JP3712256B2 - Radio wave absorption panel - Google Patents

Radio wave absorption panel Download PDF

Info

Publication number
JP3712256B2
JP3712256B2 JP2002046630A JP2002046630A JP3712256B2 JP 3712256 B2 JP3712256 B2 JP 3712256B2 JP 2002046630 A JP2002046630 A JP 2002046630A JP 2002046630 A JP2002046630 A JP 2002046630A JP 3712256 B2 JP3712256 B2 JP 3712256B2
Authority
JP
Japan
Prior art keywords
radio wave
tile
field direction
ferrite
auxiliary plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002046630A
Other languages
Japanese (ja)
Other versions
JP2003249787A (en
Inventor
芳伸 浅野
康弘 小田
隆男 柏木
外志 中谷
助和 中瀬
裕幸 沼田
俊夫 森谷
幸夫 黒崎
裕介 中村
宏文 東
淳樹 近藤
賢太 小栗
斉 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Penta Ocean Construction Co Ltd
Okumura Corp
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Nikko Co Ltd
Penta Ocean Construction Co Ltd
Okumura Corp
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Penta Ocean Construction Co Ltd, Okumura Corp, Sumitomo Mitsui Construction Co Ltd filed Critical Nikko Co Ltd
Priority to JP2002046630A priority Critical patent/JP3712256B2/en
Publication of JP2003249787A publication Critical patent/JP2003249787A/en
Application granted granted Critical
Publication of JP3712256B2 publication Critical patent/JP3712256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電波吸収用パネルに関し、詳しくはテレビ電波の反射障害を生じるビル等の外壁面に貼って電波を吸収すると共に、タイル貼りの外観を呈する電波吸収用パネルに関する。
【0002】
【従来の技術】
高層建造物によるテレビ障害は、建造物によって電波が遮られて生じる“ビル影障害”と、建造物の壁面などからの反射電波により生じる“テレビゴースト障害”とに分類される。
ビル影障害については、その範囲が比較的小さいためCATV等によって対策がなされている。しかし、超高層ビルの場合、反射電波によるテレビゴースト障害は、非常に広い地域にわたって発生するばかりでなく、高層ビルの林立による複雑な複合反射障害も予想される。そのため、発生源である建造物自体の反射防止対策が必要とされ、壁面を電波吸収体で構成する方法がもっとも有効である。
テレビ周波数帯であるVHF・UHFにおいて、薄型で広帯域な特性を有する優れた電波吸収材として、フェライトが挙げられる。
ところで、電波吸収用壁体においては、電波吸収機能の面からすると、少なくとも電波の磁界方向に電波吸収材(タイル)が連続的に結合していなければならない制約がある一方、タイルとしての意匠面から必然的に目地部に隙間を生じる(但し、眠り目地を除く)等の互いに相反した制約を有している。
この為、従来、ビル等の建物におけるテレビ電波の反射を抑制するテレビ電波障害対策用のプレキャストパネル電波吸収体は、外装材に磁器タイル(化粧タイル)を貼り、その裏側に電波吸収性能を有するフェライト板を、電波の磁界・電界方向に連続して配置した、所謂フェライト板内蔵+磁器タイル仕上げ型の電波吸収体が提案されている。
又、フェライト板(タイル)はVHF帯(90〜222MHz)及びUHF帯(470〜770MHz)にわたる広い帯域で反射減衰量15dB以上の優れた電波吸収性能を有する。
しかしながら、このフェライト板(タイル)を内部に配置したプレキャストパネルの電波吸収体では、外側表面に配置される磁器タイル及び中間のコンクリート又はモルタル等が障害となって、フェライトタイルが有する電波吸収性能が低下する。特に、吸収帯域幅が狭くなる。
その為、VHF帯或いはUHF帯個々に対応するテレビ電波障害対策用のプレキャストパネル電波吸収体が提案されている。
【0003】
又、外装に電波吸収性能を有するフェライトタイルを用いる場合、モルタル目地等により電波の磁界方向に並べたフェライトタイル相互間に隙間が出来て、フェライトタイルが不連続になると、VHF帯の電波吸収性能が著しく低下することが報告されている。
【0004】
【発明が解決しようとする課題】
上記したフェライト板内蔵+磁器タイル仕上げ型の電波吸収体では、上述したようにフェライト板の表面に位置する磁器タイル及びそれを貼り付けるモルタルが障害となって、フェライト板の電波吸収効率が極度に低下するが、電波吸収効率を確保するためにはフェライト板を厚くすることである程度対応できるが、壁厚やその重量が広大となる等の問題があった。また、フェライト板の厚みを厚くしても、吸収する中心周波数が目標からずれる等の問題もある。
又、フェライト板を外装に直接用いる場合、現状では従来のタイル貼り工法をそのまま適用する以外に方法は無く、その結果、上記したようにフェライト板は目地で電波の磁界方向に間隙ができ、電波吸収性能が低下する。尚、電波吸収性能を維持するためにフェライト板を連続的に配置することが考えられるが、その場合は電波の磁界方向に間隙を有する目地を形成できないため、意匠面で制約を受ける等の問題がある。
更に、近年、UHF帯を使った地上波デジタル放送が計画されている中、ある期間VHF帯及びUHF帯の両電波が同一方向から到来することが予想されている。
従来は、主に、VHF帯のテレビ電波障害対策を考慮すればよかった。しかしながら、今後はVHF帯及びUHF帯の広帯域にわたって電波を吸収するプレキャストパネル電波吸収体が求められる。
【0005】
本発明は、この点に鑑みてなされたもので、その目的とするところは、電波吸収材を普通の外装タイルと同様に建物の外装に用いて、外装タイルとしての意匠的機能と、電波吸収材による電波吸収機能とを合わせ持つ建物壁体を形成するための軽量・薄型の電波吸収用パネルを提供することにある。
又、他の目的は、本来フェライトタイルが持っているVHF帯及びUHF両帯域の電波を吸収する性能を効果的に発揮できる電波吸収用パネルを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明が講じた技術的手段は、建物の電波入射面に取り付ける電波吸収用パネルであって、該パネルの外側に、電波吸収材で形成したタイルを電波の磁界方向及び電界方向に不連続状態に間隔をあけて配置すると共に、前記タイルの裏面側に、電波の磁界方向の連続性を確立する電波吸収材からなる補助板を配置し、且つ、その後方に電波反射体を配置し、前記タイルと補助板と電波反射体との間に結合材を充填して一体化した構成とする。
上記タイルにおける電波の磁界方向の連続性を確立する補助板は、電波の磁界方向に連続する帯状板とし、これを不連続状態に配置されたタイルの裏側に電波の磁界方向に沿って配置する形態、或いは小片状とし、これをタイルの横目地部分毎に配置する形態等が挙げられる。
本発明で言う目地は、タイル相互間に間隙を形成する目地だけでなく、殆ど間隙を伴わない眠り目地も含むものである。
又、上記パネルにおける電波吸収材からなる補助板は、該パネルを建物の壁面に貼り付け施工した時、磁界方向に沿って配列された各パネルの補助板は、磁界方向の連続性が確保されるように仕口が構成されている。その連続性を確保する仕口の構成としては、例えば、補助板の一方端を仕口から突出させ(オス側)、他方端は仕口から没入させ(メス側)、パネルの接合によって補助板同士が接触し連続するようにする。
ただし、上記パネルの磁界方向の幅が、テレビ周波数帯域の波長を越える長さである場合は、補助板の磁界方向の連続性を敢えて確保する必要がなくなるため、上記仕口を形成することなく補助板をパネル内に埋設してもよい。
【0007】
上記補助板は、その厚さを電波吸収材(タイル)の厚さの20%以上とし、電界方向の幅は前記タイルの電界方向の幅の15%以上でタイルの電界方向の幅未満とし、更にその補助板の電波電界方向の配置間隔は前記タイルにおける電界方向の幅に対し85%以下とする。
又、上記補助板は、電波を吸収し得る性能を有するものであればよく、勿論、外装材の電波吸収材と同材のフェライト板であれば好適である。そして、この補助板は、タイルの裏面に接触させて配置する。
更に、前記タイルを形成する電波吸収材としてはフェライト材が好適で、しかも釉薬付フェライトタイルが有効である。その釉薬付フェライトタイルは、フェライト焼結体素地の線膨張係数に比べて0.1〜30%の範囲で小さい線膨張係数の釉薬を施したものとする。好ましくは、10〜20%の範囲で小さいものとする。釉薬の線膨張係数がフェライト焼結体素地より大きいと、焼成後の釉薬に貫入(細かいひび割れ)が生じる。
また、釉薬の線膨張係数がフェライト焼結体素地の線膨張係数より30%以上小さいと、フェライト焼結体素地の線膨張係数との差が大きくなりすぎるため、釉薬のめくれ、フェライト焼結体素地の反り及び割れ等を生じる。
又、電波反射体は、電波を反射し得る材料であれば良く、一般的には丸棒状の鉄筋が使用される。そして、この電波反射体はパネル自体の補強筋としても作用し、角材、帯板等でもよい。
上記パネルは、タイルと補助板と電波反射体との間に結合材を充填して、補助板と電波反射体とをパネル内に埋設させ、且つタイルをパネルの外表面に露出させた状態に一体形成される。
また、タイル、補助板、及び電波反射体を一体化する結合材としては、一般的にコンクリート又はモルタルを使用することが出来る。
【0008】
上記手段によれば、外装材の電波吸収材で形成したタイルの裏面に、電波の磁界方向の連続性を確立する電波吸収材からなる補助板を接触配置することにより、該タイルのモルタル目地による電波磁界方向不連続は、前記補助板を介して連続状態となり、目地が現出する意匠的機能と、電波吸収機能を合わせ持つ電波吸収用パネルを構成できる。そして、電波吸収材(タイル)のVHF帯域での電波吸収性能の低下を防止することができる。尚、電波吸収材(フェライトタイル)の電波電界方向の配置間隔は、一般的に電波吸収材(フェライトタイル)の厚さが一定のもとで該フェライトタイルの電界方向幅の約33%離しても電波吸収の性能に影響がないことが報告されている。
更に、タイルの裏面に接触配置する補助板は、その幅がタイルの幅に対して15%以上、厚さがタイルの厚さに対して最小20%でも電波吸収の要求性能を満足することができた。
又、フェライトタイルの表面に施す釉薬を、該フェライト焼結体素地の線膨張係数の0.1〜30%の範囲で小さいものとすることで、釉薬がしっかり着いた釉薬付フェライトタイルが完成され、意匠性に富んだ電波吸収用タイルが得られる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図面に基づいて説明する。
図1及び図2は、本発明に係る電波吸収用パネルAの一部を示し、図中、1は電波吸収用パネルAの電波入射面(外表面)に配置される釉薬付フェライトタイル、2は前記釉薬付フェライトタイル1の裏面に電波の磁界方向に沿って接触配置される電波吸収材からなる補助板、3は前記補助板2の後方に位置して配置した電波反射体、4は前記した釉薬付フェライトタイル1、補助板2、及び電波反射体3を一体化しパネルAのベースを構成する結合材で、コンクリートが用いられる。
釉薬付フェライトタイル1はその周囲が目地材4’で囲まれ、電波の磁界方向及び電界方向が不連続状態に形成されている。
【0010】
釉薬付フェライトタイル1は、フェライト板からなる矩形(縦:45mm、横:95mm)のタイルの表面に、釉薬又はフリット(frit)からなる表面層1’を形成したものである(図2参照)。
その表面層1’としては、例えば、フェライト板の表面に、そのフェライト板の色(黒色)を消す層を施釉、釉焼し、その上から更に、釉薬を施釉、釉焼することにより、任意の表面色を施したフェライト製の外装タイル、即ち釉薬付フェライトタイルを作製することができる。
フェライト焼結体素地に施す釉薬は、フェライト焼結体素地の線膨張係数に比べて0.1〜30%の範囲で小さい線膨張係数の釉薬とする。好ましくは、10〜20%の範囲で小さいものとする。釉薬の線膨張係数がフェライト焼結体素地より大きいと、焼成後の釉薬に貫入が生じる。また、釉薬の線膨張係数がフェライト焼結体素地の線膨張係数より30%以上小さいと、フェライト焼結体素地の線膨張係数との差が大きくなりすぎるため、釉薬のめくれ、焼結体の反り及び素地割れ等が生じる。
【0011】
以下、その釉薬付フェライトタイルの製造方法を簡単に説明する。
▲1▼燒結したフェライト板からなるタイルの表面に、[1回目の施釉、釉焼]を施す。アルミナ、ジルコニア、酸化錫(白くするための物)や、その他の顔料(任意の色を出すも物)を含む釉薬を施し、フェライト板の燒結温度より低い温度で焼成する。(この状態では釉面は全く光沢がない:マット釉)そして、この層は200μm程度必要である。
▲2▼次ぎに、[2回目の施釉、釉焼]を施す。前記成形層の上に、更に光沢を出すための釉薬を施し、釉焼(ここでの温度もフェライト燒結温度より低い温度で燒結する。)することにより、光沢を持った任意の色を持つフェライト板から成る外装タイル(釉薬付フェライトタイル)を作製できる。尚、外装タイル表面の光沢度合い(マッド度合い)は光沢釉薬の施釉量で任意に調整することができる。
【0012】
そして、上記釉薬付フェライトタイル1の裏面両側には短手方向全長にわたって所定深さの蟻溝5が形成され、それにより釉薬付フェライトタイル1の裏面は蟻足形状に構成されている。即ち、蟻溝5は、前記した電波吸収材からなる補助板2の接触面を挟んで両側に設けられている。これにより、釉薬付フェライトタイル1と結合材4のコンクリートの接着強度を高めると共に、該フェライトタイル1の軽量化を図ることが出来る。尚、釉薬付フェライトタイル1の裏面は、図示の蟻足形状に限定されるものではなく、平坦面でもよいが、ベースのコンクリートとの付着性を考慮し、凹凸面とするのが有効である。
【0013】
上記釉薬付フェライトタイル1の裏面に接触配置する補助板2は、前記した釉薬付フェライトタイル1と同様、電波吸収材のフェライト板を細幅帯状に形成したもので、磁界方向が目地4’で不連続状態に配置される釉薬付フェライトタイル1の裏面に沿って電波の磁界方向に連続状態に配置される。
この補助板2によって、磁界方向が不連続状態の釉薬付フェライトタイル1相互は連続状態に保持される。
又、この補助板2を釉薬付フェライトタイル1の裏面に接触配置する構成は、接着剤で固定する。
【0014】
上記補助板2の寸法は、上記したように釉薬付フェライトタイルの電波の磁界方向の不連続を連続状態とし、要求する電波の吸収性能が満足されるようにするもので、その為に、電界方向の幅Lは釉薬付フェライトタイル1の電界方向の幅L’の15%以上でタイル1の電界方向の幅L’未満とし、補助板2の厚さTは少なくとも釉薬付フェライトタイル1の厚さT’の20%以上とする。
又、上記パネルAにおける電波吸収材からなる補助板2は、該パネルAを建物の壁面に貼り付け施工した時、磁界方向に沿って配列された各パネルAの補助板2は、磁界方向の連続性が確保されるように仕口が構成されている。その連続性を確保する仕口の構成としては、例えば、磁界方向に配置された補助板の一方端を該パネルの縁から所定長さ突出させ(オス側)、他方端はパネルの縁から前記突出分の補助板が挿入される深さの嵌合孔を設け(メス側)、パネルの接合によって補助板同士が接触し、連続性が確立されるようにする。
【0015】
次に、上記した電波吸収用パネルAの成形方法を図3に基づいて簡単に説明すると、パネル成形の枠体6の底面上に、釉薬付フェライトタイル1をその表面層1’を底面に対向させて電波の磁界方向及び電界方向に隙間(目地)を空けて不連続状態に配置し、その釉薬付フェライトタイル1の裏面上に補助板2を電波の磁界方向に沿って接触配置する。補助板2を釉薬付フェライトタイル1の裏面上に接触配置する場合、接着剤で接着固定し、枠体6にコンクリート4を流し込んだ場合に移動したりしないようにする。尚、接着剤で固定する場合は、釉薬付フェライトタイル1と補助板2は厳密にいって接触配置とは言えないが、電波吸収効率の低下が使用可能域に収まる範囲においては、他物を介しての非接触配置としてもよい。
又、前記補助板2の上には電波反射体3を配置し、しかる後、パネルAのベースとなる結合材4のコンクリートを流し込み、硬化後、脱型して電波吸収用パネルAを得る。尚、結合材4のコンクリートを打設する前に、先ずモルタルを打設して釉薬付フェライトタイル1相互の隙間にモルタルを充填して目地4’を形成した後、その上に結合材4のコンクリートを打設してパネルAを形成する。
【0016】
図4及び図5は磁界方向が横目地4’aで不連続状態に配置された釉薬付フェライトタイル1の連続性を確立する他の例を示し、その補助板2’は少なくとも横目地4’aの幅より幅広な小片状に形成し、その補助板2’を、磁界方向が不連続に配置された釉薬付フェライトタイル1の裏面側に、横目地4’aを跨ぐ形で橋渡し配置する。それにより、磁界方向が横目地4’aで不連続状態に配置された釉薬付フェライトタイル1相互は小片状の補助板2’で連結され、磁界方向の連続性が確立される。
【0017】
上記の如く構成した電波吸収用パネルAをビルの壁面に貼ることで、テレビ電波吸収用の壁面を、磁器タイルと同一のモルタル目地模様及び色調で構築することが出来る。そして、フェライトタイルが本来有する広帯域にわたる電波吸収性能を生かすことができる。
図6は、図1及び図2に示した電波吸収用パネルAの電波吸収特性を示す図で、釉薬付フェライトタイル1の磁界方向への不連続率が、釉薬付フェライトタイルの縦幅の10%で、そのフェライトタイルの裏面に、▲1▼補助板なし、▲2▼補助板有り(電界方向の幅L:12.3%)、▲3▼補助板有り(電界方向の幅L:31.4%)、▲4▼補助板有り(電界方向の幅L:49.6%)、の各状態で構成したパネルの電波吸収特性を表す。
同図から明らかなように、▲1▼はUHF帯(470〜770MHz)の一部(約700Mhz以上)において反射減衰量15dB以上を示すが、それ以下の低周波数域では電波吸収性能が劣っている。又、▲2▼はVHF帯(90〜222MHz)の低周波数域の一部で反射減衰量15dBを下回るが、それ以上の周波数域では反射減衰量15dB以上となり、優れた電波吸収性能が得られる。▲3▼はVHF帯及びUHF帯の両帯域で反射減衰量15dB以上の優れた電波吸収性能が得られる。▲4▼はVHF帯域で反射減衰量15dB以上の優れた電波吸収性能を発揮するが、UHF帯の高周波域では反射減衰量15dBを下回り、電波吸収性能が低下する。
即ち、補助板の電界方向の幅を広くするとVHF帯の低周波数域で優れた電波吸収性能を発揮するが、UHF帯の高周波数域では電波吸収性能が低下する。逆に、幅を狭くするとUHF帯で優れた電波吸収性能を発揮するが、VHF帯の低周波数域では電波吸収性能が低下する。
従って、VHF帯及びUHF帯の広域において優れた電波吸収性能を得る場合は▲3▼のように幅を設定し、VHF帯での電波吸収性能を高める場合は、幅広に設定し、UHF帯での電波吸収性能を高める場合は、幅狭く設定するなど、目的に応じて幅を設定する。
【0018】
図7は、釉薬付フェライトタイルの磁界方向の不連続率を変えた場合の電波吸収特性を示し、▲1▼磁界方向不連続幅:0%(連続)、▲2▼磁界方向不連続幅:4%、▲3▼磁界方向不連続幅:8%、▲4▼磁界方向不連続幅:10%、の各電波吸収性能を表す。
同図から明らかなように、釉薬付フェライトタイル相互の磁界方向の間隔を、不連続幅0%(連続)とした場合は、VHF帯及びUHF帯の広域において反射減衰量15dB以上の優れた電波吸収性能が得られるのに対し、磁界方向を不連続とした場合は、UHF帯において反射減衰量15dB以上の優れた電波吸収性能が得られるが、VHF帯域では反射減衰量15dBを下回り、電波吸収性能が低下することがわかる。
即ち、磁界方向が目地で不連続であってもUHF帯の周波数には電波吸収効果が発揮されるが、VHF帯域では電波吸収効果は発揮されない。しかし、前記した補助板の設置により、このVHF帯域の電波吸収性能を向上することが可能となる。
【0019】
【発明の効果】
本発明の電波吸収用パネルは請求項1乃至3に記載の構成により、目地模様の形成で生じる電波の磁界方向のタイルの不連続状態を、電波吸収材で形成した補助板で解消して連続状態を確保させたので、一般的に用いられる磁器タイルと同様のモルタル目地模様及び色調の外観を有しながら、電波吸収材本来の持つVHF帯及びUHF帯にわたる広帯域で電波吸収性能を発揮することができる電波吸収パネルを提供することができる。
又、請求項4記載の構成により、補助板をタイルの裏面に接触配置するので、両者間の電磁気的接合を確実に確保でき、要求する電波吸収性能を確実に発揮する電波吸収パネルを構成することができる。
又、請求項5に記載の構成により、補助板の幅を調整することで、VHF帯域用、UHF帯域用、及び両帯域用等、要求性能を満足し得る電波吸収用パネルを構成することができる。
更に、請求項6に記載の構成により、電波吸収材をフェライトとしたので、優れた電波吸収性能を安定して発揮する電波吸収用パネルを提供することができる。
また、請求項7に記載の構成により、釉薬がしっかり着いた釉薬付フェライトタイルが形成され、外装の安定した電波吸収用パネルが得られる。
【図面の簡単な説明】
【図1】本発明に係る電波吸収用パネルの一部を示す正面図である。
【図2】図1の(2)−(2)線に沿える拡大断面図である。
【図3】パネル成形を示す分解斜視図である。
【図4】補助板取り付けの他の例を示す正面図である。
【図5】図4の(5)−(5)線に沿える拡大断面図である。
【図6】本発明に係る電波吸収用パネルの電波吸収特性線図である。
【図7】釉薬付フェライトタイルの磁界方向不連続率の電波吸収特性線図である。
【符号の説明】
A…電波吸収用パネル 1…タイル(釉薬付フェライトタイル)
2,2’…補助板 3…反射筋
4…結合材(コンクリート) 4’…目地
L…補助板の電界方向幅 T…補助板の厚さ
L’…タイル(釉薬付フェライトタイル)の磁界方向幅
T’…タイル(釉薬付フェライトタイル)の厚さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave absorption panel, and more particularly, to a radio wave absorption panel that is attached to an outer wall surface of a building or the like that causes a reflection failure of a TV radio wave and absorbs radio waves and that has a tiled appearance.
[0002]
[Prior art]
Television obstacles due to high-rise buildings are classified into “building shadow obstacles” that occur when radio waves are blocked by buildings, and “television ghost obstacles” that occur due to reflected radio waves from the walls of buildings.
For the building shadow failure, measures are taken by CATV and the like because the range is relatively small. However, in the case of a skyscraper, a TV ghost failure due to reflected radio waves occurs not only over a very wide area, but also a complex combined reflection failure due to a forest of high-rise buildings is expected. For this reason, it is necessary to take anti-reflection measures for the building itself, which is the source, and the method of constructing the wall surface with a radio wave absorber is the most effective.
In VHF / UHF, which is a television frequency band, ferrite is listed as an excellent radio wave absorber having thin and wide band characteristics.
By the way, in terms of the radio wave absorbing function, the radio wave absorbing wall body has a restriction that the radio wave absorbing material (tile) must be continuously coupled at least in the direction of the magnetic field of the radio wave. Therefore, there is a contradictory constraint such as a gap in the joint part inevitably (excluding a sleep joint).
For this reason, conventionally, a precast panel wave absorber for countermeasures against TV radio wave interference that suppresses reflection of TV radio waves in buildings such as buildings has a ceramic tile (decorative tile) attached to the exterior material and has radio wave absorption performance on the back side. A so-called built-in ferrite plate + porcelain tile finish type radio wave absorber in which ferrite plates are continuously arranged in the direction of the magnetic field / electric field of radio waves has been proposed.
Further, the ferrite plate (tile) has an excellent radio wave absorption performance with a return loss of 15 dB or more in a wide band covering the VHF band (90 to 222 MHz) and the UHF band (470 to 770 MHz).
However, in the wave absorber of the precast panel in which this ferrite plate (tile) is placed inside, the porcelain tile placed on the outer surface and the intermediate concrete or mortar are obstructions, and the wave absorbing performance of the ferrite tile is descend. In particular, the absorption bandwidth is narrowed.
For this reason, a precast panel radio wave absorber for TV radio wave interference countermeasures corresponding to each VHF band or UHF band has been proposed.
[0003]
In addition, when using ferrite tiles that have radio wave absorption performance for the exterior, if there is a gap between the ferrite tiles arranged in the direction of the magnetic field of the radio waves due to mortar joints, etc., and the ferrite tiles become discontinuous, the radio wave absorption performance of the VHF band Has been reported to decrease significantly.
[0004]
[Problems to be solved by the invention]
In the electromagnetic wave absorber of the above ferrite plate built-in + porcelain tile finish type, as described above, the porcelain tile located on the surface of the ferrite plate and the mortar to which it is attached become an obstacle, and the electromagnetic wave absorption efficiency of the ferrite plate is extremely high. Although it is reduced, in order to ensure the radio wave absorption efficiency, it can be dealt with to some extent by increasing the thickness of the ferrite plate, but there are problems such as the wall thickness and the weight becoming vast. Even if the thickness of the ferrite plate is increased, there is a problem that the center frequency to be absorbed is shifted from the target.
In addition, when using a ferrite plate directly for the exterior, there is currently no method other than applying the conventional tiling method as it is, and as a result, the ferrite plate has a gap in the magnetic field direction of the radio wave at the joint as described above. Absorption performance decreases. In order to maintain radio wave absorption performance, it is conceivable to arrange ferrite plates continuously. However, in that case, a joint having a gap in the direction of the magnetic field of the radio wave cannot be formed, and there are problems such as restrictions on the design. There is.
Furthermore, in recent years, terrestrial digital broadcasting using the UHF band is planned, and it is expected that both radio waves in the VHF band and the UHF band will arrive from the same direction for a certain period.
Conventionally, it has only been necessary to consider measures against TV radio wave interference in the VHF band. However, in the future, a precast panel radio wave absorber that absorbs radio waves over a wide band in the VHF band and the UHF band will be required.
[0005]
The present invention has been made in view of this point, and an object of the present invention is to use a radio wave absorber for an exterior of a building in the same manner as a normal exterior tile, and to provide a design function as an exterior tile and radio wave absorption. An object of the present invention is to provide a light-weight and thin wave-absorbing panel for forming a building wall having a function of absorbing radio waves by a material.
Another object of the present invention is to provide a radio wave absorption panel that can effectively exhibit the performance of absorbing the radio waves of both the VHF band and UHF band inherently possessed by the ferrite tile.
[0006]
[Means for Solving the Problems]
The technical means taken by the present invention in order to achieve the above object is a radio wave absorption panel attached to a radio wave incident surface of a building, and a tile formed of a radio wave absorber is provided outside the panel in the direction of the magnetic field of the radio wave. And an auxiliary plate made of a radio wave absorber that establishes continuity in the magnetic field direction of the radio wave on the back side of the tile, and is arranged behind the tile. A reflector is arranged, and the tile, the auxiliary plate, and the radio wave reflector are filled with a binder to be integrated.
The auxiliary plate that establishes continuity of the magnetic field direction of the radio wave in the tile is a strip-like plate that is continuous in the magnetic field direction of the radio wave, and is disposed along the magnetic field direction of the radio wave on the back side of the tile arranged in a discontinuous state. Examples include a form or a small piece form, which is arranged for each horizontal joint portion of the tile.
The joints referred to in the present invention include not only joints that form gaps between tiles, but also sleep joints that have almost no gaps.
In addition, the auxiliary plate made of the electromagnetic wave absorber in the panel is secured to the continuity of the magnetic field direction of the auxiliary plate of each panel arranged along the magnetic field direction when the panel is attached to the wall surface of the building. The joint is configured as follows. As the structure of the joint that ensures the continuity, for example, one end of the auxiliary plate protrudes from the joint (male side), the other end is submerged from the joint (female side), and the auxiliary plate is joined by joining the panels. Make contact with each other so that they are continuous.
However, if the width of the panel in the magnetic field direction is longer than the wavelength of the television frequency band, there is no need to dare to ensure the continuity of the auxiliary plate in the magnetic field direction. An auxiliary plate may be embedded in the panel.
[0007]
The auxiliary plate has a thickness of 20% or more of the thickness of the radio wave absorber (tile), the width in the electric field direction is 15% or more of the width in the electric field direction of the tile and less than the width in the electric field direction of the tile, Further, the interval between the auxiliary plates in the direction of the electric field is 85% or less with respect to the width of the tile in the direction of the electric field.
The auxiliary plate may be any material as long as it has a capability of absorbing radio waves, and of course, a ferrite plate made of the same material as the radio wave absorber of the exterior material is suitable. The auxiliary plate is arranged in contact with the back surface of the tile.
Furthermore, a ferrite material is suitable as the radio wave absorber forming the tile, and a ferrite tile with glaze is effective. It is assumed that the ferrite tile with glaze is subjected to glaze having a small linear expansion coefficient in the range of 0.1 to 30% compared to the linear expansion coefficient of the ferrite sintered body. Preferably, it shall be small in the range of 10 to 20%. When the linear expansion coefficient of the glaze is larger than the ferrite sintered body, penetration (fine cracks) occurs in the glaze after firing.
Also, if the linear expansion coefficient of the glaze is 30% or more smaller than the linear expansion coefficient of the ferrite sintered body, the difference from the linear expansion coefficient of the ferrite sintered body becomes too large. Causes warping and cracking of the substrate.
The radio wave reflector may be any material that can reflect radio waves, and a round bar-shaped reinforcing bar is generally used. The radio wave reflector also acts as a reinforcing bar for the panel itself, and may be a square bar, a strip or the like.
The panel is filled with a binder between the tile, the auxiliary plate, and the radio wave reflector, the auxiliary plate and the radio wave reflector are embedded in the panel, and the tile is exposed to the outer surface of the panel. It is integrally formed.
Moreover, concrete or mortar can generally be used as a binding material for integrating the tile, auxiliary plate, and radio wave reflector.
[0008]
According to the above means, the auxiliary plate made of a radio wave absorber that establishes continuity in the magnetic field direction of the radio wave is placed in contact with the back surface of the tile formed of the radio wave absorber of the exterior material, and thereby the mortar joint of the tile The electromagnetic field direction discontinuity becomes a continuous state via the auxiliary plate, and can constitute a radio wave absorption panel having both a design function in which joints appear and a radio wave absorption function. And the fall of the electromagnetic wave absorption performance in the VHF band of an electromagnetic wave absorber (tile) can be prevented. In addition, the arrangement interval of the electromagnetic wave absorber (ferrite tile) in the electric field direction is generally about 33% apart from the width of the electric field direction of the ferrite tile when the thickness of the electromagnetic wave absorber (ferrite tile) is constant. Has also been reported to have no effect on radio wave absorption performance.
Furthermore, the auxiliary plate placed in contact with the back surface of the tile can satisfy the required performance of radio wave absorption even if the width is 15% or more of the tile width and the thickness is at least 20% of the tile thickness. did it.
Moreover, the glaze applied to the surface of the ferrite tile is made small in the range of 0.1 to 30% of the linear expansion coefficient of the ferrite sintered body, thereby completing the ferrite tile with glaze firmly attached to the glaze. Thus, a radio wave absorbing tile having a rich design can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a part of a radio wave absorption panel A according to the present invention, in which 1 is a ferrite tile with glaze disposed on the radio wave incident surface (outer surface) of the radio wave absorption panel A, 2 Is an auxiliary plate made of a radio wave absorber disposed in contact with the back surface of the ferrite tile with glaze 1 along the direction of the magnetic field of radio waves, 3 is a radio wave reflector disposed behind the auxiliary plate 2, Concrete is used as a binding material that integrates the ferrite tile 1 with glaze, the auxiliary plate 2, and the radio wave reflector 3 to form the base of the panel A.
The periphery of the ferrite tile 1 with glaze is surrounded by a joint material 4 ′, and the magnetic field direction and electric field direction of the radio wave are formed in a discontinuous state.
[0010]
The ferrite tile 1 with glaze is obtained by forming a surface layer 1 ′ made of glaze or frit on the surface of a rectangular (vertical: 45 mm, horizontal: 95 mm) tile made of ferrite plate (see FIG. 2). .
As the surface layer 1 ′, for example, a layer that erases the color (black) of the ferrite plate is applied to the surface of the ferrite plate, and then fired, and further, a glaze is further applied to the surface of the ferrite plate. It is possible to produce an exterior tile made of ferrite with the surface color, that is, a ferrite tile with glaze.
The glaze applied to the ferrite sintered body is a glaze having a small linear expansion coefficient in the range of 0.1 to 30% compared to the linear expansion coefficient of the ferrite sintered body. Preferably, it shall be small in the range of 10 to 20%. When the linear expansion coefficient of the glaze is larger than the ferrite sintered body, penetration occurs in the fired glaze. Further, if the linear expansion coefficient of the glaze is 30% or more smaller than the linear expansion coefficient of the ferrite sintered body, the difference from the linear expansion coefficient of the ferrite sintered body becomes too large. Warpage and ground cracking occur.
[0011]
Hereinafter, the manufacturing method of the glaze-attached ferrite tile will be briefly described.
(1) Apply [first glazing and sinter] to the surface of the tile made of sintered ferrite plate. A glaze containing alumina, zirconia, tin oxide (thing to make white) and other pigments (thing which gives an arbitrary color) is applied, and firing is performed at a temperature lower than the sintering temperature of the ferrite plate. (In this state, the side surface is not glossy: matte surface) And this layer needs about 200 μm.
(2) Next, apply [second glazing and smoldering]. On the molding layer, a glaze for giving a further gloss is applied, and then it is sintered and sintered (the temperature here is also sintered at a temperature lower than the ferrite sintering temperature), thereby giving a ferrite having an arbitrary color with a gloss. An exterior tile made of a plate (ferrite tile with glaze) can be produced. The gloss level (mud level) on the exterior tile surface can be arbitrarily adjusted by the amount of gloss glaze applied.
[0012]
And the dovetail groove | channel 5 of the predetermined depth is formed in the transversal length full length on both sides of the back surface of the said ferrite tile 1 with a glaze, and the back surface of the ferrite tile 1 with a glaze is comprised by the dovetail shape by it. In other words, the dovetail grooves 5 are provided on both sides of the contact surface of the auxiliary plate 2 made of the above-described radio wave absorber. Thereby, while increasing the adhesive strength of the concrete of the ferrite tile 1 with a glaze and the binder 4, the weight of the ferrite tile 1 can be reduced. In addition, the back surface of the ferrite tile 1 with glaze is not limited to the illustrated dovetail shape, but may be a flat surface, but it is effective to have an uneven surface in consideration of adhesion to the base concrete. .
[0013]
The auxiliary plate 2 placed in contact with the back surface of the glaze-attached ferrite tile 1 is formed by forming a ferrite plate of a radio wave absorber in a narrow band like the above-described ferrite tile 1 with glaze, and the magnetic field direction is a joint 4 ′. It arrange | positions in the continuous state in the magnetic field direction of an electromagnetic wave along the back surface of the ferrite tile 1 with a glaze arrange | positioned in a discontinuous state.
By this auxiliary plate 2, the glaze-equipped ferrite tiles 1 whose magnetic field directions are discontinuous are held in a continuous state.
Moreover, the structure which contacts and arranges this auxiliary | assistant board 2 on the back surface of the ferrite tile 1 with a glaze is fixed with an adhesive agent.
[0014]
The dimension of the auxiliary plate 2 is to make the discontinuity in the magnetic field direction of the radio wave of the glaze-attached ferrite tile as described above so that the required radio wave absorption performance is satisfied. The width L in the direction is 15% or more of the width L ′ in the electric field direction of the ferrite tile 1 with glaze and less than the width L ′ in the electric field direction of the tile 1, and the thickness T of the auxiliary plate 2 is at least the thickness of the ferrite tile 1 with glaze 20% or more of the length T ′.
In addition, the auxiliary plate 2 made of the electromagnetic wave absorbing material in the panel A, when the panel A is attached to the wall surface of the building, the auxiliary plate 2 of each panel A arranged along the magnetic field direction The joints are configured to ensure continuity. As a configuration of the joint for ensuring the continuity, for example, one end of the auxiliary plate arranged in the magnetic field direction protrudes from the edge of the panel by a predetermined length (male side), and the other end extends from the edge of the panel. A fitting hole having a depth into which the protruding auxiliary plate is inserted is provided (female side), and the auxiliary plates come into contact with each other by joining the panels so that continuity is established.
[0015]
Next, the method for forming the above-described radio wave absorption panel A will be briefly described with reference to FIG. 3. The glaze-attached ferrite tile 1 is opposed to the bottom surface of the panel-forming frame 6 with the surface layer 1 'facing the bottom surface. Thus, gaps (joints) are arranged in a discontinuous state in the magnetic field direction and electric field direction of the radio wave, and the auxiliary plate 2 is placed in contact along the magnetic field direction of the radio wave on the back surface of the glazed ferrite tile 1. When the auxiliary plate 2 is placed in contact with the back surface of the glazed ferrite tile 1, it is bonded and fixed with an adhesive so that it does not move when the concrete 4 is poured into the frame 6. In addition, when fixing with an adhesive, the ferrite tile 1 with glaze and the auxiliary plate 2 are strictly speaking not in a contact arrangement, but within the range where the decrease in radio wave absorption efficiency falls within the usable range, It is good also as a non-contact arrangement via.
Further, a radio wave reflector 3 is disposed on the auxiliary plate 2, and then a concrete of the binder 4 serving as a base of the panel A is poured, and after curing, it is demolded to obtain a radio wave absorbing panel A. Before placing the concrete of the binding material 4, first, mortar is placed, and the gap between the glazed ferrite tiles 1 is filled to form a joint 4 ′. Concrete is cast to form panel A.
[0016]
4 and 5 show another example of establishing the continuity of the glaze-attached ferrite tile 1 in which the magnetic field direction is discontinuously arranged at the horizontal joint 4′a, and the auxiliary plate 2 ′ has at least the horizontal joint 4 ′. The auxiliary plate 2 'is formed in the shape of a small piece wider than the width of a, and the auxiliary plate 2' is bridged on the back side of the glaze-attached ferrite tile 1 in which the magnetic field direction is discontinuously arranged across the horizontal joint 4'a. To do. Thereby, the ferrite tiles with glaze 1 arranged in a discontinuous state at the horizontal joint 4′a are connected to each other by the small auxiliary plate 2 ′, and the continuity of the magnetic field direction is established.
[0017]
By sticking the radio wave absorption panel A configured as described above to the wall surface of the building, the TV radio wave absorption wall surface can be constructed with the same mortar joint pattern and color tone as the porcelain tile. In addition, it is possible to make use of the radio wave absorption performance over a wide band inherent in the ferrite tile.
FIG. 6 is a diagram showing the radio wave absorption characteristics of the radio wave absorption panel A shown in FIGS. 1 and 2, and the discontinuity rate in the magnetic field direction of the glaze-attached ferrite tile 1 is 10 times the vertical width of the glaze-use ferrite tile. %, On the back side of the ferrite tile, (1) no auxiliary plate, (2) with auxiliary plate (width L in the electric field direction: 12.3%), (3) with auxiliary plate (width L in the electric field direction: 31) 4%) and {circle around (4)} with auxiliary plates (width L in the electric field direction: 49.6%).
As is clear from the figure, (1) shows a return loss of 15 dB or more in a part (about 700 Mhz or more) of the UHF band (470 to 770 MHz), but the radio wave absorption performance is inferior in a low frequency region below that. Yes. In addition, (2) is a part of the low frequency region of the VHF band (90 to 222 MHz), which is less than the return loss of 15 dB. However, in the higher frequency region, the return loss is 15 dB or more, and excellent radio wave absorption performance is obtained. . In (3), excellent radio wave absorption performance with a return loss of 15 dB or more is obtained in both the VHF band and the UHF band. {Circle around (4)} exhibits excellent radio wave absorption performance with a return loss of 15 dB or more in the VHF band. However, in the high frequency region of the UHF band, the return loss is less than 15 dB, and the radio wave absorption performance decreases.
That is, when the width of the auxiliary plate in the electric field direction is widened, excellent radio wave absorption performance is exhibited in the low frequency region of the VHF band, but radio wave absorption performance is degraded in the high frequency region of the UHF band. Conversely, if the width is narrowed, excellent radio wave absorption performance is exhibited in the UHF band, but radio wave absorption performance is degraded in the low frequency region of the VHF band.
Therefore, to obtain excellent radio wave absorption performance in the VHF band and UHF band, set the width as shown in (3). To increase the radio wave absorption performance in the VHF band, set the width wide, and in the UHF band In order to improve the radio wave absorption performance, set the width according to the purpose, such as setting the width narrower.
[0018]
FIG. 7 shows the radio wave absorption characteristics when the discontinuity rate in the magnetic field direction of the ferrite tile with glaze is changed. (1) Magnetic field direction discontinuity width: 0% (continuous), (2) Magnetic field direction discontinuity width: 4%, {circle around (3)} magnetic field direction discontinuity width: 8%, {circle around (4)} magnetic field direction discontinuity width: 10%.
As can be seen from the figure, when the magnetic field spacing between the glazed ferrite tiles is 0% discontinuous (continuous), an excellent radio wave with a return loss of 15 dB or more in a wide range of VHF band and UHF band. Whereas the absorption performance is obtained, when the magnetic field direction is discontinuous, an excellent radio wave absorption performance of 15 dB or more in the UHF band is obtained, but in the VHF band, the radio wave absorption is less than 15 dB and the radio wave absorption. It turns out that performance falls.
That is, even if the magnetic field direction is discontinuous at the joint, the radio wave absorption effect is exhibited at the frequency in the UHF band, but the radio wave absorption effect is not exhibited in the VHF band. However, the installation of the auxiliary plate described above can improve the radio wave absorption performance in the VHF band.
[0019]
【The invention's effect】
According to the radio wave absorption panel of the present invention, the discontinuous state of the tile in the magnetic field direction of the radio wave generated by the formation of the joint pattern is eliminated by the auxiliary plate formed of the radio wave absorber. Because the state is secured, it has the same mortar joint pattern and color appearance as a commonly used porcelain tile, but it exhibits radio wave absorption performance over a wide band covering the VHF band and UHF band inherent to radio wave absorbers. It is possible to provide a radio wave absorbing panel capable of
In addition, since the auxiliary plate is disposed in contact with the back surface of the tile according to the configuration described in claim 4, the electromagnetic wave joining panel can be reliably secured and the radio wave absorbing panel that reliably exhibits the required radio wave absorbing performance is configured. be able to.
In addition, by adjusting the width of the auxiliary plate according to the configuration described in claim 5, it is possible to configure a radio wave absorption panel that can satisfy the required performance for VHF band, UHF band, and both bands. it can.
Further, since the radio wave absorber is made of ferrite according to the configuration described in claim 6, it is possible to provide a radio wave absorption panel that stably exhibits excellent radio wave absorption performance.
Furthermore, the arrangement according to claim 7, glazed with ferrite tiles glaze arrived firmly is formed, exterior stable wave absorbing panel can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view showing a part of a radio wave absorption panel according to the present invention.
FIG. 2 is an enlarged cross-sectional view taken along line (2)-(2) in FIG.
FIG. 3 is an exploded perspective view showing panel molding.
FIG. 4 is a front view showing another example of auxiliary plate attachment.
5 is an enlarged cross-sectional view taken along line (5)-(5) in FIG.
FIG. 6 is a radio wave absorption characteristic diagram of the radio wave absorption panel according to the present invention.
FIG. 7 is a radio wave absorption characteristic diagram of the magnetic field direction discontinuity rate of the ferrite tile with glaze.
[Explanation of symbols]
A ... Panel for absorbing radio waves 1 ... Tile (ferrite tile with glaze)
2, 2 '... auxiliary plate 3 ... reflex bar 4 ... binding material (concrete) 4' ... joint L ... electric field direction width of auxiliary plate T ... auxiliary plate thickness L '... magnetic field direction of tile (ferrite tile with glaze) Width T '... Thickness of the tile (ferrite tile with glaze)

Claims (7)

電波入射面に取り付ける電波吸収用パネルであって、該パネルの外側に、電波吸収材で形成したタイルを電波の磁界方向及び電界方向に不連続状態に間隔をあけて配置すると共に、前記タイルの裏面に、電波の磁界方向の連続性を確立する電波吸収材からなる補助板を配置し、且つ、その後方に電波反射体を配置し、前記タイルと補助板と電波反射体との間に結合材を充填して一体化したことを特徴とする電波吸収用パネル。  A radio wave absorption panel attached to a radio wave incident surface, wherein tiles formed of a radio wave absorber are arranged outside the panel at intervals in a discontinuous state in a magnetic field direction and an electric field direction of the radio wave, An auxiliary plate made of a radio wave absorber that establishes continuity in the magnetic field direction of radio waves is arranged on the back surface, and a radio wave reflector is arranged behind it, and is coupled between the tile, the auxiliary plate, and the radio wave reflector. An electromagnetic wave absorption panel characterized by being integrated by filling materials. 上記タイルにおける電波の磁界方向の連続性を確立する補助板は、電波の磁界方向に連続する帯状板であることを特徴とする請求項1記載の電波吸収用パネル。  2. The radio wave absorption panel according to claim 1, wherein the auxiliary plate for establishing continuity in the magnetic field direction of the radio wave in the tile is a belt-like plate continuous in the magnetic field direction of the radio wave. 上記タイルにおける電波の磁界方向の連続性を確立する補助板は、小片状で、これをタイルの横目地部分毎に配置していることを特徴とする請求項1記載の電波吸収用パネル。  2. The radio wave absorption panel according to claim 1, wherein the auxiliary plate that establishes continuity in the magnetic field direction of the radio wave in the tile is a small piece, and is arranged for each horizontal joint portion of the tile. 上記補助板は、上記タイルの裏面に接触配置されていることを特徴とする請求項1乃至3の何れか1項記載の電波吸収用パネル。  The radio wave absorption panel according to any one of claims 1 to 3, wherein the auxiliary plate is disposed in contact with the back surface of the tile. 上記補助板は、その厚さが上記タイルの厚さの20%以上とし、電界方向の幅は前記タイルの電界方向の幅の15%以上でタイルの電界方向の幅未満とすることを特徴とする請求項1乃至4の何れか1項記載の電波吸収用パネル。  The auxiliary plate has a thickness of 20% or more of the thickness of the tile, and the electric field direction width is 15% or more of the tile electric field direction width and less than the tile electric field direction width. The radio wave absorption panel according to any one of claims 1 to 4. 上記電波吸収材は、フェライトであることを特徴とする請求項1乃至5の何れか1項記載の電波吸収用パネル。  The radio wave absorption panel according to claim 1, wherein the radio wave absorber is ferrite. 上記タイルは、フェライト焼結体素地の表面に、該フェライト焼結体素地の線膨張係数に比べて0.1〜30%の範囲で小さい線膨張係数の釉薬を施したものであることを特徴とする請求項1乃至6の何れか1項記載の電波吸収用パネル。  The tile is characterized in that the surface of the ferrite sintered body is coated with a glaze having a small linear expansion coefficient in the range of 0.1 to 30% compared to the linear expansion coefficient of the ferrite sintered body. The radio wave absorption panel according to any one of claims 1 to 6.
JP2002046630A 2002-02-22 2002-02-22 Radio wave absorption panel Expired - Fee Related JP3712256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046630A JP3712256B2 (en) 2002-02-22 2002-02-22 Radio wave absorption panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046630A JP3712256B2 (en) 2002-02-22 2002-02-22 Radio wave absorption panel

Publications (2)

Publication Number Publication Date
JP2003249787A JP2003249787A (en) 2003-09-05
JP3712256B2 true JP3712256B2 (en) 2005-11-02

Family

ID=28659964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046630A Expired - Fee Related JP3712256B2 (en) 2002-02-22 2002-02-22 Radio wave absorption panel

Country Status (1)

Country Link
JP (1) JP3712256B2 (en)

Also Published As

Publication number Publication date
JP2003249787A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP3712256B2 (en) Radio wave absorption panel
JPH0139673B2 (en)
JP2791937B2 (en) Radio wave absorption wall for building materials
JP2823134B2 (en) Radio wave absorbing wall and tile unit
JPH01110798A (en) Electromagnetic wave absorbing type decorative plate
JPH0521920Y2 (en)
JPH01105843A (en) Radio wave absorbing wall material
JP4222453B2 (en) Radio wave absorption wall for broadband building materials
JPH09214168A (en) Radio wave absorptive wall and adjustment method of absorptive characteristic
JPH0230200A (en) Wave-absorbing wall body
JPH0579103A (en) Radio wave-absorbing wall
JP4072706B2 (en) Radio wave absorbing precast concrete board and manufacturing method thereof
JP4403527B2 (en) Radio wave absorbing precast concrete board and manufacturing method thereof
JP4423631B2 (en) Radio wave absorption precast concrete board.
JPH08144392A (en) Electric wave absorbing wall for building material
JP2000352132A (en) Radio wave absorption precast concrete slab and manufacture thereof
JPH0638475Y2 (en) Radio wave absorption wall
JPH11121970A (en) Wave absorbing wall
JPH1154983A (en) Radio wave absorbing wall
JP2002167884A (en) Radio absorptive precast concrete plate and ferrite fixing member
JPH10224076A (en) Wave absorbing wall
JP3641025B2 (en) Radio wave absorption wall
JPH08105188A (en) Wave absorbing tile for exterior wall
JPH08296287A (en) Radiowave absorbing panel structure
JPH11121971A (en) Wave absorbing wall and method for constructing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees