JPH08218123A - Heat treatment method of complex sleeve - Google Patents

Heat treatment method of complex sleeve

Info

Publication number
JPH08218123A
JPH08218123A JP2009295A JP2009295A JPH08218123A JP H08218123 A JPH08218123 A JP H08218123A JP 2009295 A JP2009295 A JP 2009295A JP 2009295 A JP2009295 A JP 2009295A JP H08218123 A JPH08218123 A JP H08218123A
Authority
JP
Japan
Prior art keywords
sleeve
cooling
heat treatment
matrix structure
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295A
Other languages
Japanese (ja)
Other versions
JP3226741B2 (en
Inventor
Kenji Tanaka
健次 田中
Tatsu Fujiie
達 藤家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02009295A priority Critical patent/JP3226741B2/en
Publication of JPH08218123A publication Critical patent/JPH08218123A/en
Application granted granted Critical
Publication of JP3226741B2 publication Critical patent/JP3226741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To improve the mechanical property of an inner layer material by forcedly cooling from the inner surface of a sleeve, too in a quenching process, at the time of executing the heat treatment to the sleeve of a complex sleeve combining type roll composed of austenitic materix structure. CONSTITUTION: The heat treatment is executed to the complex sleeve composed of the austenitic matrix structure so as to transform the outer layer into martenstic matrix structure and the inner layer into pearlitic matrix structure. In this method, at the quenching and cooling process, while rotating the sleeve 2, the forcedly cooling is executed not only from the outer surface but also from the inner surface with high pressure air from holes 6 formed in the steel pipe 5 set at the inside of the sleeve 2. By this method, the martensitic transformation at the outer layer is promoted and the internal stress is reduced and also, the mechanical property of the inner layer material can be improved, and while maintaining the high sttrength of the complex sleeve, the crack of the sleeve at the time of producing and during using the rolling accompanied with complexing can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧延用に供される複合
スリーブ組立式ロールの製造に適用される複合スリーブ
の熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a composite sleeve, which is applied to manufacture a composite sleeve assembly type roll for rolling.

【0002】[0002]

【従来の技術】一般に圧延用ロールは、図5に示すよう
に一体式と共にロール費低減を目的としたスリーブ組立
式ロールが広く用いられている。すなわち、図5は従来
の複合スリーブの構成を示す説明図である。この図に示
すようにロール本体1のスリーブ2に於いて最も要求さ
れる具備特性は、耐摩耗性であり、外層3の基地組織を
硬いマルテンサイトにすることが有効である。従って、
焼き入れ性の良好な材料が広く採用されている。一方、
使用中の割れ等の事故を防止することも必要であり、内
部欠陥が少なく靱性に優れたパーライト基地組織の内層
4との複合タイプとし、耐摩耗性と耐事故性を兼備させ
ることが多い。ところで、このスリーブをマルテンサイ
ト基地組織にするための熱処理としては、焼き入れが一
般に行われているのが実状である。
2. Description of the Related Art Generally, as a rolling roll, as shown in FIG. 5, an integrated type and a sleeve assembly type roll for the purpose of reducing the roll cost are widely used. That is, FIG. 5 is an explanatory view showing the structure of a conventional composite sleeve. As shown in this figure, the most required property of the sleeve 2 of the roll body 1 is abrasion resistance, and it is effective to make the matrix structure of the outer layer 3 hard martensite. Therefore,
Materials with good hardenability are widely adopted. on the other hand,
It is also necessary to prevent accidents such as cracks during use, and it is often a composite type with an inner layer 4 of a pearlite matrix structure that has few internal defects and excellent toughness, and has both wear resistance and accident resistance. By the way, as a heat treatment for making this sleeve into a martensitic matrix structure, quenching is generally performed in the actual situation.

【0003】[0003]

【発明が解決しようとする課題】耐摩耗性を充分発揮す
るには、基地組織を完全にマルテンサイトにする事が望
まれる。一般にマルテンサイト変態は、パーライト変態
を防止する充分な焼き入れ冷却速度が必要である。しか
しながら鉄鋼圧延用ロールに適用するスリーブは、大径
で肉厚も大きいために、完全マルテンサイト変態に必要
な焼き入れ冷却速度の確保が困難である。そこで、焼き
入れ温度を高温にして処理する方法が行われることもあ
るが、高温焼き入れ処理は、内層のパーライト基地組織
を粗大化するため、靱性等の機械的性質が著しく低下す
る。
In order to sufficiently exhibit wear resistance, it is desired that the matrix structure be completely martensite. Generally, the martensitic transformation requires a sufficient quenching and cooling rate to prevent the pearlite transformation. However, since the sleeve applied to the steel rolling roll has a large diameter and a large wall thickness, it is difficult to secure the quenching and cooling rate necessary for the complete martensitic transformation. Therefore, a method of increasing the quenching temperature may be carried out, but the high-temperature quenching treatment coarsens the pearlite matrix structure of the inner layer, so that mechanical properties such as toughness are remarkably deteriorated.

【0004】一方、図6に示すようにマルテンサイト変
態は著しい体積膨脹を伴うため、膨脹を伴わないパーラ
イト組織を内層とした複合スリーブでは、内部応力が発
生する。即ち、マルテンサイト変態膨脹する外層には圧
縮応力が、膨脹しない内層には引っ張り応力が発生す
る。更に、スリーブ組立式ロールは、スリーブを焼嵌め
によって軸(アーバー)と嵌合するため、スリーブ内面
には引張の焼嵌応力が生じる。従って、スリーブ内面
は、熱処理時の外層のマルテンサイト変態に伴う引張応
力と焼嵌めによる引張応力が残留し、圧延使用中の熱応
力等の引張応力が加わって、内層の材力が低いとスリー
ブの割れが発生するという問題点を有している。
On the other hand, as shown in FIG. 6, since the martensitic transformation is accompanied by a remarkable volume expansion, internal stress is generated in the composite sleeve having a pearlite structure without expansion as an inner layer. That is, compressive stress is generated in the outer layer where the martensite transformation expands, and tensile stress occurs in the inner layer where the martensite transformation does not expand. Further, in the sleeve assembly type roll, since the sleeve is fitted on the shaft (arbor) by shrink fitting, a tensile shrink fitting stress is generated on the inner surface of the sleeve. Therefore, on the inner surface of the sleeve, the tensile stress due to the martensitic transformation of the outer layer during heat treatment and the tensile stress due to shrink fitting remain, and the tensile stress such as thermal stress during rolling is applied. It has a problem that cracks occur.

【0005】[0005]

【課題を解決するための手段】上述したような問題を解
決するために、発明者らは鋭意開発を進めた結果、複合
スリーブの焼き入れ冷却過程でスリーブの内外表面から
の強制冷却することによって、複合スリーブの高硬度を
維持しつつ、複合化に伴う製造時及び圧延使用中のスリ
ーブ割れを解消した複合スリーブ組立式ロールの製造方
法を提供せんとするものである。その発明の要旨とする
ところは、オーステナイト基地組織からなるスリーブを
熱処理して、スリーブ外層をマルテンサイト基地組織
に、スリーブ内層をパーライト基地組織に変態せしめる
複合スリーブの熱処理方法に於いて、焼き入れ冷却過程
で、スリーブ外表面だけでなく、スリーブ内面から強制
冷却することにより、外層のマルテンサイト変態を促進
させ、且つ、内部応力を低減させると共に内層材の機械
的性質を向上せしめることにある。
In order to solve the above problems, as a result of intensive development by the inventors, as a result of forced cooling from the inner and outer surfaces of the sleeve during quenching and cooling of the composite sleeve. The present invention provides a method for manufacturing a composite sleeve assembling roll, which maintains the high hardness of the composite sleeve and eliminates the sleeve cracking during the manufacturing and during the rolling and the use. The gist of the invention is to heat-treat a sleeve made of an austenite matrix structure to transform the outer layer of the sleeve into a martensite matrix structure and the inner layer of the sleeve into a pearlite matrix structure. In the process, not only the outer surface of the sleeve but also the inner surface of the sleeve is forcibly cooled to promote martensitic transformation of the outer layer, reduce internal stress, and improve mechanical properties of the inner layer material.

【0006】[0006]

【作用】本発明において、外層をマルテンサイト基地組
織を有する材料に限定したのは、耐摩耗性の点でパーラ
イトやベーナイトに比べ最も硬く有効な手段となるから
である。また、内層をパーライト基地組織を有する材料
に限定したのは、外層のマルテンサイト変態膨脹にとも
ない膨脹が生じないためだが、外層のマルテンサイト変
態膨脹に伴い、パーライト基地組織の内層が相対的に収
縮し引張応力が生じるため、割れ発生の恐れがあるが、
本発明になる熱処理法によると、その応力低減が図られ
実用技術として効果的である。
In the present invention, the outer layer is limited to a material having a martensitic matrix structure because it is the hardest and effective means in terms of wear resistance as compared with pearlite and bainite. Also, the reason why the inner layer is limited to the material having a pearlite matrix structure is that expansion does not occur due to the martensite transformation expansion of the outer layer, but the inner layer of the pearlite matrix structure shrinks relatively with the martensite transformation expansion of the outer layer. Since tensile stress is generated, cracking may occur,
According to the heat treatment method of the present invention, the stress can be reduced, which is effective as a practical technique.

【0007】本発明の複合スリーブの熱処理、即ち、焼
き入れ冷却過程に於いて、スリーブの外面及び内面から
の強制冷却により次のような作用を生ずる。第1は、外
層マルテンサイト変態の促進である。スリーブ内面から
の強制冷却によって、当然、スリーブ全体の冷却速度が
大となり外層の内部までマルテンサイト変態が促進され
る。
In the heat treatment of the composite sleeve of the present invention, that is, in the quenching and cooling process, the following effects are brought about by the forced cooling from the outer surface and the inner surface of the sleeve. The first is to promote the outer layer martensite transformation. The forced cooling from the inner surface of the sleeve naturally increases the cooling rate of the entire sleeve and promotes the martensitic transformation to the inside of the outer layer.

【0008】第2は、内層(特にスリーブ内面)に発生
する引張応力を軽減できる。焼き入れ冷却過程におい
て、スリーブ内面に発生する応力は、外層マルテンサイ
ト変態膨脹による変態応力と、スリーブ外〜内面の温度
差(温度分布)によって生ずる熱応力である。マルテン
サイト変態膨脹は、外層の厚さ(volume)によっ
て支配され、一方、熱応力は、焼き入れ冷却過程におい
て、塑性域から弾性域に変わる時点でのスリーブ外〜内
面(断面方向)の温度分布によって決まる。スリーブ内
面からの強制冷却によって、外内面の温度差が小さくな
り熱応力の発生も著しく軽減する。
Secondly, the tensile stress generated in the inner layer (in particular, the inner surface of the sleeve) can be reduced. In the quenching and cooling process, the stress generated on the inner surface of the sleeve is the transformation stress due to the outer layer martensite transformation expansion and the thermal stress caused by the temperature difference (temperature distribution) between the outer and inner surfaces of the sleeve. The martensitic transformation expansion is governed by the thickness of the outer layer, while the thermal stress is the temperature distribution from the outer surface to the inner surface (cross-sectional direction) of the sleeve at the time of changing from the plastic region to the elastic region during the quenching and cooling process. Depends on By the forced cooling from the inner surface of the sleeve, the temperature difference between the outer and inner surfaces is reduced, and the generation of thermal stress is significantly reduced.

【0009】第3は、内層の機械的性質の向上である。
パーライト組織は、フェライトとセメンタイトの層状組
織であるが、一般的に、フェライトとセメンタイトの
(層状)間隔が小さい微細組織になる程、機械的性質が
向上する。スリーブ内面からの強制冷却は、パーライト
組織を微細化し、機械的性質を向上させる。
Thirdly, the mechanical properties of the inner layer are improved.
The pearlite structure is a layered structure of ferrite and cementite. Generally, the smaller the (layered) spacing between ferrite and cementite, the smaller the structure, and the more the mechanical properties improve. Forced cooling from the inner surface of the sleeve makes the pearlite structure fine and improves mechanical properties.

【0010】[0010]

【実施例】次に、本発明になるスリーブ焼き入れ冷却過
程に於けるスリーブ外内面の強制冷却方法の一実施例に
ついて説明する。まず、表1に示す如き寸法、成分にて
スリーブ本体を製作した。(即ち、本実施例では、スリ
ーブの内層は黒鉛鋳鋼、外層はハイクロムアダマイトで
製作) 次に、スリーブは熱処理炉に於いて、オーステナイト組
織となる950〜1000℃まで昇温、加熱された後、
熱処理炉から抽出し、焼き入れ冷却される。スリーブ外
表面の焼き入れを図1に示す。図1は本発明に係る内面
冷却の実施例を示す説明図で、通常行なわれているよう
に、スリーブを回転しながらFAN(送風機)やMIS
T(噴霧)で冷却する一方、スリーブ内面の冷却は、従
来法が自然放冷であるのに対し、本発明では、図1に見
る如く、長手方向20mmピッチに2mmφのスリーブ
内面冷却用鋼管5に形成された穴6を加工した50mm
のスリーブ内面冷却用鋼管5をスリーブ2内側にセット
し、高圧(5kg/cm2 程度)のAirによって強制
冷却を行った。このスリーブ外表面の焼き入れとスリー
ブ内面の強制冷却は、外層のパーライト変態を防止する
ため450℃まで行い、その後、大気中にて自然放冷
し、焼戻しは、500〜550℃で実施した。
Next, an embodiment of the method for forcibly cooling the outer and inner surfaces of the sleeve in the sleeve quenching and cooling process according to the present invention will be described. First, a sleeve body was manufactured with the dimensions and components shown in Table 1. (That is, in this embodiment, the inner layer of the sleeve is made of graphite cast steel and the outer layer is made of high chromium adamite.) Next, the sleeve was heated in a heat treatment furnace to 950 to 1000 ° C. to be an austenite structure and heated. rear,
It is extracted from the heat treatment furnace and quenched and cooled. Quenching of the outer surface of the sleeve is shown in FIG. FIG. 1 is an explanatory view showing an embodiment of inner surface cooling according to the present invention. As is generally done, while rotating a sleeve, a fan (fan) or MIS is provided.
While cooling by T (spray), the inner surface of the sleeve is cooled naturally by the conventional method, whereas in the present invention, as shown in FIG. 50mm processed hole 6 formed in
The steel pipe 5 for cooling the inner surface of the sleeve was set inside the sleeve 2, and forced cooling was performed by the high-pressure (about 5 kg / cm 2 ) Air. The quenching of the outer surface of the sleeve and the forced cooling of the inner surface of the sleeve were performed up to 450 ° C in order to prevent the pearlite transformation of the outer layer, and then naturally cooled in the air, and the tempering was performed at 500 to 550 ° C.

【0011】[0011]

【表1】 [Table 1]

【0012】焼き入れ冷却過程での温度推移を図2に示
すが、外表面では950〜450℃までの平均冷却速度
は70〜80℃/分で、一方、スリーブ内面は、950
〜600℃までが40〜50℃/分で、600〜450
℃までが15〜20℃/分の冷却速度である。なお、従
来法に於けるスリーブ内面の平均冷却速度は、950〜
450℃まで10〜15℃/分であった。このように、
スリーブ内面を強制冷却し、その冷却速度を950〜6
00℃までが40〜50℃/分に、600〜450℃ま
でを15〜20℃/分と限定するのは、これ以上冷却速
度を速くすると、一部ベーナイト組織が現れ、完全なパ
ーライト組織にならないためである。又、逆に冷速を遅
くすると外表面との温度差が大きくなり、本発明の主旨
である残留応力の軽減という効果が生じない。
FIG. 2 shows the temperature transition during the quenching and cooling process. On the outer surface, the average cooling rate from 950 to 450 ° C. is 70 to 80 ° C./min, while on the inner surface of the sleeve, 950.
Up to ~ 600 ℃ is 40 ~ 50 ℃ / min, 600 ~ 450
The cooling rate up to ° C is 15 to 20 ° C / min. The average cooling rate of the inner surface of the sleeve in the conventional method is 950 to
The rate was 10 to 15 ° C / minute up to 450 ° C. in this way,
The inner surface of the sleeve is forcibly cooled and the cooling rate is 950-6
The reason for limiting the temperature to 00 ° C to 40 to 50 ° C / min and the temperature to 600 to 450 ° C to 15 to 20 ° C / min is that if the cooling rate is further increased, a part of bainite structure appears and a perfect pearlite structure is formed. This is because it does not happen. On the contrary, when the cooling speed is slowed down, the temperature difference from the outer surface becomes large, and the effect of reducing residual stress, which is the gist of the invention, does not occur.

【0013】図3は本発明と従来法とによる冷却法にお
ける温度分布の比較を示すが、図3(A)に示す本発明
の内面冷却法に比べて図3(B)に示す比較例では、特
に冷却時にスリーブ外表面と内表面との温度差の大きい
ことがわかる。図4は本発明と従来法の冷却による応力
分布の比較を示す図で、図4(A)に示す本発明の内面
冷却によれば、図4(B)に示す比較例での方法に比べ
てスリーブ内面の残留応力が低減されていることが分か
る。従って、従来法にあっては、スリーブ内面を起点と
する割れが発生した。
FIG. 3 shows a comparison of temperature distributions between the cooling method according to the present invention and the conventional method. In the comparative example shown in FIG. 3 (B) as compared with the inner surface cooling method of the present invention shown in FIG. 3 (A). It can be seen that there is a large temperature difference between the outer surface and the inner surface of the sleeve, especially during cooling. FIG. 4 is a diagram showing a comparison of stress distributions between the present invention and a conventional method. According to the inner surface cooling of the present invention shown in FIG. 4 (A), compared with the method in the comparative example shown in FIG. 4 (B). It can be seen that the residual stress on the inner surface of the sleeve is reduced. Therefore, in the conventional method, cracks originated from the inner surface of the sleeve.

【0014】[0014]

【発明の効果】本発明の熱処理法によれば、複合スリー
ブの高硬度を維持しつつ、複合化に伴う製造時及び圧延
使用中のスリーブ割れを解消し、耐摩耗性に優れた高品
質のスリーブ組立式ロールの製造が可能となり実用技術
としての価値が高い。
EFFECTS OF THE INVENTION According to the heat treatment method of the present invention, while maintaining the high hardness of the composite sleeve, the cracking of the sleeve during the production and during the rolling use accompanying the compounding is eliminated, and the wear resistance is high. It is possible to manufacture sleeve assembly type rolls, which is highly valuable as a practical technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内面冷却の実施例を示す説明図、FIG. 1 is an explanatory view showing an embodiment of inner surface cooling according to the present invention,

【図2】本発明に係る内面冷却速度を示す図、FIG. 2 is a diagram showing an inner surface cooling rate according to the present invention,

【図3】本発明と従来法とによる冷却法における温度分
布の比較を示す図、
FIG. 3 is a diagram showing a comparison of temperature distributions in a cooling method according to the present invention and a conventional method,

【図4】本発明と従来法の冷却による応力分布の比較を
示す図、
FIG. 4 is a diagram showing a comparison of stress distributions of the present invention and a conventional method due to cooling;

【図5】従来の複合スリーブの構成を示す説明図、FIG. 5 is an explanatory view showing a structure of a conventional composite sleeve,

【図6】複合スリーブに於ける内外層の熱処理時の膨脹
収縮状態図である。
FIG. 6 is an expansion / contraction state diagram of the inner and outer layers of the composite sleeve during heat treatment.

【符号の説明】[Explanation of symbols]

1 ロール本体 2 スリーブ 3 スリーブ外層 4 スリーブ内層 5 スリーブ内面冷却用鋼管 6 冷却用鋼管に形成された穴 1 Roll Main Body 2 Sleeve 3 Sleeve Outer Layer 4 Sleeve Inner Layer 5 Sleeve Inner Surface Cooling Steel Pipe 6 Hole Formed in Cooling Steel Pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト基地組織からなるスリー
ブを熱処理して、該スリーブの外層をマルテンサイト基
地組織に、スリーブの内層をパーライト基地組織に変態
せしめる複合スリーブの熱処理方法に於いて、焼き入れ
冷却過程で、スリーブの外表面だけでなく、スリーブ内
面からも強制冷却することにより、外層のマルテンサイ
ト変態を促進させ、且つ、内部応力を低減させると共に
内層材の機械的性質を向上させることを特徴とする複合
スリーブの熱処理方法。
1. A heat treatment method for a composite sleeve in which a sleeve made of an austenite matrix structure is heat treated to transform an outer layer of the sleeve into a martensite matrix structure and an inner layer of the sleeve into a pearlite matrix structure, and a quenching and cooling step. Thus, by forcibly cooling not only the outer surface of the sleeve but also the inner surface of the sleeve, the martensitic transformation of the outer layer is promoted, and the internal stress is reduced and the mechanical properties of the inner layer material are improved. Heat treatment method for composite sleeve.
JP02009295A 1995-02-08 1995-02-08 Heat treatment method for composite sleeve Expired - Fee Related JP3226741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02009295A JP3226741B2 (en) 1995-02-08 1995-02-08 Heat treatment method for composite sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02009295A JP3226741B2 (en) 1995-02-08 1995-02-08 Heat treatment method for composite sleeve

Publications (2)

Publication Number Publication Date
JPH08218123A true JPH08218123A (en) 1996-08-27
JP3226741B2 JP3226741B2 (en) 2001-11-05

Family

ID=12017477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02009295A Expired - Fee Related JP3226741B2 (en) 1995-02-08 1995-02-08 Heat treatment method for composite sleeve

Country Status (1)

Country Link
JP (1) JP3226741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120304954A1 (en) * 2011-06-02 2012-12-06 Caterpillar Inc. Cylinder liner with a case on a cuff-ring groove
US8691029B2 (en) * 2010-02-26 2014-04-08 Caterpillar Inc. Reduced ferrite steel liner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691029B2 (en) * 2010-02-26 2014-04-08 Caterpillar Inc. Reduced ferrite steel liner
US20120304954A1 (en) * 2011-06-02 2012-12-06 Caterpillar Inc. Cylinder liner with a case on a cuff-ring groove
CN103649507A (en) * 2011-06-02 2014-03-19 卡特彼勒公司 Cylinder liner with a case on a cuff-ring groove

Also Published As

Publication number Publication date
JP3226741B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JP5611828B2 (en) Rotating elements or rotating rings formed from bearing steel
JP5535922B2 (en) Heat treatment process for steel
JP2000154828A (en) Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
JP2008208940A (en) Constant velocity universal joint component and its manufacturing method
JPH11309630A (en) Manufacture of part made of steel material
JPH04129621A (en) Manufacture of gear member
JP3226741B2 (en) Heat treatment method for composite sleeve
JP4392376B2 (en) Method for producing composite roll for hot rolling
JP4500193B2 (en) Manufacturing method of steel pipe for machine structural member
JPH07179945A (en) Caliber roll for rolling
JP2001131688A (en) Air-hardened low or medium carbon steel for improving heat treatment
JP3658099B2 (en) Method for producing wear-resistant tough roll
JP7052116B1 (en) Molding method
JPS61147815A (en) Production of roll having high hardened depth
JPS5977979A (en) Bushing for track shoe and production thereof
JP4405101B2 (en) High pressure fuel injection pipe
JP2705284B2 (en) Manufacturing method of high strength seamless steel pipe
JPS61199035A (en) Manufacture of composite roll having tough neck part
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JPS5836649B2 (en) Method for manufacturing hot rolling mill work rolls
JPH06172865A (en) Heat treatment method of high strength and sour resistant steel pipe
KR100310233B1 (en) Method of spheroidizing heat treatment for steel
JPH11131184A (en) Case hardening steel minimal in heat treatment strain
KR100237910B1 (en) Hot-rolling method of steel bars
JPH0241566B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010821

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees