JPH0241566B2 - - Google Patents

Info

Publication number
JPH0241566B2
JPH0241566B2 JP61130191A JP13019186A JPH0241566B2 JP H0241566 B2 JPH0241566 B2 JP H0241566B2 JP 61130191 A JP61130191 A JP 61130191A JP 13019186 A JP13019186 A JP 13019186A JP H0241566 B2 JPH0241566 B2 JP H0241566B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
martensitic transformation
quenching
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61130191A
Other languages
Japanese (ja)
Other versions
JPS62287016A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13019186A priority Critical patent/JPS62287016A/en
Publication of JPS62287016A publication Critical patent/JPS62287016A/en
Publication of JPH0241566B2 publication Critical patent/JPH0241566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は圧延用に供される複合ロールの製造に
適用されるものである。 従来の技術 ロールに最も要求される具備特性は耐摩耗性で
あり、基地組織を硬いマルテンサイトにすること
が有効である。したがつて焼入性の良好な材料が
広く採用されている。一方、使用中の割れ等の事
故を防止することも必要であり、内部欠陥が少な
く靭性に優れたパーライト基地組織の内層との複
合タイプとし、耐摩耗性と耐事故性を兼備させる
ことが多い。 この種のロールの熱処理は前述のマルテンサイ
ト基地組織とするため焼入れが一般に行なわれ
る。 発明が解決しようとする問題点 耐摩耗性を充分発揮するには基地組織を完全に
マルテンサイトにすることが望まれる。一般にマ
ルテンサイト変態はパーライト変態を防止する充
分な焼入冷却速度、すなわち臨界冷却速度以上で
はMs点にて変態が開始し、温度低下とともに変
態量が増し、Mf点にて完全にマルテンサイトの
均一組織となる。 しかしながら多くの材料はMf点が0℃以下で
あるため室温までの通常の焼入冷却では完全にマ
ルテンサイトにならずオーステナイトが一部残留
する。オーステナイトはマルテンサイトに比べ極
めて軟らかく耐摩耗性を損なう。そこでサブゼロ
処理が行なわれることもあるが、サブゼロ処理は
ドライアイス等の冷媒を必要とするため高価とな
る上、低温にするための特別な冷却設備が必要で
ある。また鉄鋼圧延用ロールの場合、最大70ton
にも及ぶ大単重のため極めて難しい作業といえ
る。 一方第2図に示すようにマルテンサイト変態は
著しい体積膨張を伴なうため、膨張を伴なわない
パーライト組織を内層とした複合ロールでは内部
応力が発生する。すなわちマルテンサイト変態膨
張する外層には圧縮応力が、膨脹しない内層には
引張応力が発生する。したがつてマルテンサイト
変態が多すぎると内層に大きな引張応力が働らき
割れが発生する。 そこで本発明はこの種の複合ロールについて内
部応力による割れを防止し、かつ外層を完全にマ
ルテンサイトにする簡便な熱処理法を提供せんと
するものである。 問題を解決するたの手段 本発明は、マルテンサイト基地組織を有する外
層と、パーライト基地組織を有する内層からなる
複合ロールの熱処理に際し、焼入冷却途中で、マ
ルテンサイト変態開始温度(Ms点)から、室温
もしくは室温以上のマルテンサイト変態終了温度
(Mf点)までの温度範囲内で、冷却を中断し、
400〜600℃の焼入温度に再加熱し、その後、焼入
冷却を行う焼入を、少なくとも1回以上行い、引
き続き焼戻しを行うことを特徴とする複合ロール
の熱処理方法である。 これにより外層のマルテンサイト変態を促進す
るとともに、加熱が最初の冷却時に生じたマルテ
ンサイト変態による残留応力を除去するため、同
一マルテンサイト量での熱処理途中の内部応力な
らびに残留応力の低減が可能となり割れを防止で
きる。 作 用 本発明において外層をマルテンサイト基地組織
を有する材料に限定したのは、耐摩耗性の点でパ
ーライトやベイナイトに比べマルテンサイトが最
も硬く有効な手段であること、また高温で変態が
完了するパーライトでは本発明の特徴である低温
での熱処理操作が最終的な基地組織にほとんど影
響を及ぼさないためである。 内層をパーライト基地組織を有する材料に限定
したのは、外層のマルテンサイト変態膨脹に伴な
い膨脹の生じないパーライト基地の内層が相対的
に収縮し、引張応力が生ずるため割れが発生する
危険があり、本発明による応力低減効果が有効と
なるためである。 焼入冷却時、焼入冷却途中で、マルテンサイト
変態開始温度(Ms点)から、室温もしくは室温
以上のマルテンサイト変態終了温度(Mf点)ま
での温度範囲内で、冷却を中断するのは前述した
ように外層のマルテンサイト変態量が多すぎて、
外層と内層との膨張差が大きくなり割れが発生す
るのを防止する目的でマルテンサイト変態量を抑
制するものである。 次に400〜600℃の加熱を実施するのは、最初の
焼入冷却で残留したオーステナイトを活性化さ
せ、続いて行なう冷却時のMs点を上昇させ、比
較的高温でマルテンサイト変態を行なうことがで
きる(日本鉄鋼協会編、「鋼の熱処理」改訂5版
67ページ参照)。 したがつてMf点が0℃以下の材料の場合、大
気温度までの1回の焼入冷却では必らずオーステ
ナイトが残留するが、この加熱により室温以上の
温度でもマルテンサイト変態を完了させることが
可能となる。そこで単に硬度を高める目的で高速
度工具鋼などの単一材料の熱処理に一部採用され
ている。 しかしながら、この加熱温度では応力除去の効
果があり、これを利用し最初の焼入れによる外層
のマルテンサイト膨張により発生した複合ロール
の内部応力を軽減させたうえで、再びマルテンサ
イト変態膨張を行なうため、最終的には同一マル
テンサイト量でも熱処理途中の内部応力ならびに
残留応力の低減が可能となり、したがつて複合ロ
ールの割れの危険性を著しく軽減させる。 ここで加熱温度が低すぎた場合には残留したオ
ーステナイトの活性化の効果が少なく、続く冷却
時に高温側でマルテンサイト変態が図れず、また
応力除去の効果も少ない。更に低温の100〜200℃
ではかえつてオーステナイトが安定してしまう。
逆に加熱温度が高すぎた場合には残留したオース
テナイトがパーライトに変態し、かつ最初に生じ
たマルテンサイトも焼戻軟化することにより硬度
が低下する。もちろんこの場合、続く冷却時にお
いてマルテンサイト変態は生じない。 以上、外層のマルテンサイト変態を2回に分割
して行なわせる場合について述べたが、マルテン
サイト変態膨張が大きい材質や、外層断面積比が
大きく、大きな内部応力の発生が予想される場合
には、分割回数を増加し、この処理を繰返せばそ
の効果は増大する。 実施例 鉄鋼圧延用ロールとして外層に高クロム鋳鉄、
内層にダクタイル鋳鉄を採用し、複合ロールを第
1表に示す条件にて製造した。高クロム鋳鉄は
Cr10〜25%を主成分に、その他Cならびに適宜
の合金元素を含有したものであるが、それが有す
る硬いクロム炭化物と良好な焼入性により高硬度
が得やすく、耐摩耗性に優れた材料であり、一般
にダクタイル鋳鉄や高級鋳鉄などを内層とした複
合タイプにて製造される。もちろんこの場合の外
層はマルテンサイト基地組織を有し、内層はパー
ライト基地組織である。 従来法と実施例は同一形状ならびに同一材質で
あるが、従来法では硬度(Hsc)85であるにもか
かわらず、熱処理中に内部応力過大により割れが
発生したのに対し、実施例では硬度(Hsc)91.5
と高くなり、かつ割れは発生せず、本法の効果は
顕著である。 第3図に実施例で採用した外層の焼入冷却時の
熱膨張(収縮)を示した。この材料の場合Ms点
は220℃であり、これ以下の温度でマルテンサイ
ト変態に伴なう膨張が認められる。80℃にて冷却
を中断し、500℃に加熱した後再度冷却した時に
は、冷却を中断した温度より70℃高い150℃より
マルテンサイト変態が再開され80℃にて変態が完
了している。 これより、マルテンサイト変態が分割して進ん
でいること、また第2回目の変態は高温側で生
じ、最終的には室温以上で変態を完了しているこ
とがわかる。実施例はマルテンサイト変態を2回
に分割した例であるが、更に分割を多くしても同
様の効果が得られることは容易に理解できる。 なお実施例、従来例ともマルテンサイト変態を
完了させた後、組織の安定化ならびに応力除去の
目的で焼戻しを行なつた。
Industrial Application Field The present invention is applied to the production of composite rolls used for rolling. BACKGROUND TECHNOLOGY The property most required for rolls is wear resistance, and it is effective to use hard martensite as the base structure. Therefore, materials with good hardenability are widely used. On the other hand, it is also necessary to prevent accidents such as cracking during use, so a composite type with an inner layer of pearlite base structure that has few internal defects and excellent toughness is often used to provide both wear resistance and accident resistance. . In the heat treatment of this type of roll, quenching is generally performed to form the aforementioned martensitic base structure. Problems to be Solved by the Invention In order to fully exhibit wear resistance, it is desirable that the base structure be completely martensite. In general, martensitic transformation starts at the Ms point when the quenching cooling rate is sufficient to prevent pearlite transformation, that is, the critical cooling rate, the amount of transformation increases as the temperature decreases, and martensite becomes completely uniform at the Mf point. Become an organization. However, since the Mf point of many materials is below 0°C, normal quenching and cooling to room temperature does not completely convert them to martensite, leaving some austenite remaining. Austenite is extremely soft compared to martensite and impairs wear resistance. Therefore, sub-zero processing is sometimes performed, but sub-zero processing requires a refrigerant such as dry ice, which is expensive, and requires special cooling equipment to lower the temperature. In the case of steel rolling rolls, the maximum is 70 tons.
It can be said that the work is extremely difficult due to the large unit weight. On the other hand, as shown in FIG. 2, martensitic transformation is accompanied by significant volumetric expansion, so internal stress is generated in a composite roll with an inner layer of pearlite structure that does not undergo expansion. That is, compressive stress is generated in the outer layer that undergoes martensitic transformation and expansion, and tensile stress is generated in the inner layer that does not expand. Therefore, if there is too much martensitic transformation, a large tensile stress will be applied to the inner layer and cracks will occur. Therefore, the present invention aims to provide a simple heat treatment method for this type of composite roll to prevent cracking due to internal stress and to completely convert the outer layer to martensite. Means for Solving the Problems The present invention provides a method for heat treating a composite roll consisting of an outer layer having a martensitic matrix structure and an inner layer having a pearlite matrix structure, from the martensitic transformation start temperature (Ms point) during quenching and cooling. , cooling is interrupted at room temperature or within the temperature range above room temperature up to the martensitic transformation end temperature (Mf point),
This is a heat treatment method for a composite roll, which is characterized in that quenching is performed at least once by reheating to a quenching temperature of 400 to 600°C, followed by quenching cooling, and then tempering is performed. This not only promotes the martensitic transformation of the outer layer, but also removes the residual stress caused by the martensitic transformation that occurred when the heating first cooled down, making it possible to reduce the internal stress and residual stress during heat treatment with the same amount of martensite. Can prevent cracking. Effect In the present invention, the outer layer is limited to a material having a martensite base structure because martensite is the hardest and most effective material compared to pearlite and bainite in terms of wear resistance, and the transformation is completed at high temperatures. This is because for pearlite, the low-temperature heat treatment operation that is a feature of the present invention has almost no effect on the final matrix structure. The reason why the inner layer is limited to a material having a pearlite base structure is that as the outer layer undergoes martensitic transformation and expansion, the pearlite base inner layer, which does not expand, contracts relatively and generates tensile stress, which poses a risk of cracking. This is because the stress reduction effect of the present invention becomes effective. As mentioned above, during quenching cooling, cooling is interrupted during quenching within the temperature range from the martensitic transformation start temperature (Ms point) to the martensitic transformation end temperature (Mf point) at or above room temperature. As shown, the amount of martensitic transformation in the outer layer is too large,
The amount of martensitic transformation is suppressed in order to prevent cracks from occurring due to a large expansion difference between the outer layer and the inner layer. Next, heating at 400 to 600°C is performed to activate the austenite remaining during the first quenching and cooling, raise the Ms point during the subsequent cooling, and perform martensitic transformation at a relatively high temperature. (edited by the Japan Iron and Steel Institute, "Heat Treatment of Steel" revised 5th edition)
(See page 67). Therefore, in the case of a material with an Mf point of 0°C or lower, austenite will necessarily remain after one quenching cooling to atmospheric temperature, but this heating will not complete the martensitic transformation even at temperatures above room temperature. It becomes possible. Therefore, it is used in some cases to heat treat single materials such as high-speed tool steels simply to increase their hardness. However, this heating temperature has a stress-relieving effect, and this is used to reduce the internal stress of the composite roll that was generated by the expansion of martensite in the outer layer due to the first quenching, and then martensitic transformation expansion is performed again. Ultimately, even with the same amount of martensite, it is possible to reduce internal stress and residual stress during heat treatment, thereby significantly reducing the risk of cracking in the composite roll. If the heating temperature is too low, the effect of activating the remaining austenite is small, martensitic transformation cannot be achieved at the high temperature side during subsequent cooling, and the effect of stress relief is also small. Even lower temperature 100~200℃
On the contrary, austenite becomes stable.
On the other hand, if the heating temperature is too high, the remaining austenite transforms into pearlite, and the initially formed martensite is also tempered and softened, resulting in a decrease in hardness. Of course, in this case no martensitic transformation occurs during subsequent cooling. Above, we have described the case where the martensitic transformation of the outer layer is performed in two steps, but when the material has a large martensitic transformation expansion, the outer layer cross-sectional area ratio is large, and a large internal stress is expected to occur. , by increasing the number of divisions and repeating this process, the effect will increase. Example: High chromium cast iron on the outer layer as a steel rolling roll.
Ductile cast iron was used for the inner layer, and a composite roll was manufactured under the conditions shown in Table 1. High chromium cast iron
A material whose main component is 10 to 25% Cr and other C and other appropriate alloying elements, and it is easy to obtain high hardness and has excellent wear resistance due to its hard chromium carbide and good hardenability. It is generally manufactured as a composite type with an inner layer of ductile cast iron or high-grade cast iron. Of course, the outer layer in this case has a martensite base structure, and the inner layer has a pearlite base structure. The conventional method and the example have the same shape and the same material, but in the conventional method, cracking occurred due to excessive internal stress during heat treatment despite the hardness (Hsc) of 85, whereas in the example, the hardness (Hsc) was 85. Hsc) 91.5
The effect of this method is remarkable, with no cracking occurring. FIG. 3 shows the thermal expansion (contraction) during quenching and cooling of the outer layer employed in the example. In the case of this material, the Ms point is 220°C, and expansion due to martensitic transformation is observed at temperatures below this temperature. When cooling was interrupted at 80°C, heated to 500°C, and then cooled again, martensitic transformation restarted at 150°C, which is 70°C higher than the temperature at which cooling was interrupted, and the transformation was completed at 80°C. This shows that the martensitic transformation progresses in parts, and that the second transformation occurs on the high temperature side, and that the transformation is finally completed above room temperature. Although the embodiment is an example in which the martensitic transformation is divided into two steps, it is easy to understand that the same effect can be obtained even if the martensitic transformation is divided into more steps. In both the example and the conventional example, after the martensitic transformation was completed, tempering was performed for the purpose of stabilizing the structure and removing stress.

【表】 発明の効果 本発明は、下記の顕著な効果を奏する。 ロールに最も要求される高硬度で、耐摩耗性
を具備しているマルテンサイト基地組織の外層
を、内部欠陥を生じさせずにロールに使用でき
るので、耐摩耗性に優れ、高寿命の高品質ロー
ルを製造できる。 0℃以下のマルテンサイト変態終了温度
(Mf点)まで焼入冷却する、ドライアイス等の
冷媒を使用した大掛かりで高価なサブゼロ処理
をする必要がない。 そのため、熱処理が容易で、かつ安価にでき
る。
[Table] Effects of the Invention The present invention has the following remarkable effects. The outer layer of martensitic matrix structure, which has high hardness and wear resistance, which are most required for rolls, can be used in rolls without internal defects, resulting in high quality with excellent wear resistance and long life. We can manufacture rolls. There is no need for large-scale and expensive sub-zero processing using a refrigerant such as dry ice, which involves quenching and cooling to the martensitic transformation end temperature (Mf point) below 0°C. Therefore, heat treatment is easy and can be done at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る複合ロールの構造を概略
的に現わした断面図である。第2図は焼入冷却時
の外層ならびに内層の膨張(収縮)を示す模式図
である。第3図は本法による実施例における外層
の膨張(収縮)特性を示す図である。第4図は第
1表における従来法の、第5図は第1表における
実施例の熱処理曲線を示す図である。 1……外層、2……内層、3……冷却、Ms点
……マルテンサイト変態開始温度、Mf点……マ
ルテンサイト変態終了温度。
FIG. 1 is a sectional view schematically showing the structure of a composite roll according to the present invention. FIG. 2 is a schematic diagram showing the expansion (contraction) of the outer layer and inner layer during quenching and cooling. FIG. 3 is a diagram showing the expansion (contraction) characteristics of the outer layer in an example according to the present method. FIG. 4 is a diagram showing the heat treatment curve of the conventional method shown in Table 1, and FIG. 5 is a diagram showing the heat treatment curve of the example shown in Table 1. 1...outer layer, 2...inner layer, 3...cooling, Ms point...martensite transformation start temperature, Mf point...martensite transformation end temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 マルテンサイト基地組織を有する外層と、パ
ーライト基地組織を有する内層からなる複合ロー
ルの熱処理に際し、焼入冷却途中で、マルテンサ
イト変態開始温度(Ms点)から、室温もしくは
室温以上のマルテンサイト変態終了温度(Mf点)
までの温度範囲内で、冷却を中断し、400〜600℃
の焼入温度に再加熱し、その後、焼入冷却を行う
焼入を、少なくとも1回以上行い、引き続き焼戻
しを行うことを特徴とする複合ロールの熱処理方
法。
1. During heat treatment of a composite roll consisting of an outer layer with a martensitic matrix structure and an inner layer with a pearlite matrix structure, during quenching and cooling, the martensitic transformation start temperature (Ms point) reaches room temperature or above room temperature, where the martensitic transformation ends. Temperature (Mf point)
Interrupt cooling within the temperature range up to 400-600℃
A method for heat treatment of a composite roll, comprising: reheating to a quenching temperature, followed by quenching and cooling at least once, followed by tempering.
JP13019186A 1986-06-06 1986-06-06 Heat treatment of composite roll Granted JPS62287016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13019186A JPS62287016A (en) 1986-06-06 1986-06-06 Heat treatment of composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13019186A JPS62287016A (en) 1986-06-06 1986-06-06 Heat treatment of composite roll

Publications (2)

Publication Number Publication Date
JPS62287016A JPS62287016A (en) 1987-12-12
JPH0241566B2 true JPH0241566B2 (en) 1990-09-18

Family

ID=15028260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13019186A Granted JPS62287016A (en) 1986-06-06 1986-06-06 Heat treatment of composite roll

Country Status (1)

Country Link
JP (1) JPS62287016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989731B1 (en) 2008-05-28 2010-10-26 현대제철 주식회사 Heat treatment method of press roll

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741320A (en) * 1980-08-26 1982-03-08 Kubota Ltd Manufacture of roll for hot rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741320A (en) * 1980-08-26 1982-03-08 Kubota Ltd Manufacture of roll for hot rolling

Also Published As

Publication number Publication date
JPS62287016A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
JPH0112816B2 (en)
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPH04107214A (en) Inline softening treatment for air-hardening seamless steel tube
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JP4392376B2 (en) Method for producing composite roll for hot rolling
GB2101014A (en) Manufacture of seamless steel pipe
JPH0241566B2 (en)
JPS629162B2 (en)
JP3195777B2 (en) Outer layer material of rolling roll
US2914401A (en) Alloy steel
JPS6386815A (en) Production of steel having excellent cold workability
JP3688311B2 (en) Manufacturing method of high strength and high toughness steel
JP3658099B2 (en) Method for producing wear-resistant tough roll
JP3226741B2 (en) Heat treatment method for composite sleeve
JPS6237690B2 (en)
JPH0254721A (en) Heat treatment of composite roll
JPH02185928A (en) Production of work roll for metal rolling mill
JPS6410567B2 (en)
JPH0572442B2 (en)
JPS61157633A (en) Manufacture of steel bar for drill collar
KR100310233B1 (en) Method of spheroidizing heat treatment for steel
JPS6314816A (en) Production of work roll for cold rolling mill
JPH07252533A (en) Production of outer layer material of composite roll
JPH01191746A (en) Production of outside layer material for rolling roll having excellent wear resistance and crack resistance
JPH01159328A (en) Manufacture of reinforced roll stock for metal-rolling mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees