JPH0821813B2 - Radio wave absorption wall - Google Patents

Radio wave absorption wall

Info

Publication number
JPH0821813B2
JPH0821813B2 JP29370992A JP29370992A JPH0821813B2 JP H0821813 B2 JPH0821813 B2 JP H0821813B2 JP 29370992 A JP29370992 A JP 29370992A JP 29370992 A JP29370992 A JP 29370992A JP H0821813 B2 JPH0821813 B2 JP H0821813B2
Authority
JP
Japan
Prior art keywords
radio wave
layer
wave absorption
dielectric plate
absorption wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29370992A
Other languages
Japanese (ja)
Other versions
JPH06120726A (en
Inventor
義幸 森山
共三 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Ltd filed Critical Hitachi Ferrite Ltd
Priority to JP29370992A priority Critical patent/JPH0821813B2/en
Publication of JPH06120726A publication Critical patent/JPH06120726A/en
Publication of JPH0821813B2 publication Critical patent/JPH0821813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テレビ電波が入射する
高層建造物の外壁に取り付けられ、テレビ電波の不要反
射波を防止する電波吸収壁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorption wall which is attached to the outer wall of a high-rise building on which television radio waves are incident and which prevents unnecessary reflected waves of television radio waves.

【0002】[0002]

【従来の技術】最近、高層建造物による不要反射電波が
テレビ放送の障害となり、テレビ画面にゴーストを生じ
させる等のいわゆる電波公害が問題となっている。この
対策として、高層建造物の外壁にフェライト板を埋め込
んだ電波吸収壁が種々提案されている。従来の電波吸収
壁の一例の断面図を図5に示す。この従来例は、電波反
射体となる鉄筋54がコンクリート53内に埋設され、
その表面にフェライト板52が張り付けられ、その前面
に花崗岩などの外装材51が施されている。この電波吸
収壁に入射するテレビ電波の角度は、高層建造物の立地
条件とテレビ電波の発信位置との関係で、必ずしも0°
(垂直方向)とはかぎらず、ある入射角を持って斜めに
入射する場合がほとんどである。従来の技術では、この
斜め入射に対して、フェライト板の厚さを変更すること
により設計を行なってきた。すなわち、入射角が大きく
なるにつれ、フェライト板の厚さを薄くすることによ
り、最適設計条件を設定することが一般的であった。
2. Description of the Related Art Recently, unnecessary reflected radio waves from high-rise buildings have become an obstacle to television broadcasting, causing so-called radio wave pollution such as causing ghosts on television screens. As measures against this, various electromagnetic wave absorption walls in which a ferrite plate is embedded in the outer wall of a high-rise building have been proposed. A cross-sectional view of an example of a conventional radio wave absorption wall is shown in FIG. In this conventional example, a reinforcing bar 54 serving as a radio wave reflector is embedded in concrete 53,
A ferrite plate 52 is attached to the surface thereof, and an exterior material 51 such as granite is provided on the front surface thereof. The angle of the TV radio wave incident on the radio wave absorption wall is always 0 ° depending on the location condition of the high-rise building and the transmission position of the TV radio wave.
Not necessarily in the (vertical direction), and in most cases, the light is obliquely incident with a certain incident angle. In the conventional technology, the design is performed by changing the thickness of the ferrite plate for this oblique incidence. That is, it has been common to set the optimum design condition by reducing the thickness of the ferrite plate as the incident angle increases.

【0003】[0003]

【発明が解決しようとする課題】従来の電波吸収壁の反
射損失特性は、垂直入射の場合、100MHzでは15
dB以上の高い反射損失が得られるものの、入射角が6
0°と大きい場合、フェライト板の厚さを薄く設計して
も100MHzで12〜13dBと小さく、充分な反射
特性が得られないという問題点があった。また、外層材
の厚さが10mmと薄い場合、入射角が30°で、10
0MHzの反射損失は、12〜13dBと小さく、入射
角60°では、8〜10dBとさらに小さくなってしま
うという問題点があった。本発明は、上記の問題点を鑑
みて、テレビ電波が入射する全角度0〜90°(90°
は含まない)に対しても、電波吸収壁の反射損失特性
が、100MHzで15dB以上得られる電波吸収壁を
提供することを目的とするものである。
The reflection loss characteristic of the conventional electromagnetic wave absorbing wall is 15 at 100 MHz in the case of vertical incidence.
Although a high reflection loss of dB or more is obtained, the incident angle is 6
When it is as large as 0 °, there is a problem that even if the thickness of the ferrite plate is designed to be small, it is as small as 12 to 13 dB at 100 MHz, and sufficient reflection characteristics cannot be obtained. When the thickness of the outer layer material is as thin as 10 mm, the incident angle is 30 ° and 10
There is a problem that the reflection loss at 0 MHz is as small as 12 to 13 dB and further becomes 8 to 10 dB at an incident angle of 60 °. In view of the above problems, the present invention provides all angles of incidence of television radio waves of 0 to 90 ° (90 °).
It is an object of the present invention to provide a radio wave absorbing wall whose reflection loss characteristic of the radio wave absorbing wall is 15 dB or more at 100 MHz.

【0004】[0004]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、電波の到来方向から順に、花崗岩等の外層材
層、誘電体板層、フェライト板層、反射鉄筋を埋設した
コンクリート層からなる構造、又は電波の到来方向から
順に、ガラスの層、空気層を介して誘電体板層、フェラ
イト板層、反射鉄筋を埋設したコンクリート層からなる
構造であって、該誘電体板の厚さを、0〜50mm(0
を含まない)で比誘電率を、8〜150とすることによ
り、テレビ電波の全入射角に対して、100MHzで1
5dB以上の高い反射損失が得られることを見出し、本
発明に想到した。
[Means for Solving the Problems] As a result of earnest research in view of the above object, an outer layer material layer such as granite, a dielectric plate layer, a ferrite plate layer, and a concrete layer in which reflective reinforcing bars are embedded are formed in order from the arrival direction of radio waves. The structure, or in order from the direction of arrival of radio waves, is a structure consisting of a glass layer, a dielectric plate layer via an air layer, a ferrite plate layer, and a concrete layer in which reflective reinforcing bars are embedded, and the thickness of the dielectric plate is , 0 to 50 mm (0
The relative permittivity is set to 8 to 150 (1) at 100 MHz for all incident angles of TV radio waves.
The inventors have found that a high reflection loss of 5 dB or more can be obtained, and have conceived the present invention.

【0005】[0005]

【実施例】実施例1 本発明を添付図面を参照して以下詳細に説明する。図1
は、本発明に関する電波吸収壁の断面図である。厚さ1
0mm、比誘電率30、縦500mm、横100mmの
誘電体板に、厚さ5mm、縦100mm、横100m
m、μi=1,000のフェライト板を、図2に示すよ
うに接着材で仮止めし、該フェライト板付き誘電体板
を、縦4m、横3.5mとなるように配置した厚さ30
mmの花崗岩の裏面に、電波の磁界方向に連続に、電界
方向には50mmの隙間を介して不連続に接着した。該
フェライト板裏面から20mmの位置に反射鉄筋を配置
し、コンクリートを打設し、図1に示した構造の電波吸
収壁を作成した。この電波吸収壁を自由空間定在波法に
より、入射角60°で評価した。この結果を、表1中の
実施例11に示す。また、上記構造で誘電体板のない電
波吸収壁の特性を、従来例11に示す。さらに、上記構
造で、誘電体板の厚さと比誘電率を変えたときの特性を
表1中に示した。
EXAMPLE 1 The present invention will be described in detail below with reference to the accompanying drawings. FIG.
FIG. 3 is a cross-sectional view of a radio wave absorption wall according to the present invention. Thickness 1
0 mm, relative permittivity 30, length 500 mm, width 100 mm, dielectric plate 5 mm thick, height 100 mm, width 100 m
A ferrite plate having m and μi = 1,000 is temporarily fixed with an adhesive as shown in FIG. 2, and the dielectric plate with the ferrite plate is arranged to have a length of 4 m and a width of 3.5 m.
mm granite was bonded to the back surface of the granite continuously in the magnetic field direction of the radio wave and discontinuously in the electric field direction with a gap of 50 mm. A reflection reinforcing bar was arranged at a position of 20 mm from the back surface of the ferrite plate, and concrete was cast to form an electromagnetic wave absorbing wall having the structure shown in FIG. This radio wave absorption wall was evaluated by the free space standing wave method at an incident angle of 60 °. The results are shown in Example 11 in Table 1. In addition, the characteristics of the radio wave absorption wall having the above structure and having no dielectric plate are shown in Conventional Example 11. Further, in the above structure, the characteristics when the thickness and the relative permittivity of the dielectric plate are changed are shown in Table 1.

【0006】[0006]

【表1】 [Table 1]

【0007】表1から明らかなように、本発明の電波吸
収壁は、入射角60°であっても、100MHzで15
dB以上の高い反射損失が得られた。ここで、誘電体板
の厚さと比誘電率の範囲を限定した理由として、厚さが
50mm以上(50mmは含まない)では、電波吸収壁
の重量が重くなりすぎ、比誘電率が8未満では表1中の
比較例11から明らかなように、反射損失に与える効果
が少なく、150以上(150は含まない)では、10
0MHzの反射損失は15dB以上得られるものの、2
00MHzの反射損失が10dB以下と小さくなるため
である。また、前記花崗岩の厚さは、強度及び重量の問
題より25〜35mm程度が望ましく、フェライト板裏
面から反射鉄筋までの距離は、10〜30mm程度が望
ましい。さらに、フェライト板の電界方向の隙間は、3
0〜80mm程度が望ましく、電波吸収壁の電界方向寸
法に対して、全隙間寸法の占める割合が、25〜45%
程度が望ましい。誘電体板は、ゴム、樹脂、コンクリー
ト等に導電性の粒子、繊維等を混合することにより得ら
れ、導電性の粒子、繊維等の混合比を変えることによ
り、比誘電率のことなる誘電体板が容易に得られる。
As is clear from Table 1, the electromagnetic wave absorption wall of the present invention has a frequency of 15 MHz at 100 MHz even when the incident angle is 60 °.
A high reflection loss of dB or more was obtained. Here, the reason for limiting the range of the thickness and the relative permittivity of the dielectric plate is that when the thickness is 50 mm or more (excluding 50 mm), the weight of the electromagnetic wave absorbing wall becomes too heavy, and when the relative permittivity is less than 8. As is clear from Comparative Example 11 in Table 1, the effect on the reflection loss is small, and when it is 150 or more (150 is not included), it is 10
The reflection loss at 0MHz is 15dB or more, but 2
This is because the reflection loss at 00 MHz is as small as 10 dB or less. Further, the thickness of the granite is preferably about 25 to 35 mm in view of strength and weight, and the distance from the back surface of the ferrite plate to the reflection reinforcing bar is preferably about 10 to 30 mm. Furthermore, the gap in the electric field direction of the ferrite plate is 3
About 0 to 80 mm is desirable, and the ratio of the total gap dimension to the electric field direction dimension of the radio wave absorption wall is 25 to 45%.
The degree is desirable. The dielectric plate is obtained by mixing conductive particles, fibers, etc. into rubber, resin, concrete, etc., and by changing the mixing ratio of the conductive particles, fibers, etc., a dielectric plate with a different dielectric constant can be obtained. Plates are easily obtained.

【0008】実施例2 実施例1の構造であって、花崗岩のかわりに、厚さ15
mmの磁器タイルを外装材とした電波吸収壁を作成し
た。この電波吸収壁に用いたフェライト板の厚さは、7
mmとした。この電波吸収壁を自由空間定在波法によ
り、入射角40°で評価した。表2は、上記構造で、誘
電体板の厚さと比誘電率を変えたときの、100MHz
での反射損失である。表2から明らかなように、本発明
の電波吸収壁は、外装材の厚さが15mmと薄く、入射
角が40°と大きくても、100MHzで15dB以上
の高い反射損失が得られた。
Example 2 The structure of Example 1 has a thickness of 15 instead of granite.
An electromagnetic wave absorbing wall having a mm porcelain tile as an exterior material was created. The thickness of the ferrite plate used for this electromagnetic wave absorption wall is 7
mm. This radio wave absorption wall was evaluated by the free space standing wave method at an incident angle of 40 °. Table 2 shows the above structure with 100 MHz when the thickness and the relative permittivity of the dielectric plate are changed.
Is the reflection loss at. As is clear from Table 2, in the radio wave absorption wall of the present invention, a high reflection loss of 15 dB or more was obtained at 100 MHz even when the thickness of the exterior material was as small as 15 mm and the incident angle was as large as 40 °.

【0009】[0009]

【表2】 [Table 2]

【0010】実施例3 図3は、本発明に関する電波吸収壁の断面図である。厚
さ10mm、比誘電率40の誘電体板を、縦4m、横
3.5mとなるように配置し、その裏面に、厚さ6m
m、縦100mm、横100mm、μi=1,000の
フェライト板を、図4に示すように、電波の磁界方向に
連続に、電界方向には50mmの隙間を介して不連続に
接着材で仮止めした。該フェライト板裏面から20mm
の位置に反射鉄筋を配置し、コンクリートを打設し、該
誘電体板の表面に、50mmの空間を介して、厚さ12
mmの板ガラスを取り付け、図3に示した構造の電波吸
収壁を作成した。この電波吸収壁を入射角45°で評価
した。この結果を、表3中の実施例31に示す。さらに
上記構造で、誘電体板の厚さと比誘電率を変えたときの
特性を表3中に示した。
Embodiment 3 FIG. 3 is a sectional view of a radio wave absorption wall according to the present invention. A dielectric plate having a thickness of 10 mm and a relative dielectric constant of 40 is arranged to have a length of 4 m and a width of 3.5 m, and a back surface of the dielectric plate has a thickness of 6 m.
As shown in FIG. 4, a ferrite plate with m, 100 mm in length, 100 mm in width, and μi = 1,000 was temporarily discontinuously bonded with an adhesive material in the magnetic field direction of the radio wave and with a gap of 50 mm in the electric field direction. I stopped it. 20 mm from the back of the ferrite plate
The reflective rebar is placed at the position of, and concrete is poured, and the thickness of the dielectric plate is 12 on the surface of the dielectric plate through a space of 50 mm.
mm plate glass was attached, and the electromagnetic wave absorption wall having the structure shown in FIG. 3 was created. This radio wave absorption wall was evaluated at an incident angle of 45 °. The results are shown in Example 31 in Table 3. Further, in the above structure, Table 3 shows the characteristics when the thickness and the relative permittivity of the dielectric plate are changed.

【0011】[0011]

【表3】 [Table 3]

【0012】表3から明らかなように、本発明の電波吸
収壁は、入射角45°であっても、100MHzで15
dB以上の高い反射損失が得られた。ここで、前記板ガ
ラスの厚さは、強度及び重量の問題より、5〜20mm
程度が望ましく、板ガラス裏面から、誘電体板表面まで
の空間の間隔は、20〜150mm程度が望ましい。以
上のように、各種構造の電波吸収壁であっても、フェラ
イト板の電波の到来方向に誘電体板を配置することによ
り、電波の全入射角に対して、100MHzで高い反射
損失が得られる。
As is clear from Table 3, the electromagnetic wave absorbing wall of the present invention has a frequency of 15 MHz at 100 MHz even when the incident angle is 45 °.
A high reflection loss of dB or more was obtained. Here, the thickness of the plate glass is 5 to 20 mm due to problems of strength and weight.
It is desirable that the distance between the back surface of the plate glass and the front surface of the dielectric plate be approximately 20 to 150 mm. As described above, even in the radio wave absorption wall of various structures, by arranging the dielectric plate in the radio wave arrival direction of the ferrite plate, a high reflection loss can be obtained at 100 MHz with respect to the entire incident angle of the radio wave. .

【0013】[0013]

【発明の効果】従来の電波吸収壁では、テレビ電波の入
射角が大きくなるにつれ、100MHzで15dB以下
と小さくなる反射損失が、本発明の各種構造の電波吸収
壁によれば、テレビ電波の全入射角に対して、15dB
以上の高い反射損失が得られ、テレビのゴースト障害を
解消することができる。
According to the conventional radio wave absorption wall, the reflection loss which becomes smaller than 15 dB at 100 MHz becomes smaller as the incident angle of the TV radio wave becomes larger. 15 dB for incident angle
The above-mentioned high reflection loss can be obtained, and the ghost trouble of the television can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関する電波吸収壁の断面図である。FIG. 1 is a cross-sectional view of a radio wave absorption wall according to the present invention.

【図2】本発明に関するフェライト板と誘電体板の構成
例の斜視図である。
FIG. 2 is a perspective view of a configuration example of a ferrite plate and a dielectric plate according to the present invention.

【図3】本発明に関する電波吸収壁の断面図である。FIG. 3 is a cross-sectional view of a radio wave absorption wall according to the present invention.

【図4】本発明に関するフェライト板と誘電体板の構成
例の斜視図である。
FIG. 4 is a perspective view of a configuration example of a ferrite plate and a dielectric plate according to the present invention.

【図5】従来の電波吸収壁の断面図である。FIG. 5 is a cross-sectional view of a conventional radio wave absorption wall.

【符号の説明】[Explanation of symbols]

11、51 花崗岩等の外装材 12、33 誘電体板 13、34、52 フェライト板 14、35、53 コンクリート 15、36、54 反射鉄筋 31 ガラス 32 空間 11, 51 Exterior materials such as granite 12, 33 Dielectric plate 13, 34, 52 Ferrite plate 14, 35, 53 Concrete 15, 36, 54 Reflective rebar 31 Glass 32 Space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電波の到来方向から順に、花崗岩等の外
装材層、誘電体板層、フェライト板層、反射鉄筋を埋設
したコンクリート層からなる構造であって、該誘電体板
の厚さが、0〜50mm(0を含まない)で比誘電率
が、8〜150であることを特徴とする電波吸収壁。
1. A structure comprising an exterior material layer such as granite, a dielectric plate layer, a ferrite plate layer, and a concrete layer in which reflective reinforcing bars are embedded in order from the direction of arrival of radio waves. , 0 to 50 mm (excluding 0) and a relative dielectric constant of 8 to 150.
【請求項2】 電波の到来方向から順に、ガラスの層、
空気層を介して誘電体板層、フェライト板層、反射鉄筋
を埋設したコンクリート層からなる構造であって、該誘
電体板の厚さが、0〜50mm(0を含まない)で比誘
電率が、8〜150であることを特徴とする電波吸収
壁。
2. A glass layer in order from the direction of arrival of radio waves,
A structure comprising a dielectric plate layer, a ferrite plate layer, and a concrete layer in which reflective reinforcing bars are embedded via an air layer, wherein the dielectric plate has a relative permittivity of 0 to 50 mm (not including 0). Is an electromagnetic wave absorbing wall.
JP29370992A 1992-10-06 1992-10-06 Radio wave absorption wall Expired - Lifetime JPH0821813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29370992A JPH0821813B2 (en) 1992-10-06 1992-10-06 Radio wave absorption wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29370992A JPH0821813B2 (en) 1992-10-06 1992-10-06 Radio wave absorption wall

Publications (2)

Publication Number Publication Date
JPH06120726A JPH06120726A (en) 1994-04-28
JPH0821813B2 true JPH0821813B2 (en) 1996-03-04

Family

ID=17798225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29370992A Expired - Lifetime JPH0821813B2 (en) 1992-10-06 1992-10-06 Radio wave absorption wall

Country Status (1)

Country Link
JP (1) JPH0821813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216622A (en) * 1999-01-27 2000-08-04 Hitachi Metals Ltd Radio wave absorbing wall for glass curtain wall

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311107A (en) * 2000-05-01 2001-11-09 Takenaka Komuten Co Ltd Pavement structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216622A (en) * 1999-01-27 2000-08-04 Hitachi Metals Ltd Radio wave absorbing wall for glass curtain wall

Also Published As

Publication number Publication date
JPH06120726A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
JPH0314299A (en) External wall structure of ground structure
JPH0821813B2 (en) Radio wave absorption wall
JPH0139673B2 (en)
JP3509936B2 (en) Radio wave absorber, precast concrete plate and curtain wall
JP3627901B2 (en) Radio wave absorption panel structure
JPH0834354B2 (en) Radio wave absorber containing ferrite
JP2823134B2 (en) Radio wave absorbing wall and tile unit
JPH09214168A (en) Radio wave absorptive wall and adjustment method of absorptive characteristic
JP4222453B2 (en) Radio wave absorption wall for broadband building materials
JP2948505B2 (en) Radio wave absorption wall
JP2553256Y2 (en) Radio wave absorption wall
JPH0638475Y2 (en) Radio wave absorption wall
JP2001159206A (en) Radio wave absorbing panel
JPH0733694B2 (en) Electromagnetic wave absorption panel for glass curtain wall
JPH0774494A (en) Radio-wave absorbing panel
JPH0983177A (en) Radio-wave absorbing panel
JP2677510B2 (en) Radio wave absorption panel
JP2000134032A (en) Radio wave absorption panel and its manufacture
JP4403527B2 (en) Radio wave absorbing precast concrete board and manufacturing method thereof
JP2582632B2 (en) Radio wave absorption wall
JP2983908B2 (en) Thin radio wave absorbing wall
JPH04294599A (en) Electric wave absorber
JPH10117087A (en) Structure for reducing reflection interference of building
JPH10224076A (en) Wave absorbing wall
JP3712256B2 (en) Radio wave absorption panel