JPH08217403A - Reformer - Google Patents

Reformer

Info

Publication number
JPH08217403A
JPH08217403A JP7025456A JP2545695A JPH08217403A JP H08217403 A JPH08217403 A JP H08217403A JP 7025456 A JP7025456 A JP 7025456A JP 2545695 A JP2545695 A JP 2545695A JP H08217403 A JPH08217403 A JP H08217403A
Authority
JP
Japan
Prior art keywords
catalyst layer
reforming
steam
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7025456A
Other languages
Japanese (ja)
Inventor
Tetsuo Take
武  哲夫
Katsuhisa Kimata
活久 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7025456A priority Critical patent/JPH08217403A/en
Publication of JPH08217403A publication Critical patent/JPH08217403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a low-cost reformer effective for preventing the deposition of carbon in the steam-reforming process of a fuel and suppressing the increase in the methane content of the reformed gas. CONSTITUTION: This reformer produces a hydrogen-rich gas by the steam- reforming reaction of a fuel with steam on a reforming catalyst filled in a reforming tube 2. The catalyst layer in the reforming tube 2 has a double-layer structure consisting of a noble metal catalyst layer 11 placed at the inlet side of the feedstock gas 1 composed of steam and fuel and a base metal catalyst layer 12 placed at the outlet side of the reformed gas 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料と水蒸気を反応さ
せ水素リッチなガスをつくる改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reformer for producing a hydrogen-rich gas by reacting fuel with steam.

【0002】[0002]

【従来の技術】従来の改質装置の概要を図2を用いて説
明する。図2では、予熱された燃料ガスと水蒸気からな
る原料ガス1を改質装置内部に水素生成量の設計値に合
わせて所定の本数設置された改質管2に供給し、改質管
2内部の触媒層3で燃料の水蒸気改質を行い、水素を生
成させる。吸熱反応である水蒸気改質反応に必要な反応
熱は、改質装置バーナ4で燃料ガス5と空気6を燃焼さ
せることによって得られた高温の燃焼ガス7を改質管2
の周囲を触媒層3のガス出口側からガス入口側に流し、
触媒層3と熱交換させることによって供給する。触媒層
3の温度は、ガス入口で約400℃、ガス出口で約70
0℃であり、ガス入口からガス出口にかけて温度分布を
持っている。触媒層3には、各燃料に水蒸気改質反応に
対して触媒活性を有する水蒸気改質触媒が通常1種類充
填されている。触媒は、有効表面積を大きくするために
粒子状になっている。メタン、プロパン等の炭化水素燃
料の水蒸気改質には、近年触媒活性が高くカーボン析出
が起こりにくいという理由からRu系触媒などの貴金属
系触媒の適用が検討されている。しかし、Ru系触媒な
どの貴金属系触媒はこれまで広く用いられてきたNi系
触媒などの卑金属系触媒と比較すると高価であり、ま
た、貴金属系触媒を用いた場合には次式に示すメタネー
ション反応によるメタンの生成が多く起こり、改質ガス
中のメタン濃度が高いという問題点があった。
2. Description of the Related Art The outline of a conventional reformer will be described with reference to FIG. In FIG. 2, the raw material gas 1 consisting of preheated fuel gas and steam is supplied to the reforming pipes 2 installed in a predetermined number according to the design value of the hydrogen generation amount inside the reforming device, and the inside of the reforming pipe 2 is supplied. The catalyst layer 3 is used for steam reforming of the fuel to generate hydrogen. The heat of reaction required for the steam reforming reaction, which is an endothermic reaction, is obtained by burning the fuel gas 5 and the air 6 in the reformer burner 4 and converting the high temperature combustion gas 7 into the reforming pipe 2
Flow from the gas outlet side of the catalyst layer 3 to the gas inlet side,
It is supplied by exchanging heat with the catalyst layer 3. The temperature of the catalyst layer 3 is about 400 ° C. at the gas inlet and about 70 at the gas outlet.
It is 0 ° C. and has a temperature distribution from the gas inlet to the gas outlet. The catalyst layer 3 is usually filled with one type of steam reforming catalyst having catalytic activity for the steam reforming reaction in each fuel. The catalyst is in the form of particles to increase the effective surface area. For steam reforming of hydrocarbon fuels such as methane and propane, application of a noble metal-based catalyst such as a Ru-based catalyst has been studied in recent years because it has a high catalytic activity and hardly causes carbon deposition. However, a noble metal catalyst such as a Ru-based catalyst is more expensive than a base metal catalyst such as a Ni-based catalyst that has been widely used, and when a noble metal-based catalyst is used, a methanation represented by the following formula is used. There is a problem that methane is often generated by the reaction and the methane concentration in the reformed gas is high.

【0003】[0003]

【数1】 [Equation 1]

【0004】図3にその構成を示す常圧固定床流通式反
応装置を用いて、卑金属系触媒であるNi−Al23
触媒と貴金属系触媒であるRu−Al23 触媒をそれ
ぞれ反応器78に充填してプロパンの水蒸気改質を行っ
た場合の水蒸気を除いた改質ガス組成を図6に示す。
Using a normal pressure fixed bed flow type reaction apparatus whose configuration is shown in FIG. 3, Ni-Al 2 O 3 which is a base metal catalyst is used.
FIG. 6 shows the reformed gas composition excluding steam when the catalyst and the Ru—Al 2 O 3 catalyst, which is a noble metal-based catalyst, are filled in the reactor 78 to perform steam reforming of propane.

【0005】常圧固定床流通式反応装置は、ガス供給
部、水蒸気供給部、及び反応部から構成されている。ガ
ス供給部は、プロパン68、水素51、窒素52を供給
するための配管、スットップバルブ57,58,70、
レギュレータ55,56,69、圧力計59,60,7
1、逆止弁64,65,66,67、サーマルマスフロ
ーコントローラ72、フロート式流量計53及び54か
ら成る。プロパン68の流量制御はサマールマスフロー
コントローラ72で行い、水素51及び窒素52の流量
制御は、フロート式流量計53及び54で行う。水蒸気
供給部は、天秤63、水タンク62、ポンプ61、気化
器73、温度コトロールユニット74から成る。水タン
ク62からポンプ61により所定量の水が気化器73の
送られ、水蒸気がつくられる。気化器73では、水蒸気
とプロパン68が混合される。気化器73は、水を気化
させるために水を供給する前に予め温度コントロールユ
ニット74で所定の温度まで昇温させておく。反応部
は、配管の保温用のヒータ76、電気炉77、反応器7
8、トラップ79、温度コントロールユニット75と8
1から成る。反応器78は電気炉77で水蒸気改質反応
に必要な温度まで昇温される。電気炉77の温度調節
は、温度コントロールユニット75で行う。また、配管
は、水蒸気の凝縮を防ぐために所定の温度までヒータ7
6で昇温しておく。触媒を充填した反応器78の内部
で、プロパン68の水蒸気改質が行われ水素を生成す
る。80は排水であり、82は排気である。
The atmospheric fixed bed flow reactor comprises a gas supply section, a steam supply section and a reaction section. The gas supply unit includes pipes for supplying propane 68, hydrogen 51, and nitrogen 52, stop valve 57, 58, 70,
Regulator 55, 56, 69, pressure gauge 59, 60, 7
1, a check valve 64, 65, 66, 67, a thermal mass flow controller 72, and float type flow meters 53 and 54. The flow rate of propane 68 is controlled by the Samar mass flow controller 72, and the flow rate of hydrogen 51 and nitrogen 52 is controlled by the float type flow meters 53 and 54. The steam supply unit includes a balance 63, a water tank 62, a pump 61, a vaporizer 73, and a temperature control unit 74. A predetermined amount of water is sent from the water tank 62 to the carburetor 73 by the pump 61 to generate water vapor. In the vaporizer 73, steam and propane 68 are mixed. The vaporizer 73 raises the temperature in advance to a predetermined temperature by the temperature control unit 74 before supplying the water to vaporize the water. The reaction part includes a heater 76 for keeping heat of the pipe, an electric furnace 77, and a reactor 7.
8, trap 79, temperature control unit 75 and 8
It consists of 1. The reactor 78 is heated in the electric furnace 77 to a temperature required for the steam reforming reaction. The temperature control unit 75 controls the temperature of the electric furnace 77. In addition, the pipe has a heater 7 up to a predetermined temperature in order to prevent condensation of water vapor.
The temperature is raised at 6. The steam reforming of propane 68 is performed inside the reactor 78 filled with the catalyst to generate hydrogen. 80 is drainage and 82 is exhaust.

【0006】常圧固定床流通式反応装置を用いた水蒸気
改質実験では、解析を容易にするために、触媒層温度は
電気炉77で500℃の一定温度に制御した。図6か
ら、前述したように、Ni−Al23 触媒を用いた場
合には、改質ガス中のメタン濃度は低いが、カーボン析
出が起こっており、一方、Ru−Al23 触媒を用い
た場合には、カーボン析出は起こらないが、改質ガス中
のメタン濃度がNi−Al23 触媒に比べて約5%高
く相対的に水素濃度も低下していることがわかる。な
お、常圧固定床流通式反応装置を用いたプロパンの水蒸
気改質実験では、充填触媒体積を11.4cm3 、水蒸
気と燃料中のカーボンの比率であるスチームカーボン比
を3.0、プロパンの供給量を44.8cm3 ・min
-1とし、Ni−Al23 触媒にはNiを12wt%含
む直径4.6mm、高さ4.4mmの円筒形の触媒を用
い、Ru−Al23 触媒にはRuを1wt%含む直径
5.5mmの球形触媒を用いた。
In the steam reforming experiment using the atmospheric pressure fixed bed flow reactor, the temperature of the catalyst layer was controlled at a constant temperature of 500 ° C. in the electric furnace 77 in order to facilitate the analysis. From FIG. 6, as described above, when the Ni—Al 2 O 3 catalyst was used, the methane concentration in the reformed gas was low, but carbon deposition occurred, while the Ru—Al 2 O 3 catalyst was used. It can be seen that when carbon is used, carbon deposition does not occur, but the methane concentration in the reformed gas is about 5% higher than that of the Ni-Al 2 O 3 catalyst, and the hydrogen concentration is relatively low. In a propane steam reforming experiment using an atmospheric fixed bed flow reactor, the packed catalyst volume was 11.4 cm 3 , the steam carbon ratio, which is the ratio of steam to carbon in the fuel, was 3.0, and the propane Supply amount 44.8 cm 3 · min
-1 , and the Ni-Al 2 O 3 catalyst contains a cylindrical catalyst having a diameter of 4.6 mm and a height of 4.4 mm containing 12 wt% of Ni, and the Ru-Al 2 O 3 catalyst contains 1 wt% of Ru. A spherical catalyst having a diameter of 5.5 mm was used.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、燃料の水蒸気改質過程でのカー
ボン析出を防止するとともに改質ガス中のメタン生成量
の増加を抑制した改質装置を安価に提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and prevents carbon deposition during steam reforming of fuel and suppresses an increase in the amount of methane produced in the reformed gas. An object is to provide a reformer at low cost.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の改質装置は、燃料と水蒸気を供給し改質管に
充填した改質触媒上で水蒸気改質反応を行わせることに
よって水素リッチなガスをつくる改質装置において、前
記改質管内部の触媒層を二層構造とし、水蒸気と燃料か
らなる原料ガスの入口側に貴金属系触媒層を設け、改質
ガスの出口側に卑金属系触媒層を設けたことを特徴とす
るものである。又、本発明の改質装置は、前記貴金属系
触媒層がRu系触媒層であり、また、前記卑金属系触媒
層がNi系触媒層であることを特徴とするものである。
In order to achieve the above object, the reforming apparatus of the present invention provides a steam reforming reaction by supplying a fuel and steam and performing a steam reforming reaction on a reforming catalyst filled in a reforming tube. In a reformer that produces a hydrogen-rich gas, the catalyst layer inside the reforming tube has a two-layer structure, a precious metal catalyst layer is provided on the inlet side of the raw material gas consisting of steam and fuel, and on the outlet side of the reformed gas. It is characterized in that a base metal catalyst layer is provided. Further, the reforming apparatus of the present invention is characterized in that the noble metal catalyst layer is a Ru catalyst layer and the base metal catalyst layer is a Ni catalyst layer.

【0009】[0009]

【作用】上記手段により本発明は、改質装置の改質管内
部の触媒層を二層構造とし、燃料と水蒸気からなる原料
ガス入口側に貴金属系触媒層を設け、水素リッチな改質
ガス出口側に卑金属系触媒層を設けることを最も主要な
特徴とする。従来の技術とは、改質管内部の触媒層を貴
金属系触媒層と卑金属系触媒層の二層にわけ、ガス入口
側に貴金属系触媒層を設けた点が異なる。二層構造とす
ることにより、カーボン析出の原因となる水蒸気改質反
応はガス入口に近い貴金属系触媒層で選択的に起こるの
でカーボン析出が抑えられ、また、卑金属系触媒層では
メタネーション反応によるメタンの生成が抑えられると
ともにメタネーション反応で生成したメタンの分解が促
進されるので、カーボン析出の防止と改質ガス中のメタ
ン濃度の上昇抑制が同時に達成できる。
According to the present invention, the catalyst layer inside the reforming tube of the reformer has a two-layer structure, and the noble metal catalyst layer is provided on the inlet side of the raw material gas consisting of fuel and water vapor. The main feature is to provide a base metal catalyst layer on the outlet side. It differs from the conventional technique in that the catalyst layer inside the reforming tube is divided into two layers, a noble metal catalyst layer and a base metal catalyst layer, and the noble metal catalyst layer is provided on the gas inlet side. By having a two-layer structure, the steam reforming reaction that causes carbon precipitation occurs selectively in the noble metal catalyst layer near the gas inlet, so that carbon precipitation is suppressed, and in the base metal catalyst layer, the methanation reaction occurs. Since the production of methane is suppressed and the decomposition of methane produced by the methanation reaction is promoted, the prevention of carbon deposition and the suppression of the increase in methane concentration in the reformed gas can be achieved at the same time.

【0010】[0010]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。本発明の一実施例を図1に示す。図1で図2
と同一符号のものは従来技術と同等であるからその説明
を省略する。図2に示した従来の改質装置とは、改質管
2の内部の触媒層がガス入口側の貴金属系触媒層11と
ガス出口側の卑金属系触媒層12の二層に分かれている
点が大きく異なる。貴金属系触媒層11としてRu−A
23 触媒層をガス入口側に設け、卑金属系触媒層1
2としてNi−Al23 触媒層をガス出口側に設けた
場合の効果を、従来例の項で述べた図3に示す常圧固定
床流通式反応装置を用いて行ったプロパンの水蒸気改質
試験結果を例に説明する。使用触媒、充填触媒体積、ス
チームカーボン比、触媒層温度、プロパン供給量等の反
応条件は、従来例で述べたのと同様である。図7にガス
入口側にRu−Al23 触媒層を設け、ガス出口側に
Ni−Al23 触媒層を設けた場合のRu−Al2
3 触媒層体積の全触媒層体積に対する比率とカーボン析
出の関係を示す。図7からRu−Al23 触媒層を全
触媒層体積の30%以上設ければカーボン析出が起こら
ないということがわかる。常圧固定床流通式反応装置を
用いて行ったプロパンの水蒸気改質実験と同一条件で行
ったRu−Al23 触媒層及びNi−Al23 触媒
層におけるプロパンの水蒸気改質特性のシュミレーショ
ン結果を図4に示す。図4から、Ru−Al23 触媒
層の方がプロパンの反応速度は大きく、触媒層の30%
の位置でプロパンがすべて反応していることがわかる。
Ru−Al23 触媒層をガス入口側に全触媒層体積の
20%及び30%設けた場合の水蒸気を除いたRu−A
23 触媒層出口ガス組成の測定結果を図8に示し、
全触媒層出口ガス組成の測定結果を図9に示す。図8か
ら、20%の場合だけに未反応プロパンが約2%含まれ
ていることがわかる。これは、図4に示すシュミレーシ
ョン結果と一致している。従って、プロパンが充分に反
応するのに必要なRu−Al23 触媒層の比率とカー
ボン析出の防止に必要なRu−Al23 触媒層の比率
が一致したことから、カーボン析出は、触媒層のガス入
口に近いところでプロパンが水蒸気改質反応により分解
する過程で起こると推定され、このプロパンの分解反応
が起こる領域をRu−Al23触媒層とすれば、触媒
層の残りの部分がNi−Al23 触媒層でもカーボン
析出は起こらないといえる。ガス入口側にRu−Al2
3 触媒層を設け、ガス出口側にNi−Al23 触媒
層を設けた二層構造触媒層を用いた場合のプロパン改質
ガス組成とRu−Al23 触媒層体積の全触媒層体積
に対する比率の関係を図5に示す。Ru−Al23
媒層の比率が30%を超えると、改質ガス中のメタン濃
度が上昇し、相対的に水素濃度が低下することが図5か
らわかる。ガス入口側にRu−Al23 触媒層を20
%及び30%設けた場合のRu−Al23 触媒層出口
でのメタン濃度は図8に示したように約17%であり、
図9に示した触媒層出口でのメタン濃度12〜13%よ
り高いことから、Ni−Al23 触媒層には、メタネ
ーション反応によるメタンの生成を抑制する効果ととも
に、Ru−Al23 触媒層で生成したメタンを分解す
る効果もあるといえる。従って、カーボン析出が起こら
ない範囲でRu−Al23 触媒層の比率をできるだけ
小さくすることにより、プロパンの水蒸気改質におい
て、カーボン析出の防止と改質ガス中のメタン濃度の上
昇抑制を同時に達成することが可能である。
Embodiments of the present invention will now be described in detail with reference to the drawings. One embodiment of the present invention is shown in FIG. 2 in FIG.
Those having the same reference numerals as those in FIG. The conventional reformer shown in FIG. 2 has a structure in which the catalyst layer inside the reforming tube 2 is divided into two layers, a noble metal catalyst layer 11 on the gas inlet side and a base metal catalyst layer 12 on the gas outlet side. Is very different. Ru-A as the precious metal catalyst layer 11
An l 2 O 3 catalyst layer is provided on the gas inlet side, and a base metal catalyst layer 1
The effect of providing a Ni-Al 2 O 3 catalyst layer on the gas outlet side as No. 2 is the steam reforming of propane carried out using the atmospheric pressure fixed bed flow reactor shown in FIG. The quality test results will be described as an example. The reaction conditions such as the catalyst used, the packed catalyst volume, the steam carbon ratio, the catalyst layer temperature, and the propane supply amount are the same as those described in the conventional example. Provided Ru-Al 2 O 3 catalyst layer on the gas inlet side in FIG. 7, Ru-Al 2 O obtained when a Ni-Al 2 O 3 catalyst layer on the gas outlet side
3 shows the relationship between the ratio of the catalyst layer volume to the total catalyst layer volume and carbon deposition. It can be seen from FIG. 7 that carbon deposition does not occur if the Ru—Al 2 O 3 catalyst layer is provided in an amount of 30% or more of the total catalyst layer volume. Of the steam reforming characteristics of propane in the Ru-Al 2 O 3 catalyst layer and the Ni-Al 2 O 3 catalyst layer carried out under the same conditions as the steam reforming experiment of propane carried out using the atmospheric pressure fixed bed flow reactor The simulation result is shown in FIG. From FIG. 4, the reaction rate of propane was higher in the Ru-Al 2 O 3 catalyst layer, which was 30% of that in the catalyst layer.
It can be seen that propane is all reacted at the position.
Ru-A excluding water vapor when the Ru-Al 2 O 3 catalyst layer is provided on the gas inlet side at 20% and 30% of the total catalyst layer volume
The measurement result of the gas composition of the l 2 O 3 catalyst layer is shown in FIG.
FIG. 9 shows the measurement results of the gas composition at the outlet of all catalyst layers. From FIG. 8, it can be seen that unreacted propane is contained in about 2% only in the case of 20%. This is consistent with the simulation result shown in FIG. Therefore, since the ratio of the Ru-Al 2 O 3 catalyst layer necessary for the propane to sufficiently react with the ratio of the Ru-Al 2 O 3 catalyst layer necessary for preventing the carbon precipitation was equal, the carbon precipitation was It is presumed that propane occurs near the gas inlet of the catalyst layer in the process of being decomposed by the steam reforming reaction, and if the region where the propane decomposition reaction occurs is the Ru-Al 2 O 3 catalyst layer, the remaining portion of the catalyst layer is It can be said that carbon deposition does not occur even in the Ni—Al 2 O 3 catalyst layer. Ru-Al 2 on the gas inlet side
O 3 catalyst layer is provided, the total catalyst propane reformed gas composition and Ru-Al 2 O 3 catalyst layer volume in the case of using a two-layer structure catalyst layer in which a Ni-Al 2 O 3 catalyst layer on the gas outlet side The relationship of the ratio to the layer volume is shown in FIG. It can be seen from FIG. 5 that when the ratio of the Ru—Al 2 O 3 catalyst layer exceeds 30%, the methane concentration in the reformed gas increases and the hydrogen concentration relatively decreases. A Ru-Al 2 O 3 catalyst layer is provided on the gas inlet side for 20 times.
% And 30%, the methane concentration at the Ru-Al 2 O 3 catalyst layer outlet is about 17% as shown in FIG.
Since the methane concentration at the catalyst layer outlet shown in FIG. 9 is higher than 12 to 13%, the Ni-Al 2 O 3 catalyst layer has the effect of suppressing the production of methane by the methanation reaction and the Ru-Al 2 O. 3 It can be said that it also has the effect of decomposing methane generated in the catalyst layer. Therefore, by making the ratio of the Ru-Al 2 O 3 catalyst layer as small as possible within the range where carbon precipitation does not occur, it is possible to prevent carbon precipitation and suppress increase of methane concentration in the reformed gas at the same time in steam reforming of propane. It is possible to achieve.

【0011】以上の結果から、ガス入口側に貴金属系触
媒層11であるRu−Al23 触媒層を設け、ガス出
口側に卑金属系触媒層12であるNi−Al23 触媒
層を設けた二層構造触媒層を用い、各触媒層の比率を最
適化すれば、炭化水素であるプロパンの水蒸気改質にお
いて、改質ガス中のメタン生成量を増加させて相対的に
水素生成量を減少させることなく、カーボン析出を防止
することができると結論づけられる。
From the above results, the Ru-Al 2 O 3 catalyst layer which is the noble metal catalyst layer 11 is provided on the gas inlet side, and the Ni-Al 2 O 3 catalyst layer which is the base metal catalyst layer 12 is provided on the gas outlet side. If the ratio of each catalyst layer is optimized by using the provided two-layer catalyst layer, the amount of methane produced in the reformed gas will be increased and the amount of hydrogen produced will be relatively increased in steam reforming of propane, which is a hydrocarbon. It is concluded that carbon precipitation can be prevented without reducing

【0012】実施例では、貴金属系触媒としてRu系触
媒、卑金属系触媒としてNi系触媒の場合について記載
したが、貴金属系触媒としてRh系触媒、Ir系触媒、
Pd系触媒、Pt系触媒でも、また、卑金属系触媒とし
てRe系触媒、Co系触媒、Fe系触媒でも適用可能で
ある。
In the examples, the Ru-based catalyst is used as the noble metal-based catalyst and the Ni-based catalyst is used as the base metal-based catalyst. However, the Rh-based catalyst, Ir-based catalyst,
Pd-based catalysts, Pt-based catalysts, and Re-based catalysts, Co-based catalysts, and Fe-based catalysts as base metal-based catalysts are also applicable.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、改
質装置の触媒を二層構造とし、水蒸気改質反応の過程で
の触媒上へのカーボン析出の防止に効果がある貴金属系
触媒層と、メタネーション反応によるメタン生成の抑制
とメタネーション反応により生成したメタンの分解に効
果がある卑金属系触媒層を設けたものであるから、貴金
属系触媒を大量に使用することがないので触媒コストを
大幅に上昇させることなく、水蒸気量が少ない条件下で
もカーボン析出が防止でき、且つ改質ガス中のメタン量
の増加も抑制できるという利点がある。
As described above, according to the present invention, the catalyst of the reformer has a two-layer structure, and the noble metal-based catalyst is effective in preventing carbon deposition on the catalyst during the steam reforming reaction. Layer and a base metal catalyst layer that is effective in suppressing the generation of methane by the methanation reaction and decomposing methane produced by the methanation reaction. There is an advantage that carbon precipitation can be prevented and the increase in the amount of methane in the reformed gas can be suppressed even under the condition that the amount of water vapor is small, without significantly increasing the cost.

【0014】特に、本発明をオンサイト形燃料電池用改
質装置に適用すると、触媒コストの大幅の上昇及び改質
性能の低下なしに、改質用水蒸気量が低減でき、相対的
に排熱回収用水蒸気量を増加させることによって、燃料
電池発電装置の総合効率を上昇させることができる。
In particular, when the present invention is applied to the reformer for an on-site type fuel cell, the amount of reforming steam can be reduced without a large increase in catalyst cost and deterioration in reforming performance, and the exhaust heat can be relatively removed. By increasing the amount of recovery steam, the overall efficiency of the fuel cell power generator can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す改質装置の部分断面図
である。
FIG. 1 is a partial cross-sectional view of a reformer showing an embodiment of the present invention.

【図2】従来の改質装置を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing a conventional reformer.

【図3】本発明の有効性の検証のためのプロパンの水蒸
気改質実験に使用した常圧固定床流通式反応装置の一例
を示す構成説明図である。
FIG. 3 is a structural explanatory view showing an example of an atmospheric pressure fixed bed flow type reaction apparatus used in a propane steam reforming experiment for verifying the effectiveness of the present invention.

【図4】常圧固定床流通式反応装置を用いて行ったプロ
パンの水蒸気改質実験と同一条件で行ったRu−Al2
3 触媒層及びNi−Al23 触媒層におけるプロパ
ンの水蒸気改質特性のシュミレーション結果の一例を示
す特性図である。
[Fig. 4] Ru-Al 2 carried out under the same conditions as the steam reforming experiment of propane carried out using an atmospheric fixed bed flow reactor.
O 3 is a characteristic diagram showing an example of a simulation result of the steam reforming characteristics of propane in the catalyst layer and Ni-Al 2 O 3 catalyst layer.

【図5】ガス入口側にRu−Al23 触媒層を設け、
ガス出口側にNi−Al23触媒層を設けた二層構造
触媒層を用いた場合のプロパン改質ガス組成とRu−A
23 触媒層体積の全触媒層体積に対する比率の関係
の一例を示す特性図である。
FIG. 5: A Ru—Al 2 O 3 catalyst layer is provided on the gas inlet side,
Gas outlet side to the Ni-Al 2 O 3 in the case where the catalyst layer using a two-layer structure catalyst layer in which a propane reformed gas composition and Ru-A
It is a characteristic view which shows an example of the relationship of the ratio of the 1 2 O 3 catalyst layer volume to the total catalyst layer volume.

【図6】常圧固定床流通式反応装置を用いて、Ni−A
23 触媒とRu−Al23 触媒をそれぞれ反応器
に充填してプロパンの水蒸気改質を行った場合の水蒸気
を除いた改質ガス組成の一例を示す説明図である。
[Fig. 6] Ni-A using an atmospheric fixed bed flow reactor
l 2 O 3 catalyst and Ru-Al 2 O 3 catalyst a diagram illustrating an example of the reformed gas composition excluding water vapor when performing steam reforming of propane was charged to each reactor.

【図7】ガス入口側にRu−Al23 触媒層を設け、
ガス出口側にNi−Al23触媒層を設けた場合のR
u−Al23 触媒層体積の全触媒層体積に対する比率
とカーボン析出の関係の一例を示す説明図である。
FIG. 7 is a view showing a Ru—Al 2 O 3 catalyst layer provided on the gas inlet side,
R when a Ni-Al 2 O 3 catalyst layer is provided on the gas outlet side
It is an explanatory diagram showing an example of the relationship between the ratio and the carbon deposition with respect to the total catalyst layer volume of u-Al 2 O 3 catalyst layer volume.

【図8】Ru−Al23 触媒層をガス入口側に全触媒
層体積の20%及び30%設けた場合の水蒸気を除いた
Ru−Al23 触媒層出口ガス組成の測定結果の一例
を示す説明図である。
FIG. 8 shows the measurement results of the Ru—Al 2 O 3 catalyst layer outlet gas composition excluding water vapor when the Ru—Al 2 O 3 catalyst layer is provided on the gas inlet side at 20% and 30% of the total catalyst layer volume. It is explanatory drawing which shows an example.

【図9】Ru−Al23 触媒層をガス入口側に全触媒
層体積の20%及び30%設けた場合の水蒸気を除いた
全触媒層出口ガス組成の測定結果の一例を示す説明図で
ある。
FIG. 9 is an explanatory diagram showing an example of measurement results of the gas composition of all catalyst layer outlets excluding water vapor when the Ru-Al 2 O 3 catalyst layer is provided on the gas inlet side at 20% and 30% of the total catalyst layer volume. Is.

【符号の説明】[Explanation of symbols]

1…原料ガス 2…改質管 3…触媒層 4…改質装置バーナ 5…燃料ガス 6…空気 7…燃焼ガス 8…改質ガス 9…改質管 10…熱伝導材 11…貴金属系触媒層 12…卑金属系触媒層 51…水素 52…窒素 53…フロート式流量計 54…フロート式流量計 55…レギュレータ 56…レギュレータ 57…ストップバルブ 58…ストップバルブ 59…圧力計 60…圧力計 61…ポンプ 62…水タンク 63…天秤 64…逆止弁 65…逆止弁 66…逆止弁 67…逆止弁 68…プロパン 69…レギュレータ 70…ストップバルブ 71…圧力計 72…サーマルマスフローコントローラ 73…気化器 74…温度コントロールユニット 75…温度コントロールユニット 76…ヒータ 77…電気炉 78…反応器 79…トラップ 80…排水 81…温度コントロールユニット 82…排気 1 ... Raw material gas 2 ... Reforming tube 3 ... Catalyst layer 4 ... Reforming device burner 5 ... Fuel gas 6 ... Air 7 ... Combustion gas 8 ... Reforming gas 9 ... Reforming tube 10 ... Thermal conductive material 11 ... Noble metal catalyst Layer 12 ... Base metal catalyst layer 51 ... Hydrogen 52 ... Nitrogen 53 ... Float type flow meter 54 ... Float type flow meter 55 ... Regulator 56 ... Regulator 57 ... Stop valve 58 ... Stop valve 59 ... Pressure gauge 60 ... Pressure gauge 61 ... Pump 62 ... Water tank 63 ... Balance 64 ... Check valve 65 ... Check valve 66 ... Check valve 67 ... Check valve 68 ... Propane 69 ... Regulator 70 ... Stop valve 71 ... Pressure gauge 72 ... Thermal mass flow controller 73 ... Vaporizer 74 ... Temperature control unit 75 ... Temperature control unit 76 ... Heater 77 ... Electric furnace 78 ... Reactor 79 ... Trap 80 ... Drainage 1 ... temperature control unit 82 ... exhaust

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料と水蒸気を供給し改質管に充填した
改質触媒上で水蒸気改質反応を行わせることによって水
素リッチなガスをつくる改質装置において、前記改質管
内部の触媒層を二層構造とし、水蒸気と燃料からなる原
料ガスの入口側に貴金属系触媒層を設け、改質ガスの出
口側に卑金属系触媒層を設けたことを特徴とする改質装
置。
1. A reformer for producing a hydrogen-rich gas by performing a steam reforming reaction on a reforming catalyst which is supplied with fuel and steam and filled in a reforming tube, wherein a catalyst layer inside the reforming tube is provided. Is a two-layer structure, wherein the noble metal catalyst layer is provided on the inlet side of the raw material gas consisting of steam and fuel, and the base metal catalyst layer is provided on the reformed gas outlet side.
【請求項2】 前記貴金属系触媒層がRu系触媒層であ
り、また、前記卑金属系触媒層がNi系触媒層であるこ
とを特徴とする請求項1記載の改質装置。
2. The reformer according to claim 1, wherein the noble metal-based catalyst layer is a Ru-based catalyst layer, and the base metal-based catalyst layer is a Ni-based catalyst layer.
JP7025456A 1995-02-14 1995-02-14 Reformer Pending JPH08217403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7025456A JPH08217403A (en) 1995-02-14 1995-02-14 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7025456A JPH08217403A (en) 1995-02-14 1995-02-14 Reformer

Publications (1)

Publication Number Publication Date
JPH08217403A true JPH08217403A (en) 1996-08-27

Family

ID=12166540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7025456A Pending JPH08217403A (en) 1995-02-14 1995-02-14 Reformer

Country Status (1)

Country Link
JP (1) JPH08217403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031249A (en) * 2005-07-29 2007-02-08 Idemitsu Kosan Co Ltd Reformer
JP2009245630A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Reformer and plate type solid oxide fuel cell using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302304A (en) * 1989-05-16 1990-12-14 Sekiyu Sangyo Katsuseika Center Improvement of hydrocarbon by water vapor
JPH06104002A (en) * 1992-09-16 1994-04-15 Tonen Corp Internal reform type fused carbonate fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302304A (en) * 1989-05-16 1990-12-14 Sekiyu Sangyo Katsuseika Center Improvement of hydrocarbon by water vapor
JPH06104002A (en) * 1992-09-16 1994-04-15 Tonen Corp Internal reform type fused carbonate fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031249A (en) * 2005-07-29 2007-02-08 Idemitsu Kosan Co Ltd Reformer
JP4664767B2 (en) * 2005-07-29 2011-04-06 出光興産株式会社 Reformer
JP2009245630A (en) * 2008-03-28 2009-10-22 Mitsubishi Materials Corp Reformer and plate type solid oxide fuel cell using the same

Similar Documents

Publication Publication Date Title
US6562088B2 (en) Method for operating a hydrogen generating apparatus
WO2020246197A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
CN101400601A (en) Hydrogen generator and process for producing hydrogen
US8021447B2 (en) Hydrogen-producing assemblies
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP4215539B2 (en) Desulfurizer and desulfurization method
JP2001155756A (en) Vapor-reforming reactor for fuel cell
Shinoki et al. Hydrogen production using an ethanol-steam-reforming reactor with Cu/ZnO/Al2O3 and Ru/Al2O3 catalysts
JP2006111766A (en) Desulfurization apparatus and hydrogen-producing apparatus
JPH08217403A (en) Reformer
JP4629630B2 (en) SHIFT REACTOR FOR FUEL CELL, FUEL TREATMENT DEVICE FOR FUEL CELL, FUEL CELL SYSTEM, AND METHOD FOR OPERATING SHIFT REACTOR FOR FUEL CELL
JPH0848501A (en) Reforming device
JP4486832B2 (en) Steam reforming system
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
US20120114537A1 (en) Reformer
JPH08293315A (en) Desulfurizer for fuel cell generating device
JP3675946B2 (en) Fuel reformer for fuel cell
KR102266795B1 (en) Oxygen distribution reactor comprising reforming catalyst for liquid fuel combustion applicable of fuel reformer in a submarine
JP4193257B2 (en) CO transformer and hydrogen generator
JP2003238113A (en) Method and apparatus for reforming fuels
TWI681926B (en) Hydrogen generation device and method for producing hydrogen gas
US20040071610A1 (en) Customized flow path substrate
JP2013137865A (en) Usage of steam-reforming catalyst for fuel cell and hydrogen production system
JP5086599B2 (en) Method for producing hydrogen-containing gas