JPH08219250A - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH08219250A
JPH08219250A JP4069897A JP6989792A JPH08219250A JP H08219250 A JPH08219250 A JP H08219250A JP 4069897 A JP4069897 A JP 4069897A JP 6989792 A JP6989792 A JP 6989792A JP H08219250 A JPH08219250 A JP H08219250A
Authority
JP
Japan
Prior art keywords
resistance
shaft
gear
bearing
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4069897A
Other languages
Japanese (ja)
Inventor
Haruyoshi Koga
春▲吉▼ 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4069897A priority Critical patent/JPH08219250A/en
Publication of JPH08219250A publication Critical patent/JPH08219250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

PURPOSE: To realize the continuous variable transmission by engaging a tubular shaft provided with a continuously controllable resistor with either of a resistance gear or a planetary gear fixed to the tubular shaft, and fixing the other gear to a transmission shaft to allow the continuously variable transmission. CONSTITUTION: A planetary gear shaft is provided on the end part of a tubular shaft, a planetary gear is provided on the tip part, and the gear is engaged with a resistance gear while at the tip of the tubular shall, a resistance blade 26 fixed to resistance blade holding rings 30, 31 is freely fitted to a blade groove of a rotor 25. A rotary body part is mounted in a cylindrical cavity provided in a resistance frame 21 so as to allow the arbitrary rotation. The force to be obtained by sliding the resistance frame 21 and adjusting the continuously resistive rotational speed of the rotor 25 through the operation of an eccentric adjuster 14 which is arranged on slides 43, 44 and engages an outer frame 23 with the resistance frame 21 is given to the resistance gear, and the repulsive force is transmitted to a load shaft for the operation by generating the continuously variable transmission to a transmission gear. The continuously variable transmission can be realized thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の目的】元来変速機は、多くの分野に広く使用さ
れて居るけれ共、其の変速方法で広く利用されて居るも
のの殆どは、段階切替変速である。然し最近の走行車輌
に於ては、自動変速にしたものが多くなったけれ共、変
速時に於ける、もたもたと感覚のずれによる、感触の悪
さもさる事乍ら、意志に反した急発進の危険性、燃費の
過大、其の上、車輪が泥濘に嵌った場合の脱出不能等、
数多くの欠点がある。又走行車輌用として使用はされて
居ないけれ共、極く短時間に極く低速回転にして、小型
伝導の無段階変速したものはある、然し乍ら此の種の無
段階変速器は、例外なく摩擦変速の為に、部品の摩滅が
激しく強力に加速する時は、先づ発熱、発火の危険が伴
うので、高速や強加速を条件とした無段階の変速を必要
とするものには、先づ用を為さない。又他に、電磁力を
利用したものや、対向偏径車輪の有効半径を変えて、無
段階変速を得様とするもの等も有るけれ共、いづれも無
理と欠点が多く之等を完全に無段階変速にする為には幾
多の問題点がある上に、之等は極く小型物にしか使用出
来ない。従って、之等の持っている欠点の全部を一挙に
解消して、其の安全性、強力な無段階変速伝導性、耐久
性、経済性、操作円滑簡易による使用上の好感性を得
て、産業上に及ぼす貢献を目的としたものである。
OBJECTS OF THE INVENTION Originally, transmissions are widely used in many fields, but most of the widely used transmission methods are stepped shift transmissions. However, in recent running vehicles, the number of automatic gear shifts has increased, but there is also a feeling of unpleasant feeling due to a shift in the feeling and feeling at the time of gear shift, and the danger of sudden start against the intention Property, excessive fuel consumption, and the inability to escape when the wheels are caught in mud, etc.
There are many drawbacks. In addition, even though it is not used for traveling vehicles, there is a small transmission continuously variable transmission that rotates at an extremely low speed for an extremely short time.However, this type of continuously variable transmission has no exception. Due to friction shifting, when parts are worn out and accelerate strongly, there is a danger of heat generation and ignition first.Therefore, for those that require stepless shifting under the condition of high speed or strong acceleration, It doesn't work. In addition, there are also those that use electromagnetic force, and those that change the effective radius of the opposed eccentric wheels to obtain a stepless speed change. There are a number of problems in achieving a continuously variable transmission, and they can only be used for small objects. Therefore, by eliminating all of the drawbacks that they have at once, by obtaining its safety, strong stepless transmission conductivity, durability, economic efficiency, and favorable operation by smooth operation, The purpose is to contribute to the industry.

【産業上の利用分野】大型起重機、大動力、各種車輌、
超高楼直通高速エレベーター、高層駐車場、等と産業上
の利用分野は、其の用途の大小を問わず、甚だ広範囲で
ある。
[Industrial application] Large hoist, large power, various vehicles,
The industrial fields of use such as super high-rise direct high-speed elevators, high-rise parking lots, etc. are extremely wide, regardless of the size of the application.

【従来の技術】元来、強力な高速回転力の変速を必要と
するものは、数多くあるけれ共、現在重要な産業方面に
利用されて居るものの殆どは、段階切替変速と其の他極
く一部の極めて低速で、短時使用向として、摩擦式無段
階変速機が使用されて居るには居るけれ共、摩擦部分の
消耗の激しさと、発熱発火の危険度が高く、段階変速機
も、最近の走行車輌には、コンバーターに、コンピュー
ターを駆使した、自動変速機も多く使用されるには至っ
たけれ共、前述の通り末だ末だ多くの欠点が散在して居
る。
2. Description of the Related Art Originally, there are many gears that require strong high-speed rotation, but most of them that are currently used in important industrial fields are step-shift gears and other types. Even though some friction type stepless transmissions are used for extremely low speed and short time use, there is a high degree of wear of the friction part and a high risk of heat generation and ignition. However, in recent vehicles, many automatic transmissions that use computers as converters and automatic transmissions have been used, but as mentioned above, there are many shortcomings.

【発明が解決しようとする課題】今世紀に於て、改善の
遅れたものの一つとして挙げるとするなら、それは、大
動力回転体の段階変速伝導方法と、摩擦伝導の方法では
ないのであろうか。従って、此の遅れた技術をどの様
に、改革して、ずば抜けた高度の安全性、確実性、強力
な無段階連続変速伝導性、耐久性、経済性、円滑簡易な
操作性、使用上の好感性、利用度の広範囲性等を備え持
った、高性能の装置でなければならないか、が本発明が
解決しようとする課題である。
In the present century, if one of the things that has been delayed in improvement is one of the methods, it may be the stepwise speed transmission method and the frictional transmission method of a large power rotor. Therefore, how to revise this delayed technology, to achieve outstanding safety, reliability, strong continuous variable transmission, durability, economy, smooth and easy operation, The problem to be solved by the present invention is whether or not the device should be a high-performance device having a good impression and a wide range of utilization.

【課題を解決するための手段】本発明は前項の課題を明
快に解決するための手段として、大動力高速回転伝導
と、高速車輌の車輪制動に、今日迄考えもされなかっ
た、液体の圧力抵抗方法を以て、課題解決の手段とした
ものである。
SUMMARY OF THE INVENTION As a means for clearly solving the above-mentioned problems, the present invention has been devised as a means for clear transmission of large power and high speed rotation and wheel braking of a high speed vehicle. The resistance method is used as a means for solving the problem.

【実施例】図1は、本発明装置の一実施例の系統図であ
って、Aは図3、4の部分、Bは図7の部分、Cは図8
の部分、Dは図2の部分、後数字の部分は、特徴効果の
横に於て詳記する。図2は、第1二重軸承の縦断面図
で、主軸(2)を主軸承(18)にて承け、抵抗管軸
(3)の先端を抵抗軸承(20)にて承け、変速作用中
に抵抗管軸(3)が横ずれをしない様に設けた、横圧軸
承(19)をも示すもの。図3は、液体抵抗制御機の、
縦断面図で、外枠、液体抵抗枠、回転子、抵抗翼、抵抗
翼維持環、管軸制動器、及び主軸、抵抗管軸、差動管軸
等の相互関係を断面図にして示したもの。図4は、図3
を完全体に直したものをA〜A′に横断して矢印に見た
図で、外枠、液体の抵抗を受ける抵抗翼、抵抗翼を備え
持った、回転子、抵抗翼維持環、之等を回転させる円筒
形、抵抗管軸、主軸等の関係を明示したもの。図5は、
図4の上部辺の抵抗翼付近を拡大して見た、液体抵抗作
用時に見る、液体抵抗枠央部円筒形(52)内での、抵
抗翼維持環(30)、回転子(25)、抵抗翼(2
6)、翼溝(28)等の関係を、図6を完全体に直した
時のA〜A′に横断して矢印に見た一部図。図6は、図
5を完全なものに直して、A〜A′の縦断面にして、矢
印に見た図。図7は、図1、B部分の縦断面図で、三種
の歯車の係合状態と、主軸(2)、差動管軸(4)変速
軸(5)の関係及び制御機クラッチ(12)の係合状態
等を示したもの。図8は、図1、C部分の縦断面で、逆
転作用の出来る状態を示したもの。
1 is a system diagram of an embodiment of the device of the present invention, in which A is the portion of FIGS. 3 and 4, B is the portion of FIG. 7, and C is the portion of FIG.
, D is the part of FIG. 2, and the numbered part is described next to the characteristic effect. FIG. 2 is a vertical cross-sectional view of the first double bearing, in which the main shaft (2) can be received by the main bearing (18) and the tip of the resistance tube shaft (3) can be received by the resistance bearing (20). Also shown is a lateral pressure bearing (19) provided so that the resistance tube shaft (3) is not laterally displaced. FIG. 3 shows a liquid resistance controller
A longitudinal cross-sectional view showing a cross-sectional view of the outer frame, the liquid resistance frame, the rotor, the resistance vanes, the resistance vane retaining ring, the pipe axis brake, and the mutual relationship among the main shaft, the resistance pipe shaft, the differential pipe shaft, etc. . FIG. 4 shows FIG.
Fig. 2 is a view of the complete body of Fig. 6 taken along an arrow across A to A ', showing an outer frame, a resistance vane that receives the resistance of the liquid, a rotor having a resistance vane, a resistance vane maintenance ring, Cylinder to rotate etc., resistance tube axis, main axis, etc. Figure 5
An enlarged view of the vicinity of the resistance vane on the upper side of FIG. 4, which is seen during the action of the liquid resistance, shows the resistance vane maintenance ring (30), the rotor (25), in the central part (52) of the liquid resistance frame. Resistance wings (2
6), a partial view of the relationship between the blade grooves (28) and the like as seen from the arrows across AA 'when FIG. 6 is completely restored. FIG. 6 is a view of FIG. 5 as a complete section, which is a vertical cross section taken along the line A-A ′ and is seen by an arrow. FIG. 7 is a vertical cross-sectional view of the portion B of FIG. 1, showing the relationship between the engagement states of the three types of gears, the main shaft (2), the differential tube shaft (4), the speed change shaft (5), and the controller clutch (12). Showing the engagement state of. FIG. 8 is a vertical cross-sectional view of the portion C shown in FIG.

【発明の原理】原動軸(図1の1)から主軸(図1、
2、3、4、7の2)によって、導かれた回転力を、遊
星歯車軸(図7の63)遊星歯車(図7の62)抵抗歯
車(図7の61)差動管軸(図3、7の4)、そして制
御機クラッチ(図1、3、7の12)によって、抵抗管
軸(図1、2、3、4の3)から液体抵抗制御機(図
3、4)に導かれ、此処に於て、液体の抵抗を受けて、
回転力の減速をする。減速された回転力は、抵抗管軸、
抵抗歯車、遊星歯車えと逆行する、が然し遊星歯車は、
少しも減速回転はして居ない主軸回転の為に、押し廻さ
れて公転する。となると、遊星歯車は今迄自転して居た
方向を反対方向に廻るより他に道はない、反対方向に回
転を求めると云う事は、今迄負荷停止をして、抵抗歯車
の反対側に遊星歯車と係合して居た変速歯車(図7の6
4)を押し廻すより他、逃げる道はない。従って此処に
於て、抵抗歯車が減速回転をするに連れて、変速歯車
(図7の64)変速軸(図7、8の5)負荷軸(図8の
6)加変速を起させ、液体抵抗制御機を加減する事によ
って、負荷軸側にも加減の自由な無段階変速を得るもの
である。之を一口にして云えば、対圧、対摩擦に特に強
い液体の性質を充分利用した、簡単な原理に成ったもの
である。
Principle of the Invention From a drive shaft (1 in FIG. 1) to a main shaft (FIG. 1,
2, 3, 4, 7), the rotational force guided by the planetary gear shaft (63 in FIG. 7) planet gear (62 in FIG. 7) resistance gear (61 in FIG. 7) differential tube shaft (Fig. 3, 7 4), and the controller clutch (12 of FIGS. 1, 3, 7) from the resistance tube shaft (3 of 3 of FIGS. 1, 2, 3, 4) to the liquid resistance controller (3, 4). Guided here, under the resistance of the liquid,
Decelerate the torque. The reduced rotational force is the resistance tube axis,
Resistance gears and planet gears run in the opposite direction, but planet gears
Due to the rotation of the main shaft, which is not slowing down at all, it is pushed around and revolves. Then, the planetary gear has no other way than to rotate in the opposite direction to the direction in which it has been rotating until now. It means to rotate in the opposite direction by stopping the load until the other side of the resistance gear. The transmission gear that was engaged with the planetary gear in the
There is no way to escape other than pushing 4). Therefore, here, as the resistance gear rotates deceleratingly, the speed change gear (64 in FIG. 7), the speed change shaft (5 in FIGS. 7 and 8), the load shaft (6 in FIG. 8), the acceleration and the speed change are caused, and By adjusting the resistance controller, it is possible to obtain a continuously variable transmission that can be adjusted freely on the load shaft side. In other words, it is a simple principle that makes full use of the properties of a liquid that is particularly resistant to pressure and friction.

【発明の効果】此の様にして出来た、本発明は、前記の
通り交通用車輌を等頭に、起重機、超高層建築物の直通
用高速エレベーター、大動力の始動変速伝導回転等に、
今迄使用されて来た様な、おたおたしたものでなく、強
力、円滑、確実、安全、高速、容易な操縦性、其の上経
済性を備えた、無段階変速の装置である。其の他の利用
として、交通車輌車輪の制動に其の強力、確実、安全を
目的としての効果も亦大である。
As described above, the present invention, which has been made as described above, is applied to a transportation vehicle, such as a hoist, a high-speed elevator for direct passage of a super high-rise building, a start transmission transmission of large power, etc.
It is a continuously variable device that is powerful, smooth, reliable, safe, fast, easy to maneuver, and economical, rather than the one that has been used until now. As another use, it has a great effect on braking the wheels of a traffic vehicle for the purpose of its strength, reliability and safety.

【特徴】以上の効果を挙げ得る本発明の特徴を記載して
見れば、次の通りである。 1、従来に於て、強力な高速回転体を、長時間に亘っ
て、連続的に無段階変速回転の伝導をする事は出来なか
ったものを、本発明によって此の目的を達した。 2、而も液体の抵抗力を利用して、構成した処が特筆に
値する。 3、本発明は、在来のコンバーター式の自動変速機に見
る様な、回転力の伝導損欠が全くない。 4、在来の自動変速機使用車では全く不可能な、惰力運
転が自由自在に出来る。 5、在来車では、其の変速の方法が、自動であれ手動で
あれ、急坂の連続降下では、必ず原動機と車輪の併用制
動でなければ、降下する事は出来ないけれ共、本発明の
使用車では、両併用制動は全く必要とせず、只単に液体
抵抗制御機を操作するのみにて、安全且つ確実に降下す
る事が出来る。 6、従って、急坂の長時間降では100%の燃費節減が
出来る。 7、其の為に、大気汚染防止上に於ても、多大な貢献と
なる。 8、在来の自動変速機設備車は、車輪が泥濘に落ち込め
ば、先づ自力での脱出は不可能であるけれ共、本発明の
装備車では、自力によって何の苦もなく、脱出する事が
出来る。 9、在来車では、発進に際して、相当にエンヂンを吹か
せなければ、エンストをするけれ共、本発明の装備車で
は、其の必要なく円滑に発進する。 10、従って、必要があって急発進する場合、在来車は
タイヤの軋み音を発するけれ共、本発明の装備車では、
其の様な事はない。 11、在来の自動変速車では、発進準備の為、床制動器
を緩めた、とたんに発進する事が多く甚だ危険で、此の
種の事故も亦、甚だ多いけれ共、本発明の装備車では、
其の様な事故は起り得ない。 12、従って、自動変速車では前記の事故防止の為、低
速回転を更に低速にするけれ共、過度の低速の為、後高
になった車庫発進では、必ずと云う位、エンストをする
けれ共、本発明の装備をした場合、低速にしてもエンス
トをする様な事はなく、又極端な低速にする必要もな
い。 13、本発明は、記載通り、どの変速機よりも利用範囲
が広い。 14、在来車での急坂発進は、必ず床制動器を引いて発
進しない時は、後退する危険があるけれ共、本発明の装
備車では其の必要なく、いきなり発進が可能である。 15、在来の切替変速に見る切替時の衝激や、自動変速
車に起る、変速時のもたもたによる、運転者及び同乗者
の不快感等、本発明の装備車では、初心者が使用しても
其の様な事は起らない。 16、本発明では、請求項1に詳記した、液体抵抗制御
機の部分のみを、交通車輌の車輪制動用として利用する
時は、磨擦制動の様な部品摩耗、発熱による危険等の防
止となる。
[Characteristics] The characteristics of the present invention that can bring about the above effects are described as follows. 1. In the past, a powerful high-speed rotating body, which could not continuously conduct continuously variable rotation for a long time, achieved this object by the present invention. 2. In addition, it is worth noting that it is constructed using the resistance of liquid. 3. In the present invention, there is no transmission loss of rotational force as seen in a conventional converter type automatic transmission. 4. Free-wheeling is possible, which is completely impossible with conventional automatic transmission vehicles. 5. In conventional vehicles, whether the shifting method is automatic or manual, continuous descent on a steep slope cannot always descend unless the motor and wheels are combinedly braked. The vehicle used does not require both combined braking at all, and can simply and simply operate the liquid resistance controller to safely and reliably lower the vehicle. 6. Therefore, it is possible to save 100% in fuel consumption when a steep slope descends for a long time. 7. Therefore, it will be a great contribution to the prevention of air pollution. 8. If the wheels of the conventional automatic transmission equipment are in a muddy state, it is impossible to escape by themselves first, but with the vehicle equipped with the present invention, the vehicle can escape without any difficulty. I can do things. 9. In the conventional vehicle, unless the engine is blown considerably when starting, the vehicle equipped with the present invention can start smoothly without the need for engine stalling. 10. Therefore, when a conventional vehicle makes a sudden start when it is necessary, the conventional vehicle emits a squeaking noise of tires.
There is no such thing. 11. In conventional automatic transmissions, the floor brakes are loosened to prepare for starting, and it is very dangerous to start immediately, which is very dangerous. This kind of accident is also a serious problem. By car,
No such accident can occur. 12. Therefore, in order to prevent the above-mentioned accidents in automatic transmission vehicles, both low-speed rotation can be made even slower, and because of excessively low speed, it is necessary to stall the engine when the garage starts to have a high rear. With the equipment of the present invention, there is no need to stall even at low speeds, and there is no need for extremely low speeds. 13. As described above, the present invention has a wider application range than any transmission. 14. When starting a steep slope in a conventional vehicle, there is a risk of retreating unless the floor brake is pulled and the vehicle is not started. However, the vehicle equipped with the present invention can start suddenly without the need. 15. The vehicle equipped with the present invention can be used by beginners due to the urge to shift as seen in the conventional shift shifting, the discomfort of the driver and passengers due to the delay in shifting that occurs in the automatic transmission. But that doesn't happen. 16. In the present invention, when only the liquid resistance controller is used for braking a wheel of a transportation vehicle, which is described in detail in claim 1, it is possible to prevent wear of parts such as friction braking and danger due to heat generation. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】液体制御無段階変速機(本発明)の系統を示し
た畧図である。
FIG. 1 is a sectional view showing a system of a liquid control continuously variable transmission (present invention).

【図2】図1のD部、即ち第1二重軸承の縦断面図。FIG. 2 is a vertical sectional view of a part D of FIG. 1, that is, a first double bearing.

【図3】図1のA部、即ち液体抵抗制御機の縦断面図。FIG. 3 is a vertical sectional view of a portion A of FIG. 1, that is, a liquid resistance controller.

【図4】図3を完全体図に直した時の、A〜A′横断面
図。
FIG. 4 is a transverse sectional view taken along the line AA ′ of FIG.

【図5】図4の上部、抵抗翼付近を拡大して示した一部
で、図6を完全体にした場合のA〜A′横断面図。回転
子(25)と抵抗翼維持環(30)の内面が密着して液
体抵抗室(82)を形成した場合を示したもの。
5 is a partially enlarged view of the upper part of FIG. 4 and the vicinity of the resistance blade, and is a transverse cross-sectional view taken along line AA ′ in the case where FIG. 6 is a complete body. The case where the rotor (25) and the inner surface of the resistance blade maintenance ring (30) are in close contact with each other to form a liquid resistance chamber (82).

【図6】図3の回転子(25)の上部、抵抗翼維持環
(30〜31)付近を拡大したもので、図5を完全体に
直した場合のA〜A′縦断面図。
FIG. 6 is an enlarged vertical cross-sectional view taken along the line AA ′ of FIG. 5 in which the upper portion of the rotor (25) of FIG. 3 and the vicinity of the resistance blade retaining ring (30 to 31) are enlarged, and FIG.

【図7】図1のB部即ち、差動歯車変速装置の縦断面
図。
FIG. 7 is a vertical cross-sectional view of section B of FIG. 1, that is, the differential gear transmission.

【図8】図1のC部即ち、逆転用歯車装置の縦断面図。FIG. 8 is a vertical cross-sectional view of the C portion of FIG. 1, that is, the reverse gear device.

【符号の説明】[Explanation of symbols]

A 液体抵抗制御機のある位置(図1) B 差動歯車変速装置のある位置(図1) C 逆転装置のある位置(図1) D 第1二重軸承のある位置(図1) 1 原動軸(図1) 2 主軸(図1、2、3、4、7) 3 抵抗管軸(図1、2、3、4) 4 差動管軸(図1、3、7、) 5 変速軸(図1、7、8) 6 負荷軸(図1、8) 7 逆転軸(図1、8) 7′ 逆軸軸移動場所(図1、8) 8 原動クラッチ(図1) 9 主軸制動器(図1) 10 抵抗管軸制動器(図1、3) 11 クラッチ面(図1、3) 12 制御機クラッチ(図1、3、7) 13 制動用第1操作桿(図1) 14 上下調節器(図1、3、4) 15 制動用第2操作桿(図1) 16 ペタル(図1) 17 逆転用操作桿(図1、8) 18 主軸承(図2) 19 横圧軸承(図2) 20 抵抗管軸承(2) 21 液体抵抗枠(図3、4) 22 液体抵抗枠蓋(図3) 23 外枠(図3、4) 24 液体無抵抗時の回転子表面の位置線(図5、6) 25 回転子(図3、4、5、6) 26 抵抗翼(図3、4、5、6) 26′抵抗翼(図3、4) 27 翼運動代(図3、4、5、6) 28 翼溝(図4、5) 29 翼運動代(図3) 30 抵抗翼維持環(図3、4、5、6) 31 抵抗翼維持環(図3、6) 32 液体溜り(図3) 33 液体溜り(図3) 34 漏液回収溝(図3) 35 漏液回収溝(図3) 36 液体進入口(図3、4) 37 液体進入口(図3) 38 間隙(図3、6) 39 回転子押え(図3) 40 二重螺旋(図3) 41 調節器承(図3、4) 42 上下調節器(図3、4) 43 滑り台(図3、4) 44 滑り台(図3) 45 滑り台(図4) 46 抵抗管軸承(図3) 47 第2二重軸承(図3) 48 制動体(図3) 49 固定枠(図5、6) 50 固定子(図5、6) 51 液体無抵抗時室型(図4) 52 円筒形(図4、5、6) 53 満液室(図4) 54 抵抗作用時の抵抗翼維持環最下辺位置を示した線
(図4) 55 液体排出口(図4、5) 56 差動管軸承(図7) 57 滑り鍵(図3、7) 58 クラッチ操作環(図7) 59 クラッチ圧着器(図7) 60 横圧軸承(図7) 61 抵抗歯車(図7) 62 遊星歯車(図7) 63 遊星歯車軸(図7) 64 変速歯車(図7) 65 変速軸承(図7、8) 66 逆転軸承(図7、8) 67 第3二重軸承(図7) 68 逆転用一次歯車(図7、8) 69 伝導用雌型連結器(図8) 70 第4二重軸承(図8) 70 回転子表面位置線(図3) 72 伝導用雄型連結器(図8) 73 逆転用最終歯車(図8) 73′最終歯車作用時転移場所(図8) 74 逆転用四次歯車(図8) 75 滑り鍵(図8) 76 負荷軸承(図8) 77 逆転軸承(図8) 78 逆転用三次歯車(図8) 78′三次歯車作用時転移場所(図8) 79 逆転用二次歯車(図8) 79′二次歯車作用時転移場所(図8) 80 囲枠(図7、8) 81 囲枠(図7) 82 液体抵抗室(図5) 83 液体吸入室(図5) 84 螺旋(図3)
A Position with liquid resistance controller (Fig. 1) B Position with differential gear transmission (Fig. 1) C Position with reversing device (Fig. 1) D Position with first double bearing (Fig. 1) 1 Drive Shaft (Fig. 1) 2 Spindle (Figs. 1, 2, 3, 4, 7) 3 Resistance tube shaft (Figs. 1, 2, 3, 4) 4 Differential tube shaft (Figs. 1, 3, 7,) 5 Shift shaft (Figs. 1, 7, and 8) 6 Load shaft (Figs. 1 and 8) 7 Reverse rotation shaft (Figs. 1 and 8) 7'Reverse shaft movement place (Figs. 1 and 8) 8 Driving clutch (Fig. 1) 9 Spindle brake ( 1) 10 Resistance tube shaft brake (Figs. 1, 3) 11 Clutch surface (Figs. 1, 3) 12 Controller clutch (Figs. 1, 3, 7) 13 First operating rod for braking (Fig. 1) 14 Vertical adjuster (Figs. 1, 3, and 4) 15 Second operating rod for braking (Fig. 1) 16 Petal (Fig. 1) 17 Operating rod for reverse rotation (Figs. 1, 8) 18 Main bearing (Fig. 2) 19 Lateral pressure bearing (Fig. 2) ) 20 Resistance tube bearing (2) 21 Liquid resistance frame (Figs. 3 and 4) 22 Liquid resistance frame lid (Fig. 3) 23 Outer frame (Figs. 3 and 4) 24 Position line of rotor surface when liquid is non-resistant (Fig. 5, 6) 25 rotor (Figs. 3, 4, 5, 6) 26 resistance blade (Figs. 3, 4, 5, 6) 26 'resistance blade (Figs. 3, 4) 27 blade motion allowance (Figs. 3, 4, 5, 6) 6) 28 blade groove (Figs. 4, 5) 29 blade motion allowance (Fig. 3) 30 resistance blade maintenance ring (Figs. 3, 4, 5, 6) 31 resistance blade maintenance ring (Figs. 3, 6) 32 liquid pool (Fig. 3) 33 liquid pool (FIG. 3) 34 liquid leakage recovery groove (FIG. 3) 35 liquid leakage recovery groove (FIG. 3) 36 liquid inlet (FIGS. 3 and 4) 37 liquid inlet (FIG. 3) 38 gap (FIG. 3) , 6) 39 Rotor retainer (Fig. 3) 40 Double helix (Fig. 3) 41 Adjuster bearing (Figs. 3, 4) 42 Vertical adjuster (Figs. 3, 4) 43 Slide (Figs. 3, 4) 44 Slide ( Figure 3) 45 slide (FIG. 4) 46 resistance tube bearing (FIG. 3) 47 second double bearing (FIG. 3) 48 braking body (FIG. 3) 49 fixing frame (FIGS. 5 and 6) 50 stator (FIGS. 5 and 6) ) 51 Liquid non-resistance chamber type (Fig. 4) 52 Cylindrical shape (Figs. 4, 5, 6) 53 Full chamber (Fig. 4) 54 Line showing the position of the lowermost side of the resistance blade maintenance ring during resistance action (Fig. 4) ) 55 liquid discharge port (Figs. 4, 5) 56 differential pipe bearing (Fig. 7) 57 sliding key (Figs. 3, 7) 58 clutch operating ring (Fig. 7) 59 clutch crimping device (Fig. 7) 60 lateral pressure bearing ( 7) 61 resistance gear (FIG. 7) 62 planetary gear (FIG. 7) 63 planetary gear shaft (FIG. 7) 64 speed change gear (FIG. 7) 65 speed change bearing (FIGS. 7 and 8) 66 reverse rotation bearing (FIGS. 7 and 8) 67 Third double bearing (Fig. 7) 68 Reverse rotation primary gear (Figs. 7 and 8) 69 Conductive female coupler (Fig. 8) 70 Fourth double bearing (Fig. 8) 70 rotor surface position line (Fig. 3) 72 male transmission coupling (Fig. 8) 73 final gear for reverse rotation (Fig. 8) 73 'final gear transfer location (Fig. 8) 74 fourth gear for reverse rotation (Fig. 8) 75 Sliding key (Fig. 8) 76 Load bearing (Fig. 8) 77 Reverse rotation bearing (Fig. 8) 78 Reverse rotation tertiary gear (Fig. 8) 78 'Tertiary gear transition location (Fig. 8) 79 Reverse rotation two Next gear (Fig. 8) 79 'Transition position when secondary gear acts (Fig. 8) 80 Enclosure (Figs. 7 and 8) 81 Enclosure (Fig. 7) 82 Liquid resistance chamber (Fig. 5) 83 Liquid suction chamber (Fig. 5) ) 84 spiral (Fig. 3)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月1日[Submission date] October 1, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 無段階変速の装置Device for continuously variable transmission

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【発明の目的】元来変速機は、各種産業、交通車輌等の
他色々の分野に使用される、回転体の変速に数多く利用
されて居るけれ共、其の利用されて居る変速機の殆ど
は、段階切換変速である。其の内、特に交通車輌用とし
ては、最近専ら自動変速機の使用が氾乱して居るけれ
共、之等も亦例外なく段階切換変速である。又其の他に
も、相対斜面輪調帯掛無段階変速機も出て来たけれ共、
之又二段階変速方式に他ならない。此の様にして現在迄
の処、完全な無段階変速の出来る構造の装置になつたも
のは全く見当らない処から、之等従来の変速機によつて
為し得なかつた、完全無段階変速回転伝導の出来る構造
の装置になつた考案をして、之を所有産業方面の変速部
門に利用する事によつて、原動省力、能率向上、高速化
による粗暴運転の排除等、多方面に亘る貢献を目的とし
たものである。
OBJECT OF THE INVENTION Originally, transmissions are used in various fields such as various industries, transportation vehicles, and various other fields, and many of them are used for speed change of rotating bodies, but most of the transmissions that are used. Is a step change gear. Among them, especially for transportation vehicles, the use of automatic transmissions has been disturbed recently, but there is no exception in the step-shifting. In addition to that, there is also a continuously variable transmission with a relative slope wheel belt.
Nomata is a two-stage shifting system. Thus far, there has been no device that has been constructed so far as to have a completely stepless speed change mechanism. Therefore, it is not possible to use a conventional transmission. By devising a device with a structure that can transmit rotation, and utilizing it for the gear shift section in the field of owning industry, there are many aspects such as power saving, efficiency improvement, elimination of rough run by speeding up, etc. It is intended to contribute.

【産業上の利用分野】本発明は、各種開交通車輌用無段
階変速、高層駐車塔高速回転用無段階変速、超高層建築
物の超高速エレベーター用無段階変速、大型起重機の高
速作業用無段階変速、交通車輌制動兼無段階変速等の他
本発明の無段階制御回転抵抗機(図1のA、図3、4)
部分のみを車輪制動機として利用する等、其の利用分野
は甚だ広範囲である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuously variable transmission for various open traffic vehicles, a continuously variable transmission for high-speed rotation of a high-rise parking tower, a continuously variable transmission for an ultra-high-speed elevator of a high-rise building, a large-scale hoist for high-speed operation In addition to stepwise speed change, traffic vehicle braking and stepless speed change, etc., the steplessly controlled rotary resistance machine of the present invention (A in FIG. 1, FIGS. 3 and 4)
The field of use is extremely wide, such as using only a part as a wheel brake.

【従来の技術】元来、強力な原動回転を変速して、其の
作業効果の円滑を計つたものは、枚挙に暇がない位多岐
に亘るけれ共、現在各種産業から交通車輌等に至る迄、
利用されて居る変速機は、其の変速方法が手動式から自
動変速に至る迄の殆どは、段階切換変速である。最近で
は又、相対斜面輪を可変有効半径作用調帯掛とした、無
段階変速機も出て来たけれ共、之又完全無段階変速では
なく、先づ一次的に或る程度迄変速回転したものを、二
次的に引継いで後更に変速する様した、二段階変速に過
ぎない。従つて此の変速機は或る程度使用すると、調帯
が延びて滑る様になるので、之を自動的に張る事迄は、
可能であるけれ共、遂には切れたり、斜面輪間に深く食
い込んだりする為に屡々、調帯を取り換えなくてはなら
ない等の欠陥がある事から強力を要するものには忌避さ
れ、極く弱小の機械のみに用いられている。次に、電磁
抵抗又は電動機其もので変速して居るものもあるけれ
共、之等も正しく云えば、論外なく多段変速である。同
時に電車等の減速に、電動機を逆用する方法も一般的に
行われて居るけれ共、之等は皆部分的作用でしかない。
本発明の一部である、無段階制御回転抵抗機(図1の
A、図3、4)を使用した場合の様に最高回転から零回
転に至る間を、思いの侭の調節制動する事は、不可能で
ある。
2. Description of the Related Art Originally, there is a wide variety of things that have a smooth driving effect by changing the speed of a strong driving force, and are currently used in various industries, such as transportation vehicles. Until
Most of the transmissions used are from a manual type to an automatic transmission, and the transmission is a step-shifted transmission. Recently, there has also come out a continuously variable transmission in which the relative slant wheel has a variable effective radius action band. However, it is not completely infinitely variable, but it is temporarily rotated to a certain extent first. It is only a two-stage gear shift in which the gear is secondarily taken over and the gear is shifted further. Therefore, when this transmission is used to a certain extent, the band extends and slips, so until the tension is automatically set,
Although it is possible, it is often weak and is extremely weak because it has defects such as the fact that it has to be cut or finally penetrates deeply between the slope wheels, and it often has to change the zoning. Used only in the machine. Next, although there are some gears that are shifted by electromagnetic resistance or the electric motor itself, it goes without saying that it is a multi-stage gear shift. At the same time, a method of reversely using an electric motor for decelerating a train or the like is also commonly used, but all of them are only partial actions.
As in the case of using the stepless control rotary resistance machine (A of FIG. 1, FIG. 3, 4) which is a part of the present invention, the braking adjustment of the desired wind is performed between the maximum rotation and the zero rotation. Is impossible.

【発明が解決しようとする課題】前記の様に、産業、交
通車輌、其の他多くの技術再開発に於ける、必須部門で
ある処の、無段階変速の装置であるにも拘らず、今日に
至る迄、未だに其の出現を見ない事が課題である為に、
此の課題を本発明によつて、解決しようとするものであ
る。
As described above, in spite of being a continuously variable transmission, which is an essential department in industrial, transportation vehicles, and many other technical redevelopments, Until today, it is still a challenge to not see its appearance,
The present invention is intended to solve this problem.

【課題を解決する為の手段】ダムや、蒸汽発生機関の様
な大型設備が不可能な場所に於て、差動歯車装置(図1
のB、図7)の一部である、抵抗歯車(61)に、無段
階の抵抗を加えて、回転の変速調整を行う方法は、今日
に至る迄皆無の為に、本発明の無段階制御回転抵抗機
(図1のA、図3、4)に差動歯車装置(図1のB、図
1)と原動機を、組合せて作用させる事によつて、課題
を解決する為の手段としたものである。
[Means for Solving the Problems] In a place where large equipment such as a dam or steam generator cannot be used, a differential gear device (see FIG.
B, FIG. 7), which is a part of FIG. 7), there is no method to adjust the rotation speed by adding a stepless resistance to the resistance gear (61). A means for solving the problem is obtained by operating the control rotary resistance machine (A in FIG. 1, FIG. 3, 4) in combination with the differential gear device (B in FIG. 1, FIG. 1) and the prime mover. It was done.

【実施例】各請求項と、各図面によつて、其の実施の一
例を下記するけれ共、本来は正逆の両回転を行つて居る
もの、例えば交通車輌、高速エレベーター、大型起重
機、高層駐車塔等の他制動を兼用する場合等では、無段
階制御回転抵抗機(図1のA、図3、4)は、正逆回転
の二重構造であれ共、結果は同じ事の重複説明となつて
複雑化するのみの為に、此処では單一構造を以て説明を
する。原動軸(1)に接続した、主軸(図1、2、3、
4の2)は、相互妨害しない様にして、管軸(3・4)
内を通り、管軸(図7の4)の末端部に備えられた、第
3二重軸承(図7の67)に承けられ、其の軸末端部に
は、複数枝になつた遊星歯車軸(図7の63)を設け、
其の各軸先端部には、それぞれ遊星歯車(図7の62)
を、公転し乍ら自転し得る様に備え、其の遊星歯車の一
方は、管軸(図7の4)の末端に固定された、抵抗歯車
(図7の61)に係合させ、此の管軸の先端は、複数の
抵抗翼維持環(図3、4、5、6の30、31)に各々
緩固定された、複数の抵抗翼(図3、4、、5、6の2
6、26′)を、回転子(図3、4、5、の25)に設
けられた、各、翼溝(図4、5の28)に緩嵌して、之
等を一組の回転体と、なしたものを、制動器(図3の1
0)を、備えた管軸(図3、4の3)に固定して、之等
管軸(図7の4)の先端と管軸(図3の3)の末端を連
繋し、此の回転体部分は、液体進入口(図3の36、3
7)や、液体排出口(図4、5の55)又液体溜り(図
3の32、33)等を備えた抵抗枠(図3、4、5の2
1)内部に設けられた、円筒型空洞(図3、4、5の5
2)内に、中心回転から偏心回転に至る間の任意回転操
作が出来る様に内部装填し、外枠(図3、4の23)に
設けられた、滑り台(図3、4の43、44、45)上
に配置し、外枠(23)の一部と、抵抗枠(21)の一
部を係合した、偏心調節器(図3、4の14)の操作に
よつて、抵抗枠(21)を摺動して、回転子(25)の
無段階抵抗回転速度を調節して得た力を、抵抗歯車(6
1)に与え、此の力によつて差動した反発力を変速歯車
(図7の64)に無段階の変速回転を起させ、之を固定
した、変速軸(図7の5)から之に連繋した、負荷軸
(図8の6)に伝導して、稼働させる様にした組織構造
の、装置になつたもので、若し此の変速軸(5)回転
を、主軸より低速回転構造にする場合は、主軸(2)を
各遊星歯車の外周部に係合する事によつて、容易に目的
を達し得るものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the embodiment will be described below with reference to each claim and each drawing, but originally, both of the forward and reverse rotations are performed, for example, a transportation vehicle, a high speed elevator, a large hoist, a high-rise building. In the case of also using other braking such as parking tower, the stepless control rotary resistance machine (A in FIG. 1, FIG. 3, 4) has the same result regardless of whether it has a double structure of forward and reverse rotation. Therefore, since it is only complicated, the explanation will be given here by using a single structure. The main shaft (Figs. 1, 2, 3,
4 of 2) is the tube axis (3.4) so as not to interfere with each other.
A planetary gear that passes through the inside and is supported by a third double bearing (67 in FIG. 7) provided at the distal end of the tube shaft (4 in FIG. 7), and has a plurality of branches at its distal end. Provide a shaft (63 in FIG. 7),
A planetary gear (62 in FIG. 7) is attached to the tip of each shaft.
So that it can revolve around its own axis, and one of its planetary gears is engaged with a resistance gear (61 in FIG. 7) fixed to the end of the tube shaft (4 in FIG. 7). The tip end of the tube axis of the plurality of resistance blades (Figs. 3, 4, 5, 6 and 2 of Figs. 3, 4, 5, 6) is loosely fixed to the plurality of resistance blade maintenance rings (30, 31 of Figs. 3, 4, 5, 6).
6, 26 ') are loosely fitted to the blade grooves (28 in FIGS. 4, 5) provided on the rotor (25 in FIGS. 3, 4, 5) to rotate the rotors as a set. The body and what you have done
0) is fixed to the provided tube shaft (3 in FIGS. 3 and 4) to connect the tip of the uniform tube shaft (4 in FIG. 7) and the end of the tube shaft (3 in FIG. 3). The rotating body part is a liquid inlet (36, 3 in FIG. 3).
7), a liquid discharge port (55 in FIGS. 4, 5), a liquid reservoir (32, 33 in FIG. 3) and the like, a resistance frame (2 in FIGS. 3, 4, 5).
1) An internal cylindrical cavity (5 in FIGS. 3, 4, and 5)
2) The slides (43 and 44 in FIGS. 3 and 4) mounted inside the outer frame (23 in FIGS. 3 and 4) that are internally loaded to allow arbitrary rotation operations from central rotation to eccentric rotation. , 45) and by engaging a part of the outer frame (23) and a part of the resistance frame (21) with the operation of the eccentricity adjuster (14 in FIGS. 3 and 4). The force obtained by sliding the (21) and adjusting the stepless resistance rotation speed of the rotor (25) is applied to the resistance gear (6
1), and a repulsive force differentially generated by this force is caused to continuously change the rotation of the speed change gear (64 in FIG. 7) and is fixed from the speed change shaft (5 in FIG. 7). The structure of the structure is such that the load shaft (6 in FIG. 8) connected to the device is operated to operate, and the speed of the speed change shaft (5) is lower than that of the main shaft. In this case, the purpose can be easily reached by engaging the main shaft (2) with the outer peripheral portion of each planetary gear.

【発明の効果】前記の様にして出来た本発明を、前記の
通り、交通車輌の無段階変速を始め、高層駐車塔や、超
高層建築物用の超高速エレベーター、大型高速起重機等
に、従来為し得なかつた、無段階変速伝導が可能となつ
て、労力と作業時間短縮が出来、作業全体に無理が掛ら
ないので、より以上の安全確認運転にゆとりが出来る。
又在来の変速機使用自動車では、其の操縦者と同乗者の
別なく、甚だ不快感を抱くものとして、変速衝激と変速
ずれがあるけれ共、本発明を利用する時は、之等の問題
は一挙に除去する事が出来る。又其の他多岐に亘る効果
を、箇条書きとして下記する。 1.在来のコンバーター利用車に見る様な、伝導動力の
損失がない。 2.在来の自動変速車では、不可能な、省資源惰力運転
が自由自在に出来る。 3.在来の自動変速車に於て、屡々発生する、原動機始
動と同時に車が急発進して事故を起す様な事は、本発明
に於てては起り得ない。 4.降板に際して、在来車に見る様な、車輪制動による
発熱災害を起す様な事は、本発明の装備車では有り得な
い。 5.長距離連続降坂の場合、本発明装備車は、原動機停
止の侭で降坂出来るので、其の間の燃料は100%の節
減が出来る。其の上車輪制動の必要もない。 6.在来の自動変速車と比べる時は、事更燃料消費が少
い為に、大気汚染防止に、一役買つて居る。 7.在来の自動車では見る事の出来なかつた、停止回転
から最高回転に至る迄、瞬時も回転の中絶をする必要な
く、連続無段階変速が出来ると共に、どの様な変速途次
に於ても、任意の回転を維持する事が出来る。 8.在来の自動車では、坂道発進時、必ず床制動器を使
用させ乍ら、発進するけれ共、本発明使用車では、どの
様な坂道でも、後退する事なく其侭発進する事が出来
る。 9.在来の自動変速車で駆動車輪が泥濘に落ち込んだ場
合、先づ自力で脱出は不可能であるけれ共、本発明の装
備車では、容易に自力脱出が出来る。 10.在来の自動車は、発進に際して、原動機回転を相
当高めない時は、原動機停止をするけれ共、本発明の装
備車では、原動機出力に応じた発進しかしない為に、原
動機停止をする様な事はない。 11.在来の自動車は、急発進する時は、車輪が空転し
タイヤの軋み音を発するけれ共、本発明の装備車では其
の様な事がない。 12.在来の自動変速車で見る処の変速時のもたもた
や、もたもたの後急加変速する様な事は、本発明の装備
車では発生しない。 13.在来のエレベーターは、発進、停止共に衝激があ
るけれ共、本発明を装備する時は、発進、停止共、無感
覚裡に行動し、而も移動中は在来の数倍及至は数十倍の
高速にして昇降出来る。 14.在来の起重機は、高速にする時は、発進停止に際
して衝激が大にして、大馬力を消費し、衝激を無く相と
すれば能率が揚らない欠陥があるけれ共、本発明の装備
機に於ては、発進停止に於ける衝激は皆無にも拘らず途
中高速の揚げ下げが出来るので低動力でも高能率作業が
可能である。 15.在来の駐車塔は、高層になる程非能率であるけれ
共、本発明を使用する事によつて、収納駐車、送出操作
を高能率化する事が出来る。 16.本発明の、無段階制御回転抵抗機だけを、交通車
輌の車輪制動に用うる時は、其の効果絶なるにも拘ら
ず、在来の摩擦制動に見る、発熱による不慮の災害を完
全に防止する事が出来る。
As described above, the present invention made as described above can be applied to a high-speed parking tower, a super high-speed elevator for super high-rise buildings, a large high-speed hoist, etc. Since it is possible to carry out continuously variable transmission, which was not possible in the past, labor and work time can be shortened, and since the overall work is not overloaded, more safety confirmation operation can be made.
In addition, in a conventional vehicle using a transmission, whether it is a driver or a passenger, there is a great deal of discomfort, and there is a shift shift and a shift shift. The problems of can be removed at once. Other various effects are listed below as itemized items. 1. There is no loss of conduction power as seen in conventional converter vehicles. 2. With conventional automatic transmissions, you can freely perform resource-saving coasting, which is impossible. 3. In the conventional automatic transmission vehicle, the frequent occurrence of an accident such as the vehicle suddenly starting at the same time as the start of the prime mover cannot occur in the present invention. 4. It is impossible for a vehicle equipped with the present invention to cause a heat generation disaster due to wheel braking, which is seen in a conventional vehicle when the vehicle is dismounted. 5. In the case of long-distance continuous downhill, the vehicle equipped with the present invention can go downhill even if the prime mover is stopped, so the fuel can be saved 100% during that time. Moreover, there is no need to brake the wheels. 6. Compared to the conventional automatic transmission, it consumes less fuel, which helps prevent air pollution. 7. It is not possible to see it in a conventional car, from continuous rotation to maximum rotation, it is possible to perform continuous stepless speed change without instantaneous abortion of rotation, and at any speed change It can maintain arbitrary rotation. 8. In a conventional automobile, the floor brake must be used at the time of starting on a slope, and the vehicle can start on any slope, without moving backward. 9. In the case of a conventional automatic transmission, if the drive wheels have fallen into the mud, it is impossible to escape by itself first, but the vehicle equipped with the present invention can easily escape by itself. 10. When starting a conventional vehicle, the prime mover is stopped when the rotation of the prime mover is not considerably increased, but the vehicle equipped with the present invention only starts according to the output of the prime mover. There is no. 11. In a conventional automobile, when the vehicle suddenly starts, the wheels idle and the tire makes a squeaking noise. However, this is not the case with the vehicle equipped with the present invention. 12. It does not occur in the vehicle equipped with the present invention that the user feels that the conventional automatic transmission vehicle shifts when shifting, and that after that, the vehicle may be suddenly accelerated. 13. Conventional elevators have both urges to start and stop, but when equipped with the present invention, they act insensitively both when starting and stopping, and even when moving, they are several times as many as conventional ones. It can move up and down at 10 times the speed. 14. The conventional hoist has a defect that when the speed is increased, the shock becomes great when starting and stopping and consumes a large horsepower, and if the shock is eliminated, the efficiency is not improved. With the equipped machine, it is possible to hoist at a high speed on the way regardless of the urge to stop the start, so high efficiency work is possible even with low power. 15. The conventional parking tower is inefficient as it becomes higher, but by using the present invention, it is possible to improve the efficiency of storage parking and delivery operation. 16. When only the stepless control rotary resistance device of the present invention can be used for braking the wheels of a traffic vehicle, the unexpected disaster caused by heat generation, which is seen in conventional friction braking, is completely eliminated, though its effect is lost. It can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】無段階変速の装置、全体の組合せと系統を示し
た畧図である。
FIG. 1 is a cross-sectional view showing a continuously variable device, an overall combination and a system.

【図2】図1のD部で、第1二重軸承の縦断面図。FIG. 2 is a vertical cross-sectional view of the first double bearing at section D in FIG.

【図3】図1のA部で、無段階制御回転抵抗機の縦断面
図。
FIG. 3 is a vertical cross-sectional view of the stepless control rotary resistance machine in section A of FIG.

【図4】図3を完全体にした場合のA〜A′横断面図。FIG. 4 is a transverse cross-sectional view taken along the line AA ′ of FIG.

【図5】図4の上部、抵抗翼(26)付近を拡大した
図。
5 is an enlarged view of the upper part of FIG. 4 and the vicinity of the resistance wing (26).

【図6】図3の抵抗枠(21)の上部、抵抗翼(26)
と抵抗翼維持環の配置状況を拡大した図。
FIG. 6 is an upper part of the resistance frame (21) of FIG. 3, a resistance wing (26).
FIG. 3 is an enlarged view of the arrangement of the resistance wing maintenance ring.

【図7】図1のB部、差動歯車装置の縦断面図。7 is a vertical cross-sectional view of the differential gear unit shown in FIG. 1B.

【図8】図1のC部、逆転装置の縦断面図。FIG. 8 is a vertical cross-sectional view of the C unit in FIG. 1, the reversing device.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 図3、4によって、主軸(2)を相互回
転の妨害をしない様に、内部を通過させた抵抗管軸
(3)の一部に、回転手押え(39)等によって固定し
た、回転子(25)の周囲に設けた、翼運動代(27)
のある複数の翼溝(28)に、複数の抵抗翼維持環(3
0〜31)の任意場所に、固定子(50)を以て緩固定
した抵抗翼(26〜26′)を、各翼溝に嵌め込みて一
組にしたものを、液体進入口(37)、液体排出口(5
5)、液体溜り(32)、間隙(38)、漏液回収溝
(35)等を備え持った、液体抵抗枠(21)の畧央部
にある、円筒形(52)内に、回転と任意の上下が出来
る様に嵌め込み、其の上から液体抵抗枠同様の備ある、
液体抵抗枠蓋(22)を螺旋(84)等で密閉して一団
となしたものを、外枠(23)上に設けた滑り台(43
〜44〜45)上に、擦動出来る様に嵌めて、其の下方
部は外枠(23)の下方部に備えた、上下調節器承(4
1)上に設けある、上下調節器(42)に支えられ、一
方上部は又、上部にも設けた上下調節器(14)を介し
て、外枠の上部に液体抵抗枠が上下して、液体抵抗作用
が出来る様に係合せ、他方抵抗管軸の末端には、回転子
を停止させた場合の確定停止用として、一部にクラッチ
面を備えた、抵抗管軸制動器(10)を設け、其の央部
には、差動歯車変速装置(図7)と連結するに必要な、
差動管軸(4)を承ける為の、第2二重軸承(47)を
備え、其の前方にある回転子との間は、抵抗管軸承(4
6)に、そして回転子前の先端を抵抗管軸承(図2の2
0)に、承け支えさせて成った構造の液体抵抗制御機。
1. As shown in FIGS. 3 and 4, the main shaft (2) is fixed to a part of the resistance tube shaft (3) passing through the main shaft (2) by a rotary hand press (39) or the like so as not to interfere with mutual rotation. The wing movement allowance (27) provided around the rotor (25)
A plurality of resistance blade maintenance rings (3
0 to 31), the resistance blades (26 to 26 ') loosely fixed by the stator (50) are fitted into the blade grooves to form a set, and the liquid inlet (37) and the liquid drain are discharged. Exit (5
5), a liquid pool (32), a gap (38), a liquid recovery groove (35), etc. are provided, and rotation and rotation are performed in a cylindrical shape (52) in the central portion of the liquid resistance frame (21). Fit it so that you can move it up and down, and from there, it has the same equipment as the liquid resistance frame.
A slide (43) provided on the outer frame (23) is formed by sealing the liquid resistance frame lid (22) with a spiral (84) or the like to form a group.
Up to 44 to 45), the lower part of which is fitted to the lower part of the outer frame (23) so that it can be rubbed.
1) It is supported by an up-down adjuster (42) provided on the upper side, while the upper part also moves up and down the liquid resistance frame to the upper part of the outer frame via the up-down adjuster (14) also provided on the upper part. A resistance tube shaft brake (10) partially provided with a clutch surface is provided at the end of the resistance tube shaft so as to be fixedly stopped when the rotor is stopped. , Its central part is necessary to connect with the differential gear transmission (Fig. 7),
A second double bearing (47) for receiving the differential tube shaft (4) is provided, and a resistance tube bearing (4) is provided between the second double bearing (47) and the rotor in front of it.
6) and the front end of the rotor in front of the resistance tube bearing (2 in FIG. 2).
0) A liquid resistance controller with a structure that is supported and supported.
【請求項2】 抵抗管軸制動器(図3の10)上の、ク
ラッチ面(図3の11)に、ペタル(図1の16)に繋
ったクラッチ操作環(58)と、其の後部に設けたクラ
ッチ圧着器(59)の力で、差動管軸(4)の先端部上
に設けた、滑り鍵(57)上を擦動して、係合う様にし
た差動管軸(4)は、其の後部を差動管軸承(56)に
承けさせ、其の末端上には抵抗歯車(61)を固設し、
其の央部には第2二重軸承(67)を備え、此の軸承
に、原動クラッチ(図1の8)から差動管軸内を、相互
回転の妨害しない様にして通過した主軸(2)を承けさ
せ、其の先端には複数の軸を備えた遊星歯車軸(63)
を固設し、其の各一部宛に自転出来る様にした遊星歯車
(62)を備えて、其の各一方を抵抗歯車に係合せ、反
対側の各一方は、変速軸承(65)に承けられて進入し
た、変速軸の先端に固定された、変速歯車(64)に係
合せて成った構造の差動歯車変速装置。
2. A clutch operating ring (58) connected to a petal (16 in FIG. 1) on the clutch surface (11 in FIG. 3) on the resistance tube shaft brake (10 in FIG. 3) and its rear part. With the force of the clutch crimping device (59) provided on the differential tube shaft (5) provided on the tip of the differential tube shaft (4), the sliding key (57) is rubbed to engage the differential tube shaft ( 4) has its rear part received by a differential tube bearing (56), and a resistance gear (61) is fixedly mounted on its end,
A second double bearing (67) is provided in the central portion of the main shaft, which passes through the bearing from the driving clutch (8 in FIG. 1) in the differential tube shaft without interfering with mutual rotation. 2), and a planetary gear shaft (63) with multiple shafts at its tip
Is equipped with a planetary gear (62) capable of rotating on its respective parts, one of which is engaged with a resistance gear, and the other one of the opposite sides is provided with a speed change bearing (65). A differential gear transmission having a structure which is received and entered, and which is fixed to a tip of a transmission shaft and is engaged with a transmission gear (64).
【請求項3】 請求項1に於て詳記した、液体抵抗制御
機(図1のA、3、4)の央部辺で、回転子(図3、4
の25)と共に回転する様になった、抵抗管軸(図1、
2、3、4の3)の原動軸(図1の1)寄り先端を、抵
抗管軸承(図2の20)で、又液体抵抗制御機内回転子
の後方を、抵抗管軸承(図3の46)にてそれぞれに承
けさせ、其の軸末端に設けた抵抗管軸制動器(図3の1
0)の一部に、備えたクラッチ面(図3の11)に。請
求項2に於て詳記した、差動歯車変速装置(図7)中に
ある、抵抗歯車(図7の61)を固定し、一旦差動管軸
承(図7の65)に承け、尚クラッチ面方向に延長し
た、差動管軸(図3、7の4)の先端を、変速作用中に
軸が振れない様にする為に、固定された抵抗管軸制動機
(図3の10)の央部に備えた、第2二重軸承(3の4
7)に承けさせ、其の軸上に備えた、滑り鍵(図3、7
の57)上を、液体抵抗制御機に備った、上下調節器
(図1、3、4の14)に連繋したペタル(図1の1
6)に係合った、クラッチ操作環(図7の58)の操作
によって、制御機クラッチ(図7の12)が係合う様に
なり。一方、原動クラッチ(図1の8)から延長した主
軸(図1、2、3、4、7の2)を、一旦主軸承(図2
の18)に承けさせた後、相互に回転の妨害をしない様
に、抵抗管軸と差動管軸の中空部を通過させ、差動管軸
末端の央部に備えた、第3二重軸承(図7の67)に承
けさせて、差動歯車変速装置部分に入り、遊星歯車(図
7の62)を介して各歯車と係合い、全機能連繋をし之
等の操作によって高低速回転の無段階変速を発生させ、
之を変速軸(図7の5)によって負荷軸(図8の6)
を、稼働させる構造の組織になった、液体抵抗無段階変
速の装置。
3. The rotor (FIGS. 3, 4) on the central side of the liquid resistance controller (A, 3, 4 in FIG. 1) described in detail in claim 1.
25) of the resistance tube shaft (Fig. 1,
2, 3 and 4 3) the tip end of the driving shaft (1 in FIG. 1) close to the resistance tube bearing (20 in FIG. 2) and the rear of the rotor in the liquid resistance controller to the resistance tube bearing (FIG. 3). 46), and the resistance tube shaft brake (1 in FIG. 3) installed at each shaft end.
On the clutch surface (11 in FIG. 3) provided in part of 0). The resistance gear (61 in FIG. 7) in the differential gear transmission (FIG. 7) described in detail in claim 2 is fixed, and temporarily fixed to the differential tube bearing (65 in FIG. 7). In order to prevent the tip of the differential tube shaft (4 in FIGS. 3 and 7) extended in the clutch surface direction from swinging during the shifting operation, a fixed resistance tube shaft brake (10 in FIG. 3) is fixed. 2) double bearing (3 of 4)
7), and equipped with a sliding key (Fig. 3, 7)
57) above, the petal (1 in FIG. 1) connected to the up-down adjuster (14 in FIGS. 1, 3, and 4) provided in the liquid resistance controller.
By operation of the clutch operation ring (58 in FIG. 7) engaged with 6), the controller clutch (12 in FIG. 7) is engaged. On the other hand, the main shaft (Fig. 1, 2, 3, 4, 7-2) extended from the driving clutch (8 in Fig. 1) is temporarily supported (Fig. 2).
No. 18) of the differential tube shaft, and then the hollow tube of the resistance tube shaft and the differential tube shaft is passed through so that they do not interfere with each other's rotation. Bearing the bearing (67 in FIG. 7), enter the differential gear transmission unit, engage with each gear through the planetary gear (62 in FIG. 7), and connect all the functions to operate at high speed or low speed. Generates stepless speed change of rotation,
The load shaft (6 in FIG. 8) by the speed change shaft (5 in FIG. 7)
A fluid resistance stepless speed changer that has been structured to operate the.
JP4069897A 1992-01-28 1992-01-28 Continuously variable transmission Pending JPH08219250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069897A JPH08219250A (en) 1992-01-28 1992-01-28 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069897A JPH08219250A (en) 1992-01-28 1992-01-28 Continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH08219250A true JPH08219250A (en) 1996-08-27

Family

ID=13415954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069897A Pending JPH08219250A (en) 1992-01-28 1992-01-28 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH08219250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200434A (en) * 2021-05-28 2021-08-03 埃特朗(上海)机电新技术有限公司 Passive automatic translation mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200434A (en) * 2021-05-28 2021-08-03 埃特朗(上海)机电新技术有限公司 Passive automatic translation mechanism

Similar Documents

Publication Publication Date Title
AU758770B2 (en) Automatic transmission for vehicles
CN102066807B (en) Reversible variable transmission RVT
US7942777B2 (en) Continuously variable automatic transmission for heavy trucks, buses and light automobiles
KR102356303B1 (en) Two-steps transmission for two-wheeled vehicles
RU2133896C1 (en) Transmission with gentle start device for car in particular
KR100294474B1 (en) Continuously variable transmission
JPH08219250A (en) Continuously variable transmission
CN101089421A (en) Speed changing system of constant power stepless variable-speed vehicle
CN202707979U (en) Double-output intermittent bidirectional driving mechanism and bidirectional overrun clutch and self-locking differential mechanism and self-locking vehicle drive axle
CN107100963A (en) Multi-function variable-speed device assembly
CN211195862U (en) Two grades of integrated bridge assemblies and car
CN2057907U (en) Automotive clutch type parking brake
KR100335600B1 (en) Stepless transmission for vehicles
JP4035564B2 (en) Automatic continuously variable transmission
WO1999024736A1 (en) Continuously variable transmission and transmission apparatus for vehicles utilizing it
CN219841021U (en) Energy-saving gearbox of automobile
CN115143257A (en) Stepless speed change system and speed change method thereof
CN1084852C (en) Hydromechanical stepless speed variator for car
RU199428U1 (en) Low-power vehicle hydromechanical transmission
CN215720577U (en) Hybrid double-planet-row stepless speed change mechanism
CN215763091U (en) Mixed-action three-planet-row stepless speed change mechanism
CN205780635U (en) The variator of tool inverse-stopping functions
CN212672352U (en) Overrunning differential mechanism
CN216343756U (en) Two-gear automatic transmission with internal gear output
CN110486427B (en) Hybrid power type planet gear anti-slide mechanism

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13