JPH08217567A - Production of porous silicon nitride refractory - Google Patents

Production of porous silicon nitride refractory

Info

Publication number
JPH08217567A
JPH08217567A JP7054899A JP5489995A JPH08217567A JP H08217567 A JPH08217567 A JP H08217567A JP 7054899 A JP7054899 A JP 7054899A JP 5489995 A JP5489995 A JP 5489995A JP H08217567 A JPH08217567 A JP H08217567A
Authority
JP
Japan
Prior art keywords
silicon nitride
firing
powder
weight
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7054899A
Other languages
Japanese (ja)
Inventor
Kazunori Houkaku
一徳 法覚
Yoshiaki Mizuno
善章 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP7054899A priority Critical patent/JPH08217567A/en
Publication of JPH08217567A publication Critical patent/JPH08217567A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE: To easily produce porous silicon nitride refractories used as a filter and a heat insulator for an aluminum melting furnace at a low cost in a high yield. CONSTITUTION: An alkaline aq. soln. is added to a mixture of Si3 N4 powder with Si powder, they are molded while allowing the Si to self-foam and the resultant molded body is nitrided and fired at 1,200-1,450 deg.C firing temp. in an N2 atmosphere having <=500ppm concn. of O2 in the firing atmosphere to produce the objective silicon nitride refractories.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム溶融炉用
断熱材に使用される窒化けい素多孔質耐火物の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride porous refractory used for a heat insulating material for an aluminum melting furnace.

【0002】[0002]

【従来の技術】窒化けい素多孔質耐火物はすぐれた耐火
性、耐熱性、耐熱衝撃性が知られており、さらにアルミ
ニウムとの濡れ角が大きいことから、アルミニウム溶融
炉用の断熱材やフィルターに広く使用される。しかし、
窒化けい素多孔質の製造方法は従来、焼成温度が高い、
焼成中に変形を起こす、成形に脱脂工程を必要とする
等、製品歩留りが低下し問題であった。このため、製品
コストが高くなるという欠点を持っていた。
2. Description of the Related Art Porous silicon nitride refractories are known for their excellent fire resistance, heat resistance and thermal shock resistance, and since they have a large wetting angle with aluminum, they are heat insulating materials and filters for aluminum melting furnaces. Widely used in. But,
The conventional method for producing porous silicon nitride has a high firing temperature,
This is a problem in that the product yield is reduced, such as deformation during firing and a degreasing step required for molding. Therefore, it has a drawback that the product cost becomes high.

【0003】[0003]

【発明が解決しようとする課題】一般に窒化けい素多孔
質耐火物を製造するためにスラリー状にした窒化けい素
粉末に発泡剤を添加し、成形、焼成するという方法がと
られる。この方法では焼結温度が高く、焼成する際に焼
成収縮による変形の問題があった。また、窒化けい素粉
末に、熱分解性の樹脂等を多量添加し、焼結中に熱分解
し消失することで気孔を生成し、窒化けい素粉末を焼結
する方法では、気孔率を高くすることは困難で、高気孔
率を得るためには熱分解性の樹脂等を多量添加して成形
した後、脱脂工程が必要となる。このため、焼成中に粒
子間の結合が疎となり、焼成収縮による変形や焼成体の
保形強度がないため割れ等による歩留りの低下がさけら
れなかった。さらに別の製造方法として、スラリー状に
した窒化けい素粉末を発泡ウレタンに含浸することが提
案されているが、やはり、焼結温度が高く、焼成する際
には焼成収縮による変形が起こるという問題があった。
Generally, in order to produce a silicon nitride porous refractory, a method is used in which a foaming agent is added to a silicon nitride powder in the form of a slurry, followed by molding and firing. This method has a high sintering temperature and has a problem of deformation due to shrinkage during firing. Further, in the method of adding a large amount of a thermally decomposable resin or the like to the silicon nitride powder and thermally decomposing during sintering to generate pores, the method of sintering the silicon nitride powder has a high porosity. However, in order to obtain a high porosity, a degreasing step is required after adding a large amount of a thermally decomposable resin and molding. For this reason, the bonds between the particles become sparse during firing, and deformation due to firing shrinkage and the shape retention strength of the fired body are lacking, so that a decrease in yield due to cracking or the like cannot be avoided. As yet another manufacturing method, it has been proposed to impregnate urethane foam with slurry silicon nitride powder, but again, the sintering temperature is high, and there is a problem that deformation due to firing shrinkage occurs during firing. was there.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の欠
点を除去改善することを目的として検討したものであ
る。すなわち、窒化けい素からなる多孔質耐火物の製造
方法において、SiとSiかならる混合物にアル
カリ性水溶液を添加し、Siを自己発泡させながら成形
し、さらにO濃度が500ppm以下のN雰囲気に
て、1200℃〜1450℃で窒化焼成することを特徴
とする。
The present invention has been studied with the object of eliminating and improving the above-mentioned conventional drawbacks. That is, in a method for manufacturing a porous refractory made of silicon nitride, an alkaline aqueous solution is added to a mixture consisting of Si 3 N 4 and Si, Si is self-foamed and molded, and the O 2 concentration is 500 ppm or less. Nitriding firing is performed at 1200 ° C to 1450 ° C in an N 2 atmosphere.

【0005】[0005]

【作用】本発明の窒化けい素多孔質耐火物の製造方法
は、金属Siがアルカリ溶液中で発泡する現象を利用し
て、SiとSiからなる混合物にアルカリ性水溶
液を添加し発泡させながら成形し、N雰囲気にて窒化
焼成することを特徴とする耐火物の製造方法である。こ
こで、使用するSiの表面はアルカリ水溶液と反応し、
生成熱を発しながらSiOを生成する。この反応の際
に気泡を生じるために、成形型内のスラリーは発泡膨張
を起こし、その後、スラリーは反応熱で乾燥固化する。
生成したSiOは、Si,Si成形体の結合剤
として作用するため成形体は成形体強度を保持できる。
成形体の気孔径や気孔率は、使用するSiの粒径、スラ
リーのpHと粘度を調製することで、コントロールでき
る。また、N,N+H,NH雰囲気で窒化焼成
することによって、Si,Si発泡成形体中のS
iおよびSi粒子表面に生成したSiOは窒化反応を
起こし、Siを生成する。ここで使用するSi粉
末は、成形体を完全に窒化するために粒径100μm以
下の粉末を用いることが好ましい。焼成雰囲気のO
度を500ppm以下にした理由は、O濃度が500
ppm以上では、SiおよびSi粒子表面に生成したS
iOが窒化反応を起こさないためである。また、焼成
温度を1200℃〜1450℃にした理由は、Siおよ
びSi粒子表面に生成したSiOは窒化反応を起こす
ための温度であるが、Siは雰囲気中のNと十分窒化
反応し、発熱しながらSiを生成するのに必要な
温度範囲である。この時、反応熱で焼成体の温度が急激
に1420℃を越えると低温型のα−Siの生成
が終了する前に、未反応のSiが溶融し、凝集するた
め、焼成体内部に残留することになり、焼成体の強度の
バラツキ、金属アルミニウムとの濡れ性に悪影響を及ぼ
す。そこで、焼成体の温度が1420℃を越えないよう
に焼成中にN分圧をコントロールすることや、窒化温
度付近で焼成温度を細かくコントロールすることがより
効果的である。この反応を促進するために、成形体に炭
素含有のバインダーを使用することが効果的で好まし
い。焼成雰囲気はN+H,N+NH雰囲気での
窒化焼成でも良い。さらに本発明の製造方法は、窒化け
い素多孔質耐火物の製造方法に限定するものではなく、
骨剤をSiCに置き換えることで炭化けい素窒化けい素
複合多孔質耐火物等の製造方法にも応用が可能である。
The method for producing a porous silicon nitride refractory according to the present invention utilizes the phenomenon that metallic Si foams in an alkaline solution, and adds an alkaline aqueous solution to a mixture of Si 3 N 4 and Si to foam the mixture. While refining, the nitriding firing is performed in an N 2 atmosphere. Here, the surface of Si used reacts with an alkaline aqueous solution,
SiO 2 is generated while generating heat of formation. Since bubbles are generated during this reaction, the slurry in the mold undergoes foam expansion, and then the slurry is dried and solidified by the heat of reaction.
The generated SiO 2 acts as a binder for the Si 3 N 4 and Si compacts, so that the compact can maintain the compact strength.
The pore diameter and porosity of the molded body can be controlled by adjusting the particle diameter of Si to be used and the pH and viscosity of the slurry. In addition, by performing nitriding firing in an N 2 , N 2 + H 2 , NH 3 atmosphere, S 3 N 4 in the Si foam molded article
SiO 2 generated on the surfaces of the i and Si particles causes a nitriding reaction to generate Si 3 N 4 . As the Si powder used here, it is preferable to use a powder having a particle size of 100 μm or less in order to completely nitride the molded body. The reason for setting the O 2 concentration in the firing atmosphere to 500 ppm or less is that the O 2 concentration is 500 ppm.
Above ppm, S and S generated on the surface of Si particles
This is because iO 2 does not cause a nitriding reaction. Further, the reason for setting the firing temperature to 1200 ° C. to 1450 ° C. is the temperature for causing the nitriding reaction of Si and SiO 2 generated on the surface of the Si particles, but Si sufficiently nitridates with N 2 in the atmosphere, This is the temperature range required to generate Si 3 N 4 while generating heat. At this time, when the temperature of the fired body suddenly exceeds 1420 ° C. due to the heat of reaction, unreacted Si melts and agglomerates before the production of low-temperature α-Si 3 N 4 is completed, so that the inside of the fired body Therefore, the strength of the fired product varies and the wettability with metal aluminum is adversely affected. Therefore, it is more effective to control the N 2 partial pressure during firing so that the temperature of the fired body does not exceed 1420 ° C., or finely control the firing temperature near the nitriding temperature. In order to accelerate this reaction, it is effective and preferable to use a carbon-containing binder in the molded body. The firing atmosphere may be nitriding firing in an N 2 + H 2 , N 2 + NH 3 atmosphere. Furthermore, the production method of the present invention is not limited to the method for producing a silicon nitride porous refractory,
By replacing the bone agent with SiC, it can be applied to a method for producing a silicon carbide silicon nitride composite porous refractory or the like.

【0006】[0006]

【実施例】本発明を実施例に基づき詳細に説明する。各
々の結果を表1に示す。
EXAMPLES The present invention will be described in detail based on examples. The results of each are shown in Table 1.

【0007】[0007]

【実施例1】β−Si粉末70重量%、Si粉末
30重量%に有機バインダーとしてCMC3.0重量%
を混合し、これにアルカリ水溶液として0.05N−水
酸化ナトリウム水溶液25重量%添加してスラリー状に
攪拌したものを、150×150×150mmの紙製の
成形型に流し込み発泡成形したものを乾燥し、成形体を
得た。得られた成形体は、型とともにO濃度500p
pm以下のN+H雰囲気で1380℃にて窒化焼成
した。得られた焼成体は、焼成収縮による変形は見られ
ず、良好な窒化けい素多孔質耐火物を得た。
Example 1 70% by weight of β-Si 3 N 4 powder, 30% by weight of Si powder, and 3.0% by weight of CMC as an organic binder.
Was mixed, and 25% by weight of 0.05N-sodium hydroxide aqueous solution as an alkaline aqueous solution was added thereto, and the mixture was stirred in a slurry form, poured into a 150 × 150 × 150 mm paper mold, and foam-molded to dry. Then, a molded body was obtained. The obtained molded body, together with the mold, had an O 2 concentration of 500 p.
Nitriding firing was performed at 1380 ° C. in an N 2 + H 2 atmosphere of pm or less. The obtained fired body showed no deformation due to firing shrinkage, and a good silicon nitride porous refractory was obtained.

【0008】[0008]

【実施例2】β−Si粉末50重量%、Si粉末
50重量%に有機バインダーとしてCMC5.0重量%
を混合し、これにアルカリ水溶液として、けい酸ソーダ
100重量%および水20重量%を添加してスラリー状
に攪拌したものを、150×150×150mmの紙製
の成形型に流し込み発泡成形したものを乾燥し、成形体
を得た。得られた成形体は、型とともにO濃度500
ppm以下のN+H雰囲気で1380℃にて窒化焼
成した。得られた焼成体は、焼成収縮による変形は見ら
れず、良好な窒化けい素多孔質耐火物を得た。
Example 2 50% by weight of β-Si 3 N 4 powder, 50% by weight of Si powder and 5.0% by weight of CMC as an organic binder.
Which was mixed with 100% by weight of sodium silicate and 20% by weight of water as an alkaline aqueous solution and stirred into a slurry, and the mixture was poured into a paper mold of 150 × 150 × 150 mm and foam-molded. Was dried to obtain a molded body. The obtained molded body together with the mold had an O 2 concentration of 500.
Nitriding firing was performed at 1380 ° C. in a N 2 + H 2 atmosphere of ppm or less. The obtained fired body showed no deformation due to firing shrinkage, and a good silicon nitride porous refractory was obtained.

【0009】[0009]

【比較例1】β−Si100重量%、有機バイン
ダーとしてCMC3.0重量%を混合し、これに気孔生
成材として平均粒径0.5mmのおが屑を添加し、調製
水として水5%を加えたものを、150×150×15
0mmにモールド成形したものを乾燥し、成形体を得
た。得られた成形体を、Air中500℃で12h脱脂
した後、N雰囲気で1900℃にて窒化焼成した。得
られた焼成体は、焼成収縮が大きく、著しい変形が見ら
れた。
[Comparative Example 1] 100% by weight of β-Si 3 N 4 and 3.0% by weight of CMC as an organic binder were mixed, and sawdust having an average particle size of 0.5 mm was added as a pore-forming material to the mixture to prepare water 5 %, 150 x 150 x 15
What was molded into 0 mm was dried to obtain a molded body. The obtained molded body was degreased in Air at 500 ° C. for 12 hours, and then nitrided and baked at 1900 ° C. in an N 2 atmosphere. The obtained fired body had a large firing shrinkage and was significantly deformed.

【0010】[0010]

【比較例2】β−Si100重量%、分散剤0.
5重量%、有機バインダーとしてCMC3.0重量%を
混合し、これに水30重量%添加し、スラリーとしたも
のを、発泡性ウレタンフォームに含浸し150×150
×150mmに成形したものを乾燥し、成形体を得た。
得られた成形体を、Air中500℃で12h脱脂した
後、N雰囲気で1900℃にて窒化焼成した。得られ
た焼成体は、焼成収縮が大きく、著しい変形が見られ
た。
Comparative Example 2 100% by weight of β-Si 3 N 4 , dispersant 0.
5% by weight and 3.0% by weight of CMC as an organic binder were mixed, and 30% by weight of water was added to the mixture to make a slurry, which was impregnated into a foamable urethane foam to form 150 × 150.
The molded product of × 150 mm was dried to obtain a molded product.
The obtained molded body was degreased in Air at 500 ° C. for 12 hours, and then nitrided and baked at 1900 ° C. in an N 2 atmosphere. The obtained fired body had a large firing shrinkage and was significantly deformed.

【0011】[0011]

【比較例3】β−Si粉末70重量%、Si粉末
30重量%に有機バインダーとしてCMC3.0重量%
混合し、これに気孔生成材として平均粒径0.5mmの
おが屑を添加し、調製水として水5%を加えたものを、
150×150×150mmにモールド成形したものを
乾燥し、成形体を得た。得られた成形体を、Air中5
00℃で12h脱脂した後、N+H雰囲気で138
0℃にて窒化焼成した。得られた焼成体は、焼成収縮に
よる変形は見られなかった。
Comparative Example 3 70% by weight of β-Si 3 N 4 powder, 30% by weight of Si powder and 3.0% by weight of CMC as an organic binder.
Mixing, adding sawdust with an average particle size of 0.5 mm as a pore-forming material, and adding 5% of water as prepared water,
What was molded in 150 × 150 × 150 mm was dried to obtain a molded body. The obtained molded body was mixed with 5 in Air.
After degreasing at 00 ° C. for 12 hours, 138 in N 2 + H 2 atmosphere
Nitrided and baked at 0 ° C. No deformation was observed in the obtained fired body due to firing shrinkage.

【0012】[0012]

【比較例4】β−Si粉末70重量%、Si粉末
30重量%、分散剤0.5重量%、有機バインダーとし
てCMC3.0重量%を混合し、これに水30重量%添
加し、スラリーとしたものを、発泡性ウレタンフォーム
に含浸し150×150×150mmに成形したものを
乾燥し、成形体を得た。得られた成形体を、Air中5
00℃で12h脱脂した後、N+H雰囲気で138
0℃にて窒化焼成した。得られた焼成体は、焼成収縮に
よる変形は見られなかった。
Comparative Example 4 70% by weight of β-Si 3 N 4 powder, 30% by weight of Si powder, 0.5% by weight of dispersant, and 3.0% by weight of CMC as an organic binder were mixed, and 30% by weight of water was added thereto. Then, the slurry was impregnated into a foamable urethane foam and molded into 150 × 150 × 150 mm, and then dried to obtain a molded body. The obtained molded body was mixed with 5 in Air.
After degreasing at 00 ° C. for 12 hours, 138 in N 2 + H 2 atmosphere
Nitrided and baked at 0 ° C. No deformation was observed in the obtained fired body due to firing shrinkage.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】以上のように本発明の方法の特徴を利用
して、アルミニウム溶融炉用のフィルター、断熱材に使
用する窒化けい素からなる多孔質耐火物を容易で歩留り
良く安価に製造することが可能になる。
As described above, by utilizing the features of the method of the present invention, a porous refractory made of silicon nitride used for a filter for an aluminum melting furnace and a heat insulating material can be easily manufactured at a good yield and at a low cost. It will be possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化けい素からなる多孔質耐火物の製
造方法において、Si粉末とSi粉末からなる混
合物にアルカリ性水溶液を添加し、Siを自己発泡させ
ながら成形した成形体をO濃度が500ppm以下
で、焼成温度1200℃〜1450℃のN雰囲気にて
窒化焼成することを特徴とする多孔質耐火物の製造方
法。
1. A method for producing a porous refractory made of silicon nitride, wherein an alkaline aqueous solution is added to a mixture of Si 3 N 4 powder and Si powder, and a compact formed while self-foaming Si is formed into O 2 A method for producing a porous refractory material, which comprises nitriding firing in a N 2 atmosphere having a concentration of 500 ppm or less and a firing temperature of 1200 ° C to 1450 ° C.
JP7054899A 1995-02-08 1995-02-08 Production of porous silicon nitride refractory Withdrawn JPH08217567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7054899A JPH08217567A (en) 1995-02-08 1995-02-08 Production of porous silicon nitride refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7054899A JPH08217567A (en) 1995-02-08 1995-02-08 Production of porous silicon nitride refractory

Publications (1)

Publication Number Publication Date
JPH08217567A true JPH08217567A (en) 1996-08-27

Family

ID=12983457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7054899A Withdrawn JPH08217567A (en) 1995-02-08 1995-02-08 Production of porous silicon nitride refractory

Country Status (1)

Country Link
JP (1) JPH08217567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982462A3 (en) * 2014-07-22 2016-04-20 Rauschert Heinersdorf-Pressig GmbH Nitride bonded silicon nitride as a material for aluminium foundry components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982462A3 (en) * 2014-07-22 2016-04-20 Rauschert Heinersdorf-Pressig GmbH Nitride bonded silicon nitride as a material for aluminium foundry components

Similar Documents

Publication Publication Date Title
US4812424A (en) Kiln furniture for the firing of ceramic articles
JP2003119085A (en) Silicon carbide-based heat resistant ultralight porous structural material and method of producing the same
JP2003160384A (en) Porous silicon nitride ceramic and its manufacturing method
CN108085785A (en) A kind of preparation method of silicon nitride fiber material
US6555032B2 (en) Method of making silicon nitride-silicon carbide composite filters
US5164138A (en) Material comprising silicon and process for its manufacture
JPH0613435B2 (en) Method for manufacturing porous silicon nitride mold for die casting
EP1551777B1 (en) Method for preparation of bulk shaped foam articles
JPH08217567A (en) Production of porous silicon nitride refractory
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JPH1121182A (en) Production of porous ceramic
US20030148089A1 (en) Ceramic composite foams with high mechanical strength
JPH11335172A (en) Production of porous silicon carbide sintered compact
JPH05238846A (en) Mullite based foaming type porous ceramics and its production
JPH0224789B2 (en)
JP2508511B2 (en) Alumina composite
JPS60186473A (en) Silicon nitride sintered body and manufacture
JP2000185979A (en) Production of porous molded article of silicon carbide
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
JP2002275557A (en) Ceramic/metal composite body and method for manufacturing the same
JPS605071A (en) Manufacture of silicon carbide sintered body
JPH0223503B2 (en)
JP2551421B2 (en) Method for manufacturing ceramic foam
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPH05148034A (en) Production of sintered silicon nitride

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507