JPH1062375A - Electrolytic analyzer - Google Patents

Electrolytic analyzer

Info

Publication number
JPH1062375A
JPH1062375A JP22360596A JP22360596A JPH1062375A JP H1062375 A JPH1062375 A JP H1062375A JP 22360596 A JP22360596 A JP 22360596A JP 22360596 A JP22360596 A JP 22360596A JP H1062375 A JPH1062375 A JP H1062375A
Authority
JP
Japan
Prior art keywords
solution
sample
calibration
liquid
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22360596A
Other languages
Japanese (ja)
Inventor
Kouji Amita
孝司 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP22360596A priority Critical patent/JPH1062375A/en
Publication of JPH1062375A publication Critical patent/JPH1062375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly select and use a plurality or more of calibrating solutions with a simple passage structure by sucking a necessary quantity of the calibrating solution, holding it in a sample liquid holding tube, sucking, folding and discharging a sample solution to analyze it, and then successively discharging the calibrating solution to perform a measurement for calibration. SOLUTION: A first calibrating solution is held in a sample liquid holding tube 9 by moving the plunger of a micro syringe 3 in the sucking direction. Since the plungers of the syringe 3 and a dilution pump 4 are fixed to the sample rod connected to a first driving motor 95, a fixed quantity of pure water in a diluting bottle 8 is sucked into the barrier of the pump 4 simultaneously with the suction of the first calibrating solution. A probe 2 is put out from a first calibrating solution bottle and situated in the air. The plunger of the syringe 3 is then moved in the sucking direction to introduce air into the holding tube 9. The probe 2 is successively situated in a sample solution within a sample bottle 10. The plunger of the syringe 3 is moved in the sucking direction to suck the sample solution into the holding tube 9, and the pure water in the bottle 8 is added into the barrel of the pump 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶液中の電解質を分
析する電解質分析装置に関するものであり、特に臨床分
析分野で血液、血清、尿中のナトリウムイオン(N
+ )、カリウムイオン(K+ )、塩素イオン(C
- )などを測定するイオン分析装置に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte analyzer for analyzing an electrolyte in a solution, and particularly to sodium ions (N) in blood, serum and urine in the field of clinical analysis.
a + ), potassium ion (K + ), chlorine ion (C
l -) used in the ion analysis device for measuring the like.

【0002】[0002]

【従来の技術】電解質分析装置として、検出部にイオン
選択性電極を使用する電極法の装置が汎用されている。
そして電極法の装置の中で血清や尿などの試料を希釈し
て、その希釈液をイオン選択性電極が設置されたフロー
セルに導き、測定する希釈方式の装置が多用されてい
る。さらにこの装置で使用する当該希釈の方法として、
カップ希釈方式と連続希釈方式が知られている。
2. Description of the Related Art As an electrolyte analyzer, an electrode method using an ion-selective electrode in a detection section is widely used.
Then, a dilution type apparatus for diluting a sample such as serum or urine in an electrode method apparatus, guiding the diluted solution to a flow cell provided with an ion-selective electrode, and measuring the diluted liquid is often used. Further, as the method of dilution used in this device,
A cup dilution method and a continuous dilution method are known.

【0003】ところで、電極法を採用する場合には、電
極応答のドリフトが避けられず、このドリフトを補正す
るため試料液測定の直前又は直後に校正液を測定して、
補正量を算出しこの値を使用して試料液の濃度計算を行
っている。
When the electrode method is used, drift of the electrode response is unavoidable. To correct this drift, the calibration solution is measured immediately before or immediately after the sample solution measurement.
The correction amount is calculated, and the concentration of the sample liquid is calculated using this value.

【0004】この校正液をフローセルに導くために、連
続希釈法を採用する電解質分析装置にあっては2種の流
路方式が採用されている。図を参照しながらこの2種の
流路方式を説明する。
[0004] In order to introduce the calibration liquid into the flow cell, an electrolyte analyzer employing a continuous dilution method employs two types of flow path systems. The two types of flow path systems will be described with reference to the drawings.

【0005】図3はプローブ内を校正液で満たす方式の
電解質分析装置の流路説明図である。 図中33は校正
液瓶である。校正液瓶33中には校正液が入っている。
試料液吸引前に校正液は、試料液保持管9、プローブ2
に満たされる。試料液の吸引、吐出に引きつづいて校正
液がプローブ2から吐出され、希釈液で薄められてフロ
ーセルに送られる。
FIG. 3 is an explanatory view of a flow path of an electrolyte analyzer of a system in which the inside of a probe is filled with a calibration liquid. In the figure, reference numeral 33 denotes a calibration liquid bottle. The calibration liquid bottle 33 contains a calibration liquid.
Before aspirating the sample liquid, the calibration liquid is supplied to the sample liquid holding tube 9 and the probe 2
To be satisfied. Following the suction and discharge of the sample liquid, the calibration liquid is discharged from the probe 2, diluted with a diluent, and sent to the flow cell.

【0006】次に、図4は校正液バイパス管を設ける方
式の電解質分析装置の流路説明図である。
Next, FIG. 4 is an explanatory view of a flow path of an electrolyte analyzer of a type in which a calibration solution bypass pipe is provided.

【0007】図中41は校正液バイパス管、42は第一
三方バルブ、43は第二三方バルブである。希釈液ビン
8の中には、校正液が入っている。試料の分析操作にあ
っても試料液は希釈液ビン8中の校正液により希釈され
る。
In the drawing, reference numeral 41 denotes a calibration solution bypass pipe, reference numeral 42 denotes a first three-way valve, and reference numeral 43 denotes a second three-way valve. The diluent bottle 8 contains a calibration liquid. The sample solution is diluted by the calibration solution in the diluent bottle 8 even during the sample analysis operation.

【0008】校正液の測定時には、第一、第二の三方バ
ルブが切り換わり、希釈液ポンプ4に吸引、保持された
校正液が校正液バイパス管41を通ってフローセルに送
られる。
When measuring the calibration liquid, the first and second three-way valves are switched, and the calibration liquid sucked and held by the diluent pump 4 is sent to the flow cell through the calibration liquid bypass pipe 41.

【0009】[0009]

【発明が解決しようとする課題】上記プローブ内を校正
液で満たす方式を採用した電解質分析装置は、プローブ
洗浄時に多量の校正液を消費するのでコストが高く、無
駄が多い。
An electrolyte analyzer employing the above method of filling the inside of the probe with a calibration solution consumes a large amount of the calibration solution at the time of cleaning the probe, so that the cost is high and wasteful.

【0010】一方、校正液バイパス管を設ける方式を採
用した電解質分析装置は流路が複雑化しまた流路の違い
により周囲温度の影響をうけ易い。また校正液を異なる
校正液に取り替えるには人手や時間がかかるので、実用
上使用する校正液は一種類に限られる。これは血液と尿
など電解質濃度の平均値が異なる試料が混在する試料の
測定については、最適な濃度の校正液を選択使用できな
い問題点となっていた。
On the other hand, an electrolyte analyzer employing a method of providing a calibration solution bypass pipe has a complicated flow path and is easily affected by the ambient temperature due to a difference in flow path. In addition, since it takes time and labor to replace the calibration solution with a different calibration solution, only one type of calibration solution is practically used. This is a problem that a calibration solution having an optimum concentration cannot be selected and used for measurement of a sample in which samples having different average electrolyte concentrations such as blood and urine are mixed.

【0011】本発明の課題は流路構成が単純で、かつ2
以上の校正液を適宜選択使用可能な電解質分析装置を提
供することにある。
An object of the present invention is to provide a simple flow path configuration and
An object of the present invention is to provide an electrolyte analyzer capable of appropriately selecting and using the above calibration liquid.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
るために、本発明にあっては、従来の試料液吸引機構を
使用して、まず校正液を必要量吸引して試料液保持管に
保持し、その後試料液を吸引、保持、吐出して分析した
後に、引きつづき校正液を吐出して校正のための測定を
行う装置構成とした。
In order to solve such a problem, according to the present invention, a conventional sample liquid suction mechanism is used to first suction a required amount of a calibration liquid to thereby obtain a sample liquid holding tube. After the sample solution was sucked, held, discharged, and analyzed, the calibration liquid was subsequently discharged to perform measurement for calibration.

【0013】なお、校正液と試料液の吸引はその順序を
逆にしてもよい。
The order of suction of the calibration liquid and the sample liquid may be reversed.

【0014】すなわち本発明は、イオン選択性電極とイ
オン選択性電極のフローセルと測定対象である試料液を
吸引かつ保持するための、一端をマイクロシリンジに他
端をプローブに連通接続された試料液保持管と前記フロ
ーセルに連通接続された混合管と、前記試料液保持管に
保持された試料液を前記混合管に吐出するためマイクロ
シリンジのプランジャを押し出す動作に同期して一定量
の希釈液を当該混合管に送液する希釈液ポンプを有し、
希釈液で希釈された試料液中のイオン濃度を測定する電
解質分析装置において、前記プローブの可動範囲に校正
液を配置し、プローブから校正液を吸引して前記試料液
保持管に保持し、試料液保持管から、当該校正液を一定
時間で前記混合管に吐出する動作に同期して前記希釈液
ポンプから、前記混合管に前記希釈液を送液して希釈
し、該校正液の希釈液中のイオン濃度を測定し、当該測
定値を使ってイオン選択性電極のドリフトを補正するこ
とを特徴とする電解質分析装置である。
That is, the present invention provides an ion-selective electrode, a flow cell for the ion-selective electrode, and a sample liquid having one end connected to a micro-syringe and the other end connected to a probe for sucking and holding the sample liquid to be measured. A holding pipe and a mixing pipe connected to the flow cell, and a fixed amount of diluting liquid synchronized with an operation of pushing out a plunger of a micro syringe to discharge the sample liquid held in the sample liquid holding pipe to the mixing pipe. Having a diluent pump for sending the liquid to the mixing tube,
In an electrolyte analyzer for measuring an ion concentration in a sample solution diluted with a diluting solution, a calibration solution is arranged in a movable range of the probe, the calibration solution is sucked from the probe and held in the sample solution holding tube, and the sample is sampled. The diluent is sent from the diluent pump to the mixing tube to dilute the diluent from the diluent pump in synchronization with an operation of discharging the calibration liquid to the mixing tube in a fixed time from the liquid holding tube, and the diluent of the calibration liquid is diluted. An electrolyte analyzer characterized by measuring the ion concentration in the medium and correcting the drift of the ion-selective electrode using the measured value.

【0015】[0015]

【発明の実施の形態】図面を参照しながら、以下に本発
明の一の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0016】図1は本発明にかかる電解質分析装置の流
路説明図である。
FIG. 1 is an explanatory view of the flow path of the electrolyte analyzer according to the present invention.

【0017】図1中1はフローセル、2はプローブ、3
はマイクロシリンジ、4は希釈液ポンプ、5は第一駆動
モータ、6は希釈ポット、7はミキサー、8は希釈液
瓶、9は試料液保持管、10は試料瓶、11は第一校正
液瓶、12は第二校正液瓶、13は洗浄ポットである。
In FIG. 1, 1 is a flow cell, 2 is a probe, 3
Is a micro syringe, 4 is a diluent pump, 5 is a first drive motor, 6 is a dilution pot, 7 is a mixer, 8 is a diluent bottle, 9 is a sample liquid holding tube, 10 is a sample bottle, and 11 is a first calibration liquid. A bottle, 12 is a second calibration liquid bottle, and 13 is a washing pot.

【0018】この電解質分析装置には、図1に示した構
成要素の他に比較電極液と当該液送液のためのポンプあ
るいは、流路やポンプ洗浄のための洗浄液と当該液送液
のためのポンプ等の構成要素があるが、これらは従来の
装置と同様であるので図示しておらずまた以下の動作説
明から省略している。
In addition to the components shown in FIG. 1, this electrolyte analyzer has a reference electrode solution and a pump for feeding the solution, or a cleaning solution for cleaning the flow path and the pump and a solution for sending the solution. Although there are components such as a pump, they are not shown in the figure because they are the same as the conventional device, and are omitted from the following description of the operation.

【0019】続いて本装置の動作を説明する。Next, the operation of the present apparatus will be described.

【0020】試料瓶10に血清が入っている場合を述べ
る。まずプローブ2は、第一校正液瓶11中の第一校正
液中に位置付けられる。第一校正液は血清中の正常値で
あるNa+ 140、K+ 4、Cl- 100 m mol
/lに調整されている。
The case where serum is contained in the sample bottle 10 will be described. First, the probe 2 is positioned in the first calibration liquid in the first calibration liquid bottle 11. The first calibration solution is a normal value in serum, Na + 140, K + 4, Cl - 100 mmol.
/ L.

【0021】この第一校正液はマイクロシリンジ3のプ
ランジャが吸引方向(図中では下方向)に動くことによ
り、試料液保持管9に保持される。マイクロシリンジ3
と希釈液ポンプ4のプランジャは第一駆動モータ5に接
続された同一のロッドに固定されているので、前記第一
校正液の吸引と同時に希釈液瓶8中の純水が一定量、希
釈液ポンプ4のバレル内に吸引される。
The first calibration solution is held in the sample solution holding tube 9 by the plunger of the micro syringe 3 moving in the suction direction (downward in the figure). Micro syringe 3
And the plunger of the diluent pump 4 is fixed to the same rod connected to the first drive motor 5, so that a certain amount of pure water in the diluent bottle 8 It is sucked into the barrel of the pump 4.

【0022】次に、プローブ2は第一校正液瓶を出て中
空に位置付けられる。ここでマイクロシリンジ3のプラ
ンジャは微小量吸引方向に動き、試料液保持管9中に空
気が導入される。同時に希釈液ポンプ4のプランジャも
吸引方向に動き、希釈液瓶8中の純水が微量希釈液ポン
プ4のバレル内に吸引される。
Next, the probe 2 exits the first calibration solution bottle and is positioned hollow. Here, the plunger of the micro syringe 3 moves in the minute amount suction direction, and air is introduced into the sample liquid holding tube 9. At the same time, the plunger of the diluent pump 4 also moves in the suction direction, so that the pure water in the diluent bottle 8 is sucked into the barrel of the trace diluent pump 4.

【0023】続いて、プローブ2は試料瓶10中の試料
液中に位置付けられる。ここでマイクロシリンジ3のプ
ランジャは一定量吸引方向に動き、試料液保持管9中に
試料液が吸引されると同時に希釈液ポンプ4のバレル内
に希釈液瓶8中の純水が追加される。
Subsequently, the probe 2 is positioned in the sample liquid in the sample bottle 10. Here, the plunger of the micro syringe 3 moves in the suction direction by a fixed amount, and the sample liquid is sucked into the sample liquid holding tube 9 and at the same time pure water in the diluent bottle 8 is added into the barrel of the diluent pump 4. .

【0024】図2は試料液吸引後の試料液保持管9内の
模式図である。
FIG. 2 is a schematic view of the inside of the sample liquid holding tube 9 after suction of the sample liquid.

【0025】図2に示すように、プローブ2と試料液保
持管9にはプローブ2の先端から順に試料液、空気層、
第一校正液、純水が保持されている。ここで、空気層は
試料液と第一校正液の混合を防止するために導入されて
おり、また純水は、流路の洗浄に使われた純水がそのま
ま留値されたものであり、マイクロシリンジ3のシリン
ジの吸引、吐出動作量を正確にプローブ2の先端まで伝
える役割りを担っている。
As shown in FIG. 2, a sample liquid, an air layer,
The first calibration liquid and pure water are held. Here, the air layer is introduced to prevent mixing of the sample liquid and the first calibration liquid, and the pure water is pure water used for washing the flow path, which is directly retained, The micro-syringe 3 has a role of accurately transmitting the amount of suction and discharge of the syringe to the tip of the probe 2.

【0026】次に、プローブ2は希釈ポット6中に位置
付けられる。マイクロシリンジ3のプランジャは吐出方
向(図1では上方向)に動き、同一ロッドに固定された
希釈液ポンプ4のプランジャも吐出方向に動く。希釈ポ
ットに吐出された試料液はマイクロシリンジ3のプラン
ジャと希釈液ポンプ4のプランジャの断面積の比率で定
まる一定割合で希釈液(純水)と混合され、ミキサー7
で十分混合された後、フローセル1を通過する。この間
に図示していないイオン選択性電極によってNa+ 、K
+ 、Cl- のイオン濃度が測定される。
Next, the probe 2 is positioned in the dilution pot 6. The plunger of the micro syringe 3 moves in the discharge direction (upward in FIG. 1), and the plunger of the diluent pump 4 fixed to the same rod also moves in the discharge direction. The sample liquid discharged into the dilution pot is mixed with a diluent (pure water) at a fixed ratio determined by the ratio of the cross-sectional areas of the plunger of the micro syringe 3 and the plunger of the diluent pump 4.
, And pass through the flow cell 1. During this time, Na + , K
+, Cl - ion concentration is measured.

【0027】つづいて、プローブ2は希釈液ポット6中
に位置付けられた状態のままで、マイクロシリンジ3と
希釈液ポンプ4のプランジャは吐出動作を続け、純水で
希釈された第一校正液がフローセル1内に導入され、校
正液中のNa+ 、K+ 、Cl- のイオン濃度が測定され
る。この測定値より電極のドリフト値が求められるの
で、前記試料希釈液のイオン濃度測定値が校正される。
Subsequently, while the probe 2 is still positioned in the diluent pot 6, the plungers of the micro syringe 3 and the diluent pump 4 continue the discharging operation, and the first calibration liquid diluted with pure water is discharged. The ion concentration of Na + , K + , and Cl − in the calibration solution is introduced into the flow cell 1 and measured. Since the electrode drift value is obtained from the measured value, the measured ion concentration of the sample diluent is calibrated.

【0028】この後、プローブ2は洗浄ポット13中に
位置付けられ、プローブ2、試料保持管9、マイクロシ
リンジ3の流路が純水により洗浄される。
Thereafter, the probe 2 is positioned in the washing pot 13, and the flow paths of the probe 2, the sample holding tube 9, and the micro syringe 3 are washed with pure water.

【0029】試料瓶10中の試料液が尿の場合には、一
例としてNa+ 100、K+ 40、Cl- 100 m
mol/lのイオン濃度の第二校正液が使用される。
When the sample liquid in the sample bottle 10 is urine, for example, Na + 100, K + 40, Cl 100 m
A second calibration solution with an ion concentration of mol / l is used.

【0030】変形の実施例として、洗浄ポット13と同
様な構造の複数の溢流式の液溜を設けてこの中に第一、
第二の校正液を入れ、ここにプローブ2を位置付けて、
試料液保持管9に校正液を吸引、保持することもでき
る。
As a modified embodiment, a plurality of overflow type liquid reservoirs having the same structure as the cleaning pot 13 are provided, and first and second liquid reservoirs are provided therein.
Put the second calibration solution, position probe 2 here,
The sample solution holding tube 9 can also suck and hold the calibration solution.

【0031】また、先に試料液を吸引し、その後に校正
液を吸引することにより、校正液の測定直後に試料液の
測定を行うことも任意である。
It is also optional to measure the sample solution immediately after measuring the calibration solution by first sucking the sample solution and then aspirating the calibration solution.

【0032】さらに、マイクロシリンジ3と希釈液ポン
プ4は図1のような物理的連結ではなく、複数の駆動モ
ータを電気的に連結して、2つのポンプを同期して動作
させることもできる。
Further, the micro syringe 3 and the diluent pump 4 are not physically connected as shown in FIG. 1, but a plurality of drive motors may be electrically connected to operate the two pumps in synchronization.

【0033】また、Na+ 、K+ 、Cl- の測定イオン
種は例示であり、例えばカルシウムイオン(Ca2+)や
リチウムイオン(L+ )等の他のイオン種の測定にもそ
のまま使用できる。
Further, Na +, K +, Cl - measuring ionic species is illustrative, for example can be used as it is to other measurements of ionic species such as calcium ion (Ca 2+) or lithium ions (L +) .

【0034】本発明にかかる電解質分析装置は単体の装
置として使用可能であり、また、生化学自動分析装置の
中に組み込まれた電解質分析装置として実現、使用可能
である。後者の場合には、オートサンプラー系や純水供
給系等を本体である生化学自動分析装置と共用すること
ができる。
The electrolyte analyzer according to the present invention can be used as a single device, and can be realized and used as an electrolyte analyzer incorporated in an automatic biochemical analyzer. In the latter case, an autosampler system, a pure water supply system, and the like can be shared with the biochemical automatic analyzer that is the main body.

【0035】[0035]

【発明の効果】本発明にかかる電解質分析装置は、流路
構造が単純になるので装置が安価となり、かつ装置流路
の洗浄やメンテナンスが容易になる。
As described above, the electrolyte analyzer according to the present invention has a simple flow path structure, so that the apparatus is inexpensive, and the cleaning and maintenance of the flow path of the apparatus become easy.

【0036】また、2以上の校正液を適宜選択使用でき
るので、一連の分析中に血清や尿等の異種試料が混在し
ても、最適な校正液の選択使用が可能となる。同様に試
料と校正液のイオン濃度を近接させることが可能なの
で、例え試料希釈液と校正液希釈液のフローセル通過時
の温度が異なっても、温度による影響を小さくすること
ができる。
Further, since two or more calibration solutions can be appropriately selected and used, even if a heterogeneous sample such as serum or urine is mixed during a series of analysis, the optimal calibration solution can be selected and used. Similarly, since the ion concentration of the sample and the calibration solution can be close to each other, even if the temperatures of the sample diluent and the calibration solution when they pass through the flow cell are different, the influence of the temperature can be reduced.

【0037】さらに、試料液と校正液測定系は同一流路
を使用するので、試料希釈液と校正液希釈液のフローセ
ル通過時の温度は略等しいことが期待され、濃度による
影響を小さくすることができる。
Further, since the sample solution and the calibration solution measurement system use the same flow path, it is expected that the temperatures of the sample diluent and the calibration solution diluent when passing through the flow cell are substantially equal, and the influence of the concentration should be reduced. Can be.

【0038】また、校正液バイパス管を設ける方式を採
用した従来装置に比べて、校正液の消費量は少なく、校
正液の無駄はない。
Further, compared with the conventional apparatus employing the method of providing the calibration solution bypass pipe, the consumption of the calibration solution is small and the calibration solution is not wasted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる電解質分析装置の流路説明図で
ある。
FIG. 1 is an explanatory view of a flow path of an electrolyte analyzer according to the present invention.

【図2】試料液吸引後の試料液保持管9内の模式図であ
る。
FIG. 2 is a schematic diagram of the inside of a sample liquid holding tube 9 after suction of the sample liquid.

【図3】プローブ内を校正液で満たす方式の従来の電解
質分析装置の流路説明図である。
FIG. 3 is an explanatory view of a flow path of a conventional electrolyte analyzer of a system in which a probe is filled with a calibration liquid.

【図4】校正液バイパス管を設ける方式の従来の電解質
分析装置の流路説明図である。
FIG. 4 is an explanatory view of a flow path of a conventional electrolyte analyzer of a type in which a calibration solution bypass pipe is provided.

【符号の説明】[Explanation of symbols]

1.フローセル 2.プローブ 3.マイクロシリンジ 4.希釈液ポンプ 5.第一駆動モータ 6.希釈ポット 7.ミキサー 8.希釈液瓶 9.試料液保持管 10.試料瓶 11.第一校正液瓶 12.第二校正液瓶 1. Flow cell 2. Probe 3. Micro syringe 4. Diluent pump 5. First drive motor 6. 6. dilution pot Mixer 8. Diluent bottle 9. Sample liquid holding tube 10. Sample bottle 11. First calibration liquid bottle 12. Second calibration liquid bottle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン選択性電極とイオン選択性電極の
フローセルと測定対象である試料液を吸引かつ保持する
ための、一端をマイクロシリンジに他端をプローブに連
通接続された試料液保持管と前記フローセルに連通接続
された混合管と、前記試料液保持管に保持された試料液
を前記混合管に吐出するためマイクロシリンジのプラン
ジャを押し出す動作に同期して一定量の希釈液を当該混
合管に送液する希釈液ポンプを有し、希釈液で希釈され
た試料液中のイオン濃度を測定する電解質分析装置にお
いて、 前記プローブの可動範囲に1つまたは複数の校正液を配
置し、試料を吸引する前にプローブから校正液を吸引し
て前記試料液保持管に保持し、試料液保持管から、当該
校正液を一定時間で前記混合管に吐出する動作に同期し
て前記希釈液ポンプから、前記混合管に前記希釈液を送
液して希釈し、該校正液の希釈液中のイオン濃度を測定
し、当該測定値を使ってイオン選択性電極のドリフトを
補正することを特徴とする電解質分析装置。
An ion-selective electrode, a flow cell for the ion-selective electrode, and a sample liquid holding tube connected to a micro-syringe at one end and a probe at the other end for sucking and holding a sample liquid to be measured. A mixing tube communicatively connected to the flow cell, and a fixed amount of the diluting liquid synchronized with an operation of pushing out a plunger of a micro syringe to discharge the sample liquid held in the sample liquid holding tube to the mixing tube. An electrolyte analyzer for measuring an ion concentration in a sample solution diluted with a diluent, wherein one or more calibration solutions are arranged in a movable range of the probe, Before the suction, the calibration liquid is sucked from the probe and held in the sample liquid holding tube, and the dilution is performed in synchronization with the operation of discharging the calibration liquid from the sample liquid holding tube to the mixing tube for a certain period of time. Pumping and diluting the diluting solution to the mixing tube, measuring the ion concentration of the calibration solution in the diluting solution, and correcting the drift of the ion-selective electrode using the measured value. Electrolyte analyzer.
JP22360596A 1996-08-26 1996-08-26 Electrolytic analyzer Pending JPH1062375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22360596A JPH1062375A (en) 1996-08-26 1996-08-26 Electrolytic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22360596A JPH1062375A (en) 1996-08-26 1996-08-26 Electrolytic analyzer

Publications (1)

Publication Number Publication Date
JPH1062375A true JPH1062375A (en) 1998-03-06

Family

ID=16800816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22360596A Pending JPH1062375A (en) 1996-08-26 1996-08-26 Electrolytic analyzer

Country Status (1)

Country Link
JP (1) JPH1062375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189405A (en) * 2011-03-10 2012-10-04 Jeol Ltd Electrolyte measuring method and electrolyte measuring apparatus
WO2023013222A1 (en) * 2021-08-03 2023-02-09 株式会社日立ハイテク Electrolyte analysis apparatus and analysis method
CN116953053A (en) * 2023-09-18 2023-10-27 深圳市希莱恒医用电子有限公司 Electrolyte analyzer and automatic detection method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189405A (en) * 2011-03-10 2012-10-04 Jeol Ltd Electrolyte measuring method and electrolyte measuring apparatus
WO2023013222A1 (en) * 2021-08-03 2023-02-09 株式会社日立ハイテク Electrolyte analysis apparatus and analysis method
CN116953053A (en) * 2023-09-18 2023-10-27 深圳市希莱恒医用电子有限公司 Electrolyte analyzer and automatic detection method thereof
CN116953053B (en) * 2023-09-18 2024-01-26 深圳市希莱恒医用电子有限公司 Electrolyte analyzer and automatic detection method thereof

Similar Documents

Publication Publication Date Title
US4680270A (en) Method and apparatus for conducting flow analysis
US3551109A (en) Method and apparatus for the titration of chloride and bicarbonate in serum
CN101038292B (en) Automatic analyzer
CN112666234B (en) Electrolyte concentration measuring device and electrolyte concentration measuring method
US9297797B2 (en) Ion selective electrode module for clinical diagnostics
JP4901956B2 (en) Substrate concentration measuring method and substrate concentration measuring apparatus
JPS5999248A (en) Blood analyzer
CN112986485B (en) Titration apparatus and titration method
US11977050B2 (en) Automated analyzer, automatic analysis system, and automatic sample analysis method
JPH1062375A (en) Electrolytic analyzer
JPH03100455A (en) Electrolyte analyzing apparatus
JP2783449B2 (en) Analyzer line control system
CN109030704A (en) Ion chromatograph sampling volume measurement device and sampling volume measuring method
JPH06186150A (en) Method and device for detecting sample dilution error
US20240060955A1 (en) Simultaneous and selective washing and detection in ion selective electrode analyzers
JP7378477B2 (en) Automatic analyzer and sample automatic analysis method
JPH0526144B2 (en)
JP2005127974A (en) Apparatus and method for measuring hydrogen ion concentration
US20230044702A1 (en) Electrolyte analysis apparatus
JPH11108917A (en) Titration control method
JP5054765B2 (en) Substrate concentration measuring method and substrate concentration measuring apparatus
JPH09243624A (en) Sample introducing apparatus
JP6671213B2 (en) Automatic analyzer and automatic analysis method
JPH0564304B2 (en)
JPH03140844A (en) Multi-item analysis of minute sample