量はオーバーフロー
し、ドレイン17に排出されるようになつてい
る。被検試料液又はキヤリア試薬11は、ポンプ
15により送液され、ポンプ14により送液され
た希釈標準試料とミキサー18で混合される。こ
の混合液は試料分取容器16と同じ構造を持つ試
料吸入容器8に導入され、その中央より、ネブラ
イザ4により、ネブライザチユーブ5より吸引さ
れ、バーナチヤンバ3およびバーナヘツド2を通
つて炎中に導入され、原子吸光光度計1により測
定される。そして、試料吸入容器8でオーバーフ
ローした余分液は、ドレイン17に排出される。
While the pump 15 is supplying a specific test liquid, the pump 12 changes its flow rate in multiple stages,
The amount of standard sample solution sent changes stepwise. If the pump 12 is a pump or a straining pump that is reciprocated by the rotation of a motor, a controller equipped with a microcomputer changes the number of revolutions of the motor according to time to change the amount of liquid sent. pump 13,
14 and 15 are kept at a constant flow rate during use. The diluent 10 is sent by a pump 13, mixed with a standard sample by a mixer 19, and then transferred to a sample collection container 16.
sent to. From the center of the sample collection container 16,
The pumped sample is introduced and the required amount is sent by the pump 14, and the excess amount overflows and is discharged into the drain 17. The test sample liquid or carrier reagent 11 is fed by a pump 15 and mixed with a diluted standard sample fed by a pump 14 in a mixer 18 . This mixed liquid is introduced into a sample suction container 8 having the same structure as the sample collection container 16, and is sucked from the center of the container by a nebulizer tube 5 by a nebulizer 4, and introduced into the flame through the burner chamber 3 and burner head 2. , measured by atomic absorption photometer 1. Then, the excess liquid that overflowed in the sample suction container 8 is discharged to the drain 17.

第1図の如き構成を利用した種々の干渉除去操
作を次に説明する。
Various interference removal operations using the configuration shown in FIG. 1 will now be described.

(a) 検量線作成と単なる希釈 被検試料11の代りにキヤリア液としての蒸
留水を用い、標準試料液9としては所定高濃度
のものを用いる。希釈液10は蒸留水である。
ポンプ12の流量を1倍、2倍…に変化させ
る。これにより検量線が作成される。次に、試
料をセツトし、測定する。この場合、流量を何
倍の位置で測定しかたを記憶しておくことによ
り、濃度を演算することができる。
(a) Calibration curve creation and simple dilution Distilled water is used as a carrier liquid instead of the test sample 11, and a standard sample solution 9 with a predetermined high concentration is used. Diluent 10 is distilled water.
The flow rate of the pump 12 is changed by 1, 2, and so on. This creates a calibration curve. Next, the sample is set and measured. In this case, the concentration can be calculated by memorizing the method of measuring the flow rate at what times the flow rate is measured.

(b) 検量線作成と干渉抑制剤添加 キヤリア試薬11に干渉抑制剤(例えばリン
酸、ケイ酸又はアルミニウムを含む可能性のあ
る試料中のカルシウムなどのアルカリ土類元素
の測定の場合、ランタンを用いる。)を用いる。
検量線の作成方法(a)の場合と同じであるが、標
準液および試料の両方に干渉抑制剤が一定量混
合される。これにより、試料に干渉物質が含ま
れていても、標準液による検量線法を使用する
ことができる。
(b) Creating a calibration curve and adding an interference suppressor Add an interference suppressor (for example, lanthanum in the case of measuring alkaline earth elements such as calcium in a sample that may contain phosphoric acid, silicic acid, or aluminum) to the carrier reagent 11. ) is used.
This is the same as in method (a) for creating a calibration curve, but a fixed amount of interference suppressor is mixed into both the standard solution and the sample. Thereby, even if the sample contains an interfering substance, the calibration curve method using the standard solution can be used.

(c) 検量線作成と成分一致 キヤリア試薬11に試料に含まれる主成分溶
液を用いる。この時、主成分溶液の濃度は試料
中の成分より濃くしておく。検量線の作成方法
は(a)の場合と同じであるが、標準液および試料
の両方に試料の主成分が一定量混合される。標
準液と試料の違いによる主成分の差が小さくな
るように、キヤリア試薬として用いられる主成
分溶液の濃度を濃くしておく。もし必要なら
ば、希釈液10にもキヤリア試薬に用いた主成
分溶液を用いる。
(c) Calibration curve creation and component matching The main component solution contained in the sample is used as the carrier reagent 11. At this time, the concentration of the main component solution is made higher than the components in the sample. The method for creating a calibration curve is the same as in case (a), except that a fixed amount of the main component of the sample is mixed into both the standard solution and the sample. The concentration of the main component solution used as the carrier reagent is made high so that the difference in the main component due to the difference between the standard solution and the sample is reduced. If necessary, the main component solution used for the carrier reagent is also used as the diluent 10.

(d) 標準添加法 ポンプ12によつて所定高濃度の標準試料9
を送り、流路内で希釈液(蒸留水)10と流路
内で混合する。分取容器19内の混合液は被検
試料11と所定の割合で混合される。一連の第
2混合液を流路内で形成させるために、ポンプ
12を3段階に送液量変化させる。例えば、ポ
ンプの流量比を0、5、10の3段階とし、ポン
プ13の流量比を50、ポンプ14の流量比50そ
してポンプ15の流量比を50に設定する。標準
液9として100ppmの目的元素を含むものを用
いれば、標準試料液だけに基づく目的元素濃度
は、第1段階では0ppm、第2段階では5ppm、
第3段階では10ppmとなる。標準試料を段階的
に変化させている間、被検試料液11はポンプ
15によつて継続して送液されているので、ネ
ブライザ4に導かれる混合液中には、いずれの
段階においても2倍に希釈された被検試料が含
まれている。
(d) Standard addition method Standard sample 9 at a predetermined high concentration is added by pump 12.
is sent and mixed with the diluent (distilled water) 10 in the flow path. The liquid mixture in the separation container 19 is mixed with the test sample 11 at a predetermined ratio. In order to form a series of second mixed liquids within the flow path, the pump 12 changes the amount of liquid fed in three stages. For example, the flow rate ratio of the pumps is set to three levels of 0, 5, and 10, and the flow rate ratio of the pump 13 is set to 50, the flow rate ratio of the pump 14 is set to 50, and the flow rate ratio of the pump 15 is set to 50. If a standard solution 9 containing 100 ppm of the target element is used, the target element concentration based only on the standard sample solution will be 0 ppm in the first stage, 5 ppm in the second stage,
The third stage will be 10ppm. While the standard sample is being changed in stages, the test sample liquid 11 is continuously pumped by the pump 15, so that at any stage there are two Contains a test sample diluted 2 times.

3段階の混合液に基づいて得た分析データと、
被検試料液11の代りに蒸留水をセツトとして得
たデータとによつて、検量線の外挿がなされた被
検試料中の目的元素濃度が演算処理部によつて演
算され、表示部に結果が表示される。
Analytical data obtained based on the three-stage mixture,
Based on the data obtained by using distilled water instead of the test sample solution 11, the concentration of the target element in the test sample is calculated by the calculation processing section, and the concentration of the target element in the test sample is calculated by extrapolation of the calibration curve, and is displayed on the display section. The results will be displayed.

試料吸入容器8に供給される混合液の合計流量
は、ネブライザ4の吸込流量よりも多くなるよう
設定される。もし正確にこれらポンプの流量を設
定することが困難な場合、各ポンプ間の流量差を
予じめ求めておき、測定後補正すれば良い。
The total flow rate of the mixed liquid supplied to the sample suction container 8 is set to be greater than the suction flow rate of the nebulizer 4. If it is difficult to accurately set the flow rates of these pumps, the difference in flow rate between each pump may be determined in advance and corrected after measurement.

以上、述べたようなシステムを構成することに
より、原子吸光分析装置における干渉に対し、対
処できるとともに、標準試料は、一種類だけで良
く、また、測定試料の準備、容器の準備もほとん
ど不要になると同時に試料の準備において生ずる
誤差要因(例えば、器具による汚染や秤量誤差)
を除去できる効果がある。
By configuring the system as described above, it is possible to deal with interference in the atomic absorption spectrometer, only one type of standard sample is required, and there is almost no need to prepare measurement samples or containers. At the same time, error factors that occur in sample preparation (e.g., contamination by instruments and weighing errors)
It has the effect of removing.

第2図は本発明の他の実施例を示すもので、第
1図と異なる点は、ミキサー19と試料分取容器
16の間およびミキサー18と試料吸入容器8の
間にミキシングコイル20,21を設置したこと
である。このミキシングコイルの内径と長さを本
システムに合致した値に設定することにより、各
溶液の混合を一層良好にし、かつポンプの脈流を
除去することができる。この実施例では、さらに
安定した溶液混合を行なう効果がある。
FIG. 2 shows another embodiment of the present invention, and the difference from FIG. This is the result of the establishment of the . By setting the inner diameter and length of this mixing coil to values that match the present system, it is possible to improve the mixing of each solution and eliminate the pulsating flow of the pump. This embodiment has the effect of more stable solution mixing.

第3図は本発明の他の実施例を示すもので、演
算機能部23およびポンプコントロール機能部2
4を有するコンピユータ22を配置している。検
量線法と標準添加法では演算方法が異なるため、
コンピユータ22を用いることは有効である。
又、ポンプ12の流量更による検量線作成等は、
ポンプコントロール機能部24により指令により
行ない、同時に演算機能部23にその指令が伝達
され、自動的に検量線を作成することができる。
又、標準添加法において各ポンプの流量をコンピ
ユータ22により正確に設定し、あるいはその流
量比をメモリーしておき、演算時に補正すること
ができる。この他、コンピユータを用いることに
より、ゼーマン原子吸光分析装置に見られるロー
ルオーバー現象(試料濃度が非常に高くなると信
号が、最大吸収より小さくなつてくる現象)をモ
ニターすることができる。それは、試料用ポンプ
12をコントロールすることにより、試料を異な
つた希釈倍率で測定することである。
FIG. 3 shows another embodiment of the present invention, in which the calculation function section 23 and the pump control function section 2
A computer 22 having 4 computers is arranged. Since the calculation methods are different between the calibration curve method and the standard addition method,
Using computer 22 is effective.
In addition, creating a calibration curve by changing the flow rate of the pump 12, etc.
This is performed in response to a command from the pump control function section 24, and at the same time, the command is transmitted to the calculation function section 23, so that a calibration curve can be automatically created.
Furthermore, in the standard addition method, the flow rate of each pump can be accurately set by the computer 22, or the flow rate ratio can be stored in memory and corrected during calculation. In addition, by using a computer, it is possible to monitor the rollover phenomenon observed in Zeeman atomic absorption spectrometers (a phenomenon in which the signal becomes smaller than the maximum absorption when the sample concentration becomes very high). That is, by controlling the sample pump 12, samples are measured at different dilution ratios.

第4図にゼーマン原子吸光分析装置で測定した
亜鉛の検量線を示す。C点までは直線であり、D
点までが曲線を示し、それ以上の濃度では、吸収
値は小さくなる。それ故、試料の測定値が0.3付
近の場合、B点とF点が考えられる。もし、B付
近の場合、希釈倍率を増すことにより吸収値は小
さくなる。例えば2倍希釈の試料を測定すればA
点付近の値を示す。これは正常な検量範囲である
ことを示している。一方、F点での吸収であつた
ならば、2倍希釈の試料を測定すると、E点付近
の値となり、これは、異常範囲である。そして、
この時、異常を示すマークに付せば良い。この様
に、少なくとも、2点以上の異なつた濃度の希釈
倍率試料を測定することにより、ロールオーバー
現象のモニターが可能である。もちろん、この方
法はコンピユータ22がなくても可能であるが、
結果の判断は分析者が行なう。この実施例では、
さらに、精度の高い検量線作成や、標準添加法測
定や自動測定が可能であるばかりでなく、ゼーマ
ン原子吸光分析装置で生ずるロールオーバー現象
のモニターもできる効果がある。
FIG. 4 shows a calibration curve for zinc measured with a Zeeman atomic absorption spectrometer. It is a straight line up to point C, and D
A curve is shown up to the point, and at higher concentrations, the absorption value becomes smaller. Therefore, when the measured value of the sample is around 0.3, points B and F are considered. If it is around B, the absorption value will become smaller by increasing the dilution factor. For example, if you measure a 2-fold diluted sample, A
Indicates the value near the point. This shows that it is within the normal calibration range. On the other hand, if the absorption occurs at point F, when a sample diluted twice is measured, the value will be around point E, which is in the abnormal range. and,
At this time, it is sufficient to attach a mark indicating an abnormality. In this way, it is possible to monitor the rollover phenomenon by measuring at least two or more dilution ratio samples with different concentrations. Of course, this method is possible without the computer 22, but
The results are judged by the analyst. In this example,
Furthermore, not only is it possible to create highly accurate calibration curves, perform standard addition method measurements, and perform automatic measurements, but it also has the advantage of being able to monitor rollover phenomena that occur in Zeeman atomic absorption spectrometers.

第5図は本発明のもう1つの実施例の概略構成
図である。所定高濃度の標準試料液9は流量可変
のポンプ12により送液される。定流量ポンプ1
4は、標準試料液9と希釈液10の和が常に一定
量となるように送液する。それ故標準試料液9の
流量が増加すると希釈液10の流量が減少し、そ
の混合液が被検試料液11と所定割合で混合さ
れ、試料吸入容器8に送られる。この実施例では
前述の実施例に比し、ポンプの数および試料分取
容器を減ずることができる。
FIG. 5 is a schematic diagram of another embodiment of the present invention. A standard sample solution 9 with a predetermined high concentration is delivered by a pump 12 with a variable flow rate. Constant flow pump 1
4, the standard sample solution 9 and the diluent solution 10 are fed so that the sum of them is always a constant amount. Therefore, when the flow rate of the standard sample liquid 9 increases, the flow rate of the diluent 10 decreases, and the mixed liquid is mixed with the test sample liquid 11 at a predetermined ratio and sent to the sample suction container 8. In this embodiment, the number of pumps and sample collection containers can be reduced compared to the previous embodiment.

第6図は試料吸入容器を省略した実施例であ
る。被検試料液11、希釈液10および標準試料
液9が混合された後の流路にポンプ14′を配置
し、その流路をネブライザノズル5に直結してい
る。この実施例では、ネブライザ4に送る混合液
の量がポンプ14′の送液量によつて決まり、か
つポンプ14′とネブライザ4とは短距離で直結
されているので、送液量はネブライザ4の吸込量
より少なくなるよう設定される。この例の場合、
被検試料11と標準試料液9の流量の和が、ポン
プ14′の送液量より同等以下に設定される。
FIG. 6 shows an embodiment in which the sample suction container is omitted. A pump 14' is disposed in a flow path after the test sample liquid 11, diluted liquid 10, and standard sample liquid 9 are mixed, and the flow path is directly connected to the nebulizer nozzle 5. In this embodiment, the amount of mixed liquid sent to the nebulizer 4 is determined by the amount of liquid sent by the pump 14', and since the pump 14' and the nebulizer 4 are directly connected over a short distance, the amount of liquid sent to the nebulizer 4 is determined by the amount of liquid sent to the nebulizer 4. The suction amount is set to be less than the suction amount. For this example,
The sum of the flow rates of the test sample 11 and the standard sample liquid 9 is set to be equal to or less than the flow rate of the pump 14'.

以上説明したように、本発明によれば、同じ被
検試料に関して段階的に目的成分の標準試料添加
量の違つた液が流路内で簡単に調製され、一連の
標準添加試料を複数の容器を用いて作る必要がな
くなる。
As explained above, according to the present invention, liquids with different standard addition amounts of target components can be easily prepared in a flow path for the same test sample in stages, and a series of standard addition samples can be stored in a plurality of containers. There is no need to use .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第5図および第6図
は、それぞれ別の本発明に基づく実施例の概略構
成を示す図であり、第4図は成分濃度と吸収感度
の関係の一例を示す図である。 8…試料吸入容器、9…標準試料液、10…希
釈液、11…被検試料液、12,13,14,1
5…ポンプ、16…試料分取容器。
1, 2, 3, 5, and 6 are diagrams showing the schematic configuration of different embodiments based on the present invention, and FIG. 4 shows the relationship between component concentration and absorption sensitivity. It is a figure showing an example. 8... Sample suction container, 9... Standard sample solution, 10... Diluent, 11... Test sample solution, 12, 13, 14, 1
5...Pump, 16...Sample collection container.

Claims (1)

【特許請求の範囲】[Claims] 1 標準試料液および希釈液を流路内に吸入して
その流路内で標準試料を希釈液との第1の混合液
を得ること、被検試料液を導入して上記第1の混
合液と上記被検試料液とを流路内にて所定の割合
で混合し第2の混合液を得ること、上記第2の混
合液を分析部に導くこと、流路内に同じ被検試料
液が供給されている間に、上記標準試料と上記希
釈液との混合割合を複数段階に変えることを含む
自動標準添加分析法。
1. Aspirating the standard sample solution and the diluent into a flow path to obtain a first mixed solution of the standard sample and the diluent in the flow path, and introducing the test sample solution to obtain the first mixed solution. and the above-mentioned test sample liquid in a flow channel at a predetermined ratio to obtain a second mixed solution, guiding the above-mentioned second mixed solution to an analysis section, and containing the same test sample solution in the flow channel. An automatic standard addition analysis method comprising changing the mixing ratio of the standard sample and the diluent in multiple steps while the standard sample and the diluent are being supplied.
JP13625182A 1982-08-06 1982-08-06 Automatic reference adding analytical method Granted JPS5927246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13625182A JPS5927246A (en) 1982-08-06 1982-08-06 Automatic reference adding analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13625182A JPS5927246A (en) 1982-08-06 1982-08-06 Automatic reference adding analytical method

Publications (2)

Publication Number Publication Date
JPS5927246A JPS5927246A (en) 1984-02-13
JPS6348016B2 true JPS6348016B2 (en) 1988-09-27

Family

ID=15170812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13625182A Granted JPS5927246A (en) 1982-08-06 1982-08-06 Automatic reference adding analytical method

Country Status (1)

Country Link
JP (1) JPS5927246A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172713B (en) * 1985-03-22 1988-12-21 Philips Nv Spectrometer
JP4393886B2 (en) * 2004-02-17 2010-01-06 株式会社日立ハイテクマニファクチャ&サービス Atomic absorption photometer
JP2007057420A (en) * 2005-08-25 2007-03-08 Ias Inc Solution supply device
WO2023123340A1 (en) * 2021-12-31 2023-07-06 PerkinElmer Instruments (Suzhou) Co., Ltd. Automatic calibration for atomic absorption spectrometer and related methods

Also Published As

Publication number Publication date
JPS5927246A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
EP2662687B1 (en) Mass analyzer and analytical method
US10978280B2 (en) Systems and methods for ICPMS matrix offset calibration
CN100408151C (en) Automated in-process isotope and mass spectrometry
EP1308708B1 (en) Sample introduction system
FI89210C (en) Gases identification procedure
JPS6348016B2 (en)
Pacquette et al. Total iodine in infant formula and nutritional products by inductively coupled plasma/mass spectrometry: First Action 2012.14
Soldevila et al. Evaluation of operational parameters affecting semiquantitative multi-elemental analysis by inductively coupled plasma mass spectrometry
US5527706A (en) Method for mixing two initial solutions
NL9100984A (en) METHOD FOR DETERMINING THE CONCENTRATION OF A SUBSTANTIAL TO BE DETERMINED USING AN ION-SELECTIVE ELECTRODE AND USING AN APPARATUS IN THIS METHOD
Carpio et al. Determination of boron and phosphorus in borophosphosilicate thin films on silicon substrates by capillary electrophoresis
Pyhtilä et al. The use of a dual mode sample introduction system for internal standardization in the determination of Hg at the ng L− 1 level by cold vapor ICP-MS
Ferrus et al. Bias-free adjustment of analytical methods to laboratory samples in routine analytical procedures
JPH06186150A (en) Method and device for detecting sample dilution error
US20060088943A1 (en) Method and apparatus for determining a concentration of a component in a mixture
Selby et al. Direct quantification of alkaloid mixtures by electrospray ionization mass spectrometry
JPH0579984A (en) Automatic analyzer
JP4393886B2 (en) Atomic absorption photometer
US11348773B2 (en) Systems and methods for ICPMS matrix offset calibration
US5146413A (en) Method for the determinate evaluation of a chemistry analyzer's combined diluting and analyzing systems
US20220308024A1 (en) Method for calibrating at least one analytic device with multiple repeated hardware components
US20240060955A1 (en) Simultaneous and selective washing and detection in ion selective electrode analyzers
JPH08220050A (en) Electrolyte analyzer
JPH03140844A (en) Multi-item analysis of minute sample
CN116559124A (en) Element measurement method based on improved multi-energy correction method