JPH0821670A - Absorption type cooler - Google Patents

Absorption type cooler

Info

Publication number
JPH0821670A
JPH0821670A JP6156306A JP15630694A JPH0821670A JP H0821670 A JPH0821670 A JP H0821670A JP 6156306 A JP6156306 A JP 6156306A JP 15630694 A JP15630694 A JP 15630694A JP H0821670 A JPH0821670 A JP H0821670A
Authority
JP
Japan
Prior art keywords
cooling
temperature
cooling water
absorption
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6156306A
Other languages
Japanese (ja)
Other versions
JP2898202B2 (en
Inventor
Tsutomu Maruhashi
勤 丸橋
Katsuto Ikeda
克人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6156306A priority Critical patent/JP2898202B2/en
Publication of JPH0821670A publication Critical patent/JPH0821670A/en
Application granted granted Critical
Publication of JP2898202B2 publication Critical patent/JP2898202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE:To improve a cooling efficiency and restrict energy consumption in a heating unit. CONSTITUTION:When cooling operation is effected by an absorption type refrigerating cycle 1 and an outside temperature is lower than 25 deg.C, a cooling water temperature regulating means 77, provided in a control device 70, controls the cooling water fan 52 of a cooling means 47 so that a cooling water temperature becomes lower by 2 deg.C than in the case the outside temperature is at least 25 deg.C. When the cooling water temperature is reduced, the liquefying and absorbing capacities of evaporated refrigerant in a condenser 5 and an absorber 7 are promoted whereby the efficiency of the absorption type refrigerating cycle 1 is improved. According to this method, a cooling efficiency in a room is improved and the fuel consumption of gas of a gas burner 8 in a heating unit 2 can be restrained whereby the energy consumption of the absorption type cooler can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍サイクルに
よって冷房運転を行うことのできる吸収式冷房装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type cooling device capable of performing a cooling operation by an absorption type refrigeration cycle.

【0002】[0002]

【従来の技術】吸収式冷凍サイクルの基本的な構成は、
吸収液を加熱し、吸収液の一部を気化させる再生器と、
この再生器で発生した気化冷媒を冷却して液化する凝縮
器と、この凝縮器で液化した液化冷媒を低圧下で蒸発さ
せる蒸発器と、この蒸発器で蒸発した気化冷媒を吸収液
に吸収させる吸収器とから構成され、吸収器で気化冷媒
を吸収した吸収液は、溶液ポンプによって再生器へ送ら
れる。そして、蒸発器で冷媒が蒸発する際、蒸発器から
室内熱交換器へ送られる熱媒体(水等)から潜熱を奪
う。そして、熱が奪われて冷却された熱媒体は、室内熱
交換器に送られて室内空気と熱交換し、室内を冷房す
る。一方、凝縮器および吸収器には、気化冷媒を冷却し
て液化させたり、散布された吸収液を冷却して冷媒吸収
能力を促進する冷却水が供給される。この冷却水は、一
般に循環経路によって循環し、循環経路途中に設けられ
た冷却手段で冷却された後、凝縮器および吸収器に供給
される。そして、凝縮器および吸収器に供給される冷却
水の温度が一定温度となるように、冷却手段が調節され
ていた。
2. Description of the Related Art The basic structure of an absorption refrigeration cycle is
A regenerator that heats the absorption liquid and vaporizes a part of the absorption liquid,
A condenser that cools and liquefies the vaporized refrigerant generated in the regenerator, an evaporator that evaporates the liquefied refrigerant liquefied in the condenser under low pressure, and an absorbent that absorbs the vaporized refrigerant evaporated in the evaporator. The absorption liquid, which is composed of an absorber and has absorbed the vaporized refrigerant in the absorber, is sent to the regenerator by the solution pump. When the refrigerant evaporates in the evaporator, latent heat is taken from the heat medium (water or the like) sent from the evaporator to the indoor heat exchanger. Then, the heat medium that has been deprived of heat and cooled is sent to the indoor heat exchanger to exchange heat with the indoor air and cool the room. On the other hand, the condenser and the absorber are supplied with cooling water that cools the vaporized refrigerant to liquefy it or cools the dispersed absorption liquid to accelerate the refrigerant absorption capacity. This cooling water is generally circulated through a circulation path, cooled by cooling means provided in the circulation path, and then supplied to a condenser and an absorber. The cooling means is adjusted so that the temperature of the cooling water supplied to the condenser and the absorber is constant.

【0003】[0003]

【発明が解決しようとする課題】冷却手段の能力は冷却
水の温度を一定温度に調節する場合、外気温度が高い場
合や、冷房負荷が大きい場合でも、冷房能力が満足する
ように設定される。このため、外気温度が低い場合や、
冷房負荷が小さい場合は、冷却手段に余剰の能力が生じ
る。一方、吸収式冷房装置は、再生器で吸収液を加熱す
る加熱部を備える。吸収式冷房装置の消費エネルギー
は、主に加熱部で消費されるため、この加熱部の消費す
るエネルギーを抑えることが望まれる。
The capacity of the cooling means is set so that the cooling capacity is satisfied even when the temperature of the cooling water is adjusted to a constant temperature, the outside air temperature is high, and the cooling load is large. . Therefore, when the outside air temperature is low,
When the cooling load is small, the cooling means has an excessive capacity. On the other hand, the absorption type cooling device includes a heating unit that heats the absorbing liquid in the regenerator. Since the energy consumption of the absorption type cooling device is mainly consumed by the heating section, it is desired to suppress the energy consumed by this heating section.

【0004】[0004]

【発明の目的】本発明の目的は、冷房効率を上げて、加
熱部で消費されるエネルギーを抑えることのできる吸収
式冷房装置の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption type cooling device capable of increasing cooling efficiency and suppressing energy consumed in a heating section.

【0005】[0005]

【課題を解決するための手段】本発明の吸収式冷房装置
は、上記の目的を達成するために、次の技術的手段を採
用した。 〔請求項1の手段〕吸収式冷房装置は、吸収液を加熱さ
せる加熱部と、この加熱部で吸収液を加熱することによ
って吸収液に含まれる冷媒を気化させる再生器、この再
生器で発生した気化冷媒を冷却して液化する凝縮器、こ
の凝縮器で液化した液化冷媒を低圧下で蒸発させる蒸発
器、この蒸発器で蒸発した気化冷媒を吸収液に吸収させ
る吸収器を具備する吸収式冷凍サイクルと、前記吸収器
で吸収液を冷却するとともに、前記凝縮器で冷媒を冷却
する冷却水が循環する冷却水回路と、この冷却水回路に
設けられ、冷却水を室外空気によって冷却する冷却手段
とを備え、前記蒸発器で液化冷媒が蒸発する際に蒸発潜
熱が奪われて冷却された熱媒体を、室内に設置された室
内熱交換器へ導くことによって、室内を冷房する冷房運
転を行う。
The absorption type cooling apparatus of the present invention employs the following technical means in order to achieve the above object. [Means of Claim 1] In the absorption type cooling apparatus, a heating unit for heating the absorbing liquid, a regenerator for heating the absorbing liquid by the heating unit to vaporize a refrigerant contained in the absorbing liquid, and a regenerator An absorption formula comprising a condenser for cooling and liquefying the vaporized refrigerant, an evaporator for evaporating the liquefied refrigerant liquefied by the condenser under low pressure, and an absorber for absorbing the vaporized refrigerant evaporated by the evaporator into an absorbing liquid. A refrigeration cycle, a cooling water circuit for cooling the absorbing liquid in the absorber and a cooling water for cooling the refrigerant in the condenser, and a cooling water circuit provided in the cooling water circuit for cooling the cooling water by outdoor air Means for introducing a latent heat of vaporization when the liquefied refrigerant is evaporated in the evaporator and cooling the heat medium to an indoor heat exchanger installed in the room, thereby performing a cooling operation for cooling the room. To do.

【0006】そして、この吸収式冷房装置は、室外の温
度を検出する外気温度検出手段を備えるとともに、この
外気温度検出手段で検出される温度が高い場合、前記吸
収器および前記凝縮器へ供給される冷却水の温度が所定
温度となるように前記冷却手段を調節し、前記外気温度
検出手段で検出される温度が低い場合、前記吸収器およ
び前記凝縮器へ供給される冷却水の温度が前記所定温度
よりも低い温度となるように前記冷却手段を調節する冷
却水温調節手段を備える。
This absorption type cooling device is provided with an outside air temperature detecting means for detecting the temperature outside the room, and when the temperature detected by the outside air temperature detecting means is high, it is supplied to the absorber and the condenser. If the temperature detected by the outside air temperature detecting means is low, the temperature of the cooling water supplied to the absorber and the condenser is adjusted as described above. A cooling water temperature adjusting means for adjusting the cooling means so that the temperature is lower than a predetermined temperature is provided.

【0007】〔請求項2の手段〕吸収式冷房装置は、吸
収液を加熱させる加熱部と、この加熱部で吸収液を加熱
することによって吸収液に含まれる冷媒を気化させる再
生器、この再生器で発生した気化冷媒を冷却して液化す
る凝縮器、この凝縮器で液化した液化冷媒を低圧下で蒸
発させる蒸発器、この蒸発器で蒸発した気化冷媒を吸収
液に吸収させる吸収器を具備する吸収式冷凍サイクル
と、前記吸収器で吸収液を冷却するとともに、前記凝縮
器で冷媒を冷却する冷却水が循環する冷却水回路と、こ
の冷却水回路に設けられ、冷却水を室外空気によって冷
却する冷却手段とを備え、前記蒸発器で液化冷媒が蒸発
する際に蒸発潜熱が奪われて冷却された熱媒体を、室内
に設置された室内熱交換器へ導くことによって、室内を
冷房する冷房運転を行う。
[Means for Claim 2] The absorption type cooling device is a heating unit for heating the absorbing liquid, a regenerator for heating the absorbing liquid by the heating unit to vaporize a refrigerant contained in the absorbing liquid, and the regenerating unit. A condenser for cooling and liquefying the vaporized refrigerant generated in the condenser, an evaporator for evaporating the liquefied refrigerant liquefied by the condenser under low pressure, and an absorber for absorbing the vaporized refrigerant vaporized by the evaporator in an absorbing liquid Absorption refrigeration cycle to, and a cooling water circuit that circulates cooling water that cools the refrigerant in the condenser while cooling the absorbing liquid in the absorber, and is provided in this cooling water circuit, and the cooling water is supplied by the outdoor air. And a cooling means for cooling, wherein the heat medium, which is cooled by removing latent heat of vaporization when the liquefied refrigerant is evaporated in the evaporator, is guided to the indoor heat exchanger installed in the room, thereby cooling the room. Cooling operation Cormorant.

【0008】そして、この吸収式冷房装置は、前記室内
熱交換器による室内の冷房負荷を検出する冷房負荷検出
手段を備えるとともに、この冷房負荷検出手段で検出さ
れる冷房負荷が大きい場合、前記吸収器および前記凝縮
器へ供給される冷却水の温度が所定温度となるように前
記冷却手段を調節し、前記外気温度検出手段で検出され
る冷房負荷が小さい場合、前記吸収器および前記凝縮器
へ供給される冷却水の温度が前記所定温度よりも低い温
度となるように前記冷却手段を調節する冷却水温調節手
段を備える。
This absorption type cooling device is provided with a cooling load detecting means for detecting the indoor cooling load by the indoor heat exchanger, and when the cooling load detected by this cooling load detecting means is large, the absorption is performed. When the cooling load detected by the outside air temperature detecting means is small, the cooling means is adjusted so that the temperature of the cooling water supplied to the condenser and the condenser becomes a predetermined temperature. The cooling water temperature adjusting means for adjusting the cooling means is provided so that the temperature of the supplied cooling water becomes lower than the predetermined temperature.

【0009】[0009]

【作用および発明の効果】[Operation and effect of the invention]

〔請求項1の作用〕冷房運転中、室外温度が高い場合
は、冷却手段における冷却水の冷却能力が低下する。こ
の時、外気温度検出手段で検出される温度も高い。この
場合、冷却水温度調節手段は、吸収器および凝縮器へ供
給される冷却水の温度が所定温度となるように、冷却手
段を調節する。
[Operation of Claim 1] When the outdoor temperature is high during the cooling operation, the cooling capacity of the cooling water in the cooling means decreases. At this time, the temperature detected by the outside air temperature detecting means is also high. In this case, the cooling water temperature adjusting means adjusts the cooling means so that the temperature of the cooling water supplied to the absorber and the condenser becomes a predetermined temperature.

【0010】逆に、冷房運転中、室外温度が低い場合
は、冷却手段における冷却水の冷却能力が向上する。こ
の時、外気温度検出手段で検出される温度も低い。この
場合、冷却水温度調節手段は、吸収器および凝縮器へ供
給される冷却水の温度が所定温度よりも低い温度となる
ように、冷却手段を調節する。吸収器および凝縮器へ供
給される冷却水の温度が低下すると、吸収器で気化冷媒
を吸収液に吸収させる能力が高くなるとともに、吸収器
の温度が低下して、蒸発器の温度も低下し、蒸発器内の
圧力を低く抑えて沸点を低く抑え、冷媒を気化させる能
力が高くなる。また、凝縮器においても気化冷媒を冷却
して液化させる能力も高くなる。このように、吸収器に
おける吸収能力、凝縮器における冷媒の液化能力が高く
なるとともに、蒸発器における冷媒の気化能力が高くな
ることにより、吸収式冷凍サイクルの効率が向上する。
この結果、吸収液を加熱する加熱部の加熱能力を抑える
ことができる。
On the contrary, during the cooling operation, when the outdoor temperature is low, the cooling capacity of the cooling water in the cooling means is improved. At this time, the temperature detected by the outside air temperature detecting means is also low. In this case, the cooling water temperature adjusting means adjusts the cooling means so that the temperature of the cooling water supplied to the absorber and the condenser is lower than the predetermined temperature. When the temperature of the cooling water supplied to the absorber and the condenser decreases, the ability of the absorber to absorb the vaporized refrigerant into the absorbing liquid increases, the temperature of the absorber decreases, and the temperature of the evaporator also decreases. , The pressure inside the evaporator is kept low, the boiling point is kept low, and the ability to vaporize the refrigerant is increased. Further, also in the condenser, the ability to cool and liquefy the vaporized refrigerant becomes high. Thus, the absorption capacity of the absorber and the liquefaction capacity of the refrigerant in the condenser are increased, and the vaporization capacity of the refrigerant in the evaporator is increased, so that the efficiency of the absorption refrigeration cycle is improved.
As a result, the heating capacity of the heating unit that heats the absorbing liquid can be suppressed.

【0011】〔請求項1の効果〕本発明の吸収式冷房装
置は、上記作用で示したように、室外温度が低い場合
は、加熱部による吸収液の加熱能力が低く抑えられるた
め、加熱部の消費エネルギーを小さくできる。つまり、
室外空気の温度が低い場合は、例え室内の冷房負荷が一
定でも、吸収式冷房装置の消費エネルギーを抑えること
ができる。
[Advantageous Effects] According to the absorption type cooling apparatus of the present invention, as described above, when the outdoor temperature is low, the heating capacity of the absorbing liquid by the heating unit is suppressed to be low, so that the heating unit is heated. Energy consumption can be reduced. That is,
When the temperature of the outdoor air is low, the energy consumption of the absorption type cooling device can be suppressed even if the cooling load in the room is constant.

【0012】〔請求項2の作用〕冷房運転中、冷房負荷
が大きい場合は、冷却手段に大きな冷却能力が要求され
る。つまり、冷却手段は余剰の能力が低下する。冷房負
荷検出手段で検出される冷房負荷が大きい場合、冷却水
温度調節手段は、吸収器および凝縮器へ供給される冷却
水の温度が所定温度となるように、冷却手段を調節す
る。
When the cooling load is high during the cooling operation, the cooling means is required to have a large cooling capacity. That is, the surplus capacity of the cooling means is reduced. When the cooling load detected by the cooling load detecting means is large, the cooling water temperature adjusting means adjusts the cooling means so that the temperature of the cooling water supplied to the absorber and the condenser becomes a predetermined temperature.

【0013】逆に、冷房運転中、冷房負荷が小さい場合
は、冷却手段の冷却水の冷却能力は少なくて済む。つま
り、冷却手段は余剰の能力を備える。冷房負荷検出手段
で検出される冷房負荷が小さい場合、冷却水温度調節手
段は、吸収器および凝縮器へ供給される冷却水の温度が
所定温度よりも低い温度となるように、冷却手段を調節
する。吸収器および凝縮器へ供給される冷却水の温度が
低下すると、吸収器で気化冷媒を吸収液に吸収させる能
力が高くなるとともに、吸収器の温度が低下して、蒸発
器の温度も低下し、蒸発器内の圧力を低く抑えて沸点を
低く抑え、冷媒を気化させる能力が高くなる。また、凝
縮器においても気化冷媒を冷却して液化させる能力も高
くなる。このように、吸収器における吸収能力、凝縮器
における冷媒の液化能力が高くなるとともに、蒸発器に
おける冷媒の気化能力が高くなることにより、吸収式冷
凍サイクルの効率が向上する。この結果、吸収液を加熱
する加熱部の加熱能力を抑えることができる。
On the other hand, when the cooling load is small during the cooling operation, the cooling capacity of the cooling water of the cooling means can be small. That is, the cooling means has a surplus capacity. When the cooling load detected by the cooling load detecting means is small, the cooling water temperature adjusting means adjusts the cooling means so that the temperature of the cooling water supplied to the absorber and the condenser is lower than a predetermined temperature. To do. When the temperature of the cooling water supplied to the absorber and the condenser decreases, the ability of the absorber to absorb the vaporized refrigerant into the absorbing liquid increases, the temperature of the absorber decreases, and the temperature of the evaporator also decreases. , The pressure inside the evaporator is kept low, the boiling point is kept low, and the ability to vaporize the refrigerant is increased. Further, also in the condenser, the ability to cool and liquefy the vaporized refrigerant becomes high. Thus, the absorption capacity of the absorber and the liquefaction capacity of the refrigerant in the condenser are increased, and the vaporization capacity of the refrigerant in the evaporator is increased, so that the efficiency of the absorption refrigeration cycle is improved. As a result, the heating capacity of the heating unit that heats the absorbing liquid can be suppressed.

【0014】〔請求項2の効果〕本発明の吸収式冷房装
置は、上記作用で示したように、冷房負荷が小さい場合
は、加熱部による吸収液の加熱能力が低く抑えられるた
め、加熱部の消費エネルギーを小さくできる。つまり、
冷房負荷が小さい場合は、吸収式冷房装置の消費エネル
ギーを抑えることができる。
[Advantageous Effects] According to the absorption type cooling device of the present invention, as described above, when the cooling load is small, the heating capacity of the absorbing liquid by the heating part is suppressed to a low level. Energy consumption can be reduced. That is,
When the cooling load is small, the energy consumption of the absorption type cooling device can be suppressed.

【0015】[0015]

【実施例】次に、本発明の吸収式冷房装置を、暖房運転
も可能な吸収式冷暖房装置に適用した実施例に基づき図
面を用いて説明する。 〔第1実施例の構成〕図1および図2は請求項1を採用
した第1実施例を示すもので、図1は室内の空調を行う
2重効用型の吸収式冷凍サイクルを用いた吸収式冷暖房
装置の概略構成図である。2重効用型の吸収式冷凍サイ
クル1は、低濃度吸収液(本実施例では臭化リチウム水
溶液)を加熱させる加熱部2を備え、この加熱部2で低
濃度吸収液を加熱することによって低濃度吸収液に含ま
れる冷媒(本実施例では水)を気化(蒸発)させ、低濃
度吸収液を中濃度吸収液にする高温再生器3と、この高
温再生器3内の気化冷媒の凝縮熱を利用して中濃度吸収
液を加熱し、中濃度吸収液に含まれる冷媒を気化させ、
中濃度吸収液を高濃度吸収液にする低温再生器4と、高
温再生器3および低温再生器4からの気化冷媒(水蒸
気)を冷却して液化する凝縮器5と、この凝縮器5で液
化した液化冷媒(水)を真空に近い圧力下で蒸発させる
蒸発器6と、この蒸発器6で蒸発した気化冷媒を低温再
生器4で得られた高濃度吸収液に吸収させる吸収器7と
から構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an absorption type air conditioner according to the present invention will be described with reference to the drawings based on an embodiment applied to an absorption type air conditioner capable of heating operation. [Structure of First Embodiment] FIGS. 1 and 2 show a first embodiment in which claim 1 is adopted. FIG. 1 shows absorption using a double-effect absorption refrigeration cycle for air conditioning the room. It is a schematic block diagram of a type air conditioner. The double-effect absorption refrigeration cycle 1 includes a heating unit 2 for heating a low-concentration absorbent (lithium bromide aqueous solution in this embodiment). The high-temperature regenerator 3 that vaporizes (evaporates) the refrigerant (water in this embodiment) contained in the concentrated absorbent to convert the low-concentrated absorbent to the medium-concentrated absorbent, and the condensation heat of the vaporized refrigerant in the high-temperature regenerator 3. To heat the medium-concentration absorbent, vaporize the refrigerant contained in the medium-concentration absorbent,
A low-temperature regenerator 4 for converting a medium-concentration absorption liquid into a high-concentration absorption liquid, a condenser 5 for cooling and liquefying the vaporized refrigerant (steam) from the high-temperature regenerator 3 and the low-temperature regenerator 4, and liquefaction by the condenser 5. From the evaporator 6 that evaporates the liquefied refrigerant (water) under a pressure close to a vacuum, and the absorber 7 that absorbs the vaporized refrigerant evaporated in the evaporator 6 into the high-concentration absorption liquid obtained in the low-temperature regenerator 4. Composed.

【0016】〔加熱部2を含む高温再生器3の説明〕本
実施例の加熱部2は、燃料であるガスを燃焼して熱を発
生させ、発生した熱によって吸収液を加熱する燃焼式加
熱装置で、ガスの燃焼を行うガスバーナ8、このガスバ
ーナ8へガスの供給を行うガス供給手段9、ガスバーナ
8へ燃焼用の空気を供給する燃焼ファン10等から構成
される。そして、ガスバーナ8のガス燃焼で得られた熱
で、低濃度吸収液が供給される沸騰器11を加熱するよ
うに設けられている。
[Description of High-Temperature Regenerator 3 Including Heating Unit 2] The heating unit 2 of the present embodiment is a combustion-type heating in which a gas that is a fuel is burned to generate heat, and the absorption heat is heated by the generated heat. The apparatus includes a gas burner 8 that burns gas, a gas supply unit 9 that supplies gas to the gas burner 8, a combustion fan 10 that supplies air for combustion to the gas burner 8, and the like. The heat obtained by gas combustion of the gas burner 8 is provided to heat the boiling device 11 to which the low-concentration absorbing liquid is supplied.

【0017】この沸騰器11内で沸騰した低濃度吸収液
は、沸騰器11から上方へ延びる吹出筒12から、沸騰
器11の上部に設けられた円筒容器形状の高温再生容器
13内に吹き出す。この高温再生容器13内に吹き出さ
れた高温の低濃度吸収液は、気液分離用のバッフル13
aに衝突する。そして、高温再生容器13内に吹き出さ
れた低濃度吸収液は、一部蒸発して気化冷媒になり、残
りが吹出筒12の周囲に滴下して中濃度吸収液になる。
なお、気化冷媒は、高温再生容器13の壁によって、後
述する低温再生器4内の中濃度吸収液の蒸発時の潜熱と
して熱が奪われて冷却され、液化冷媒(水)になる。
The low-concentration absorption liquid that has boiled in the boiling device 11 is blown out from the blowing cylinder 12 extending upward from the boiling device 11 into the high temperature regenerating container 13 in the shape of a cylindrical container provided on the upper part of the boiling device 11. The high-temperature low-concentration absorption liquid blown out into the high-temperature regeneration container 13 is used in the gas-liquid separation baffle 13
collide with a. Then, the low-concentration absorption liquid blown out into the high-temperature regeneration container 13 partially evaporates to become a vaporized refrigerant, and the rest drops around the blow-out cylinder 12 to become a medium-concentration absorption liquid.
The vaporized refrigerant is cooled by the wall of the high-temperature regenerator 13 as the latent heat during evaporation of the medium-concentration absorption liquid in the low-temperature regenerator 4, which will be described later, and is cooled to become a liquefied refrigerant (water).

【0018】この液化冷媒(水)と、中濃度吸収液とを
分離するために、高温再生容器13内には、吹出筒12
と高温再生容器13との間に仕切筒14が設けられてい
る。そして、上記のように、高温再生容器13で冷却さ
れて液化し、仕切筒14の外側に分離された液化冷媒
(水)は下部に接続された液冷媒管15を通って凝縮器
5に供給され、仕切筒14の内側と吹出筒12との間に
分離された中濃度吸収液は下部に接続された中液管16
を通って低温再生器4に供給される。なお、中液管16
には、オリフィス等の絞り手段17が設けられている。
この絞り手段17は、後述する冷暖切替弁65が閉じら
れると中濃度吸収液を流し、冷暖切替弁65が開かれる
と中濃度吸収液を殆ど流さないものである。
In order to separate the liquefied refrigerant (water) and the medium-concentration absorbing liquid, the blow-out cylinder 12 is provided in the high temperature regeneration container 13.
A partition cylinder 14 is provided between the high temperature regeneration container 13 and the high temperature regeneration container 13. Then, as described above, the liquefied refrigerant (water) cooled in the high-temperature regeneration container 13 and liquefied and separated to the outside of the partition cylinder 14 is supplied to the condenser 5 through the liquid refrigerant pipe 15 connected to the lower portion. The medium-concentration absorbing liquid separated between the inside of the partition cylinder 14 and the blow-off cylinder 12 is connected to the lower middle liquid pipe 16
And is supplied to the low temperature regenerator 4. The medium liquid pipe 16
A throttling means 17 such as an orifice is provided in the.
The throttle means 17 allows the medium-concentration absorbing liquid to flow when the later-described cooling / heating switching valve 65 is closed, and hardly allows the medium-concentration absorbing liquid to flow when the cooling / heating switching valve 65 is opened.

【0019】〔低温再生器4の説明〕低温再生器4は、
高温再生容器13を覆う筒状容器形状の低温再生容器2
0を備え、中液管16を通って供給される中濃度吸収液
を高温再生容器13の天井部分に向けて注入するもので
ある。低温再生容器20内の温度は、高温再生容器13
の温度に比較して低いため、低温再生容器20内の圧力
は高温再生容器13の圧力に比較して低い。このため、
中液管16から低温再生容器20内に供給された中濃度
吸収液は蒸発し易い。そして、中濃度吸収液が高温再生
容器13の天井部分に注入されると、高温再生容器13
の壁によって中濃度吸収液が加熱され、中濃度吸収液に
含まれる冷媒の一部が蒸発して気化冷媒になり、残りが
高濃度吸収液になる。
[Description of Low Temperature Regenerator 4]
Low temperature regenerating container 2 in the shape of a cylindrical container covering high temperature regenerating container 13
0, and the medium-concentration absorbing liquid supplied through the medium liquid pipe 16 is injected toward the ceiling portion of the high-temperature regenerating container 13. The temperature inside the low-temperature regeneration container 20 is
Since the temperature is lower than the temperature of 1, the pressure inside the low temperature regeneration container 20 is lower than that of the high temperature regeneration container 13. For this reason,
The medium-concentration absorption liquid supplied from the middle liquid pipe 16 into the low temperature regeneration container 20 easily evaporates. Then, when the medium-concentration absorption liquid is injected into the ceiling portion of the high temperature regeneration container 13, the high temperature regeneration container 13
The medium-concentration absorbing liquid is heated by the walls of the medium, a part of the refrigerant contained in the medium-concentrating absorbing liquid evaporates to become a vaporized refrigerant, and the rest becomes a high-concentration absorbing liquid.

【0020】ここで、低温再生容器20の上方は、環状
容器形状の凝縮容器21の上側と、連通部22により連
通している。このため、低温再生容器20内で蒸発した
気化冷媒は、連通部22を通って凝縮容器21内に供給
される。一方、高濃度吸収液は、低温再生容器20の下
部に落下し、低温再生容器20の下部に接続された高液
管23を通って吸収器7に供給される。なお、低温再生
容器20内の上側には、天井板24が設けられ、この天
井板24の外周端と低温再生容器20との間には、気化
冷媒が通過する隙間25が設けられている。
Here, the upper part of the low temperature regeneration container 20 communicates with the upper part of the condensing container 21 in the shape of an annular container by a communication part 22. Therefore, the vaporized refrigerant evaporated in the low temperature regeneration container 20 is supplied into the condensing container 21 through the communication part 22. On the other hand, the high-concentration absorption liquid drops to the lower portion of the low temperature regeneration container 20, and is supplied to the absorber 7 through the high liquid pipe 23 connected to the lower portion of the low temperature regeneration container 20. A ceiling plate 24 is provided on the upper side in the low temperature regeneration container 20, and a gap 25 through which the vaporized refrigerant passes is provided between the outer peripheral end of the ceiling plate 24 and the low temperature regeneration container 20.

【0021】〔凝縮器5の説明〕凝縮器5は、環状容器
形状の凝縮容器21によって覆われている。この凝縮容
器21の内部には、凝縮容器21内の気化冷媒を冷却し
て液化させる凝縮用熱交換器26が配置されている。こ
の凝縮用熱交換器26は、環状のコイルで、内部には冷
却水が流れる。そして、低温再生器4から凝縮容器21
内に供給された液化冷媒は、凝縮用熱交換器26によっ
て冷却されて液化し、凝縮用熱交換器26の下方へ滴下
する。
[Description of Condenser 5] The condenser 5 is covered with a condensing container 21 having an annular container shape. Inside the condensing container 21, a condensing heat exchanger 26 for cooling and liquefying the vaporized refrigerant in the condensing container 21 is arranged. The condensing heat exchanger 26 is an annular coil through which cooling water flows. Then, from the low temperature regenerator 4 to the condensing container 21
The liquefied refrigerant supplied therein is cooled by the condensing heat exchanger 26 and liquefied, and then drops below the condensing heat exchanger 26.

【0022】一方、凝縮容器21の下側には、上述の高
温再生器3から液冷媒管15を通って冷媒が供給され
る。なお、この供給冷媒は、凝縮容器21内に供給され
る際に、圧力の違い(凝縮容器21内は約70mmHg
の低圧)から、再沸騰し、気化冷媒と液化冷媒とが混合
した状態で供給される。また、凝縮容器21には、液化
冷媒を蒸発器6に導く低温液化冷媒供給路31が接続さ
れている。この低温液化冷媒供給路31には、通電によ
って開弁する冷媒弁32が設けられている。この冷媒弁
32は、凝縮容器21から蒸発器6に供給される液化冷
媒の供給量を調節するものである。
On the other hand, below the condensing vessel 21, the refrigerant is supplied from the above-mentioned high temperature regenerator 3 through the liquid refrigerant pipe 15. In addition, when this supply refrigerant is supplied into the condensing container 21, the pressure difference (about 70 mmHg in the condensing container 21).
From the low pressure), re-boiling, and the vaporized refrigerant and the liquefied refrigerant are supplied in a mixed state. Further, the condensing container 21 is connected to a low-temperature liquefied refrigerant supply passage 31 that guides the liquefied refrigerant to the evaporator 6. The low-temperature liquefied refrigerant supply path 31 is provided with a refrigerant valve 32 that opens by energization. The refrigerant valve 32 adjusts the amount of liquefied refrigerant supplied from the condensing container 21 to the evaporator 6.

【0023】〔蒸発器6の説明〕蒸発器6は、吸収器7
とともに、凝縮容器21の下部に設けられるもので、低
温再生容器20の周囲に設けられた環状容器形状の蒸発
吸収容器33によって覆われている。この蒸発吸収容器
33の内部の外側には、凝縮器5から供給される液化冷
媒を蒸発させる蒸発用熱交換器34が配置されている。
この蒸発用熱交換器34は、環状のコイルで、内部には
後述する冷温水回路36によって室内熱交換器37に供
給される熱媒体(冷温水)が流れるものである。そし
て、凝縮器5から低温液化冷媒供給路31を介して供給
された液化冷媒は、蒸発用熱交換器34の上部に配置さ
れた冷媒散布具35から蒸発用熱交換器34の上に散布
される。
[Description of Evaporator 6] The evaporator 6 includes an absorber 7
At the same time, it is provided in the lower part of the condensing container 21, and is covered with an evaporation container 33 in the shape of an annular container provided around the low temperature regeneration container 20. An evaporation heat exchanger 34 for evaporating the liquefied refrigerant supplied from the condenser 5 is arranged outside the inside of the evaporation / absorption container 33.
The heat exchanger 34 for evaporation is an annular coil, and a heat medium (cool / hot water) supplied to an indoor heat exchanger 37 by a cold / hot water circuit 36 described later flows therein. Then, the liquefied refrigerant supplied from the condenser 5 via the low-temperature liquefied refrigerant supply passage 31 is scattered on the evaporation heat exchanger 34 from the refrigerant spraying tool 35 arranged on the evaporation heat exchanger 34. It

【0024】蒸発吸収容器33内は、ほぼ真空(例えば
6.5mmHg)に保たれるため、沸点が低く、蒸発用
熱交換器34に散布された液化冷媒は、大変蒸発しやす
い。そして、蒸発用熱交換器34に散布された液化冷媒
は、蒸発用熱交換器34内を流れる熱媒体から気化熱を
奪って蒸発する。この結果、蒸発用熱交換器34内を流
れる熱媒体が冷却される。そして、冷却された熱媒体
は、室内熱交換器37に導かれ、室内に吹き出す空気と
熱交換して室内を冷房する。
Since the inside of the evaporative absorption container 33 is maintained in a substantially vacuum (for example, 6.5 mmHg), the boiling point is low, and the liquefied refrigerant scattered in the heat exchanger 34 for evaporation is very likely to evaporate. Then, the liquefied refrigerant scattered on the heat exchanger for evaporation 34 evaporates by taking heat of vaporization from the heat medium flowing inside the heat exchanger for evaporation 34. As a result, the heat medium flowing in the evaporation heat exchanger 34 is cooled. Then, the cooled heat medium is guided to the indoor heat exchanger 37 and exchanges heat with the air blown into the room to cool the room.

【0025】〔冷温水回路36および室内熱交換器37
の説明〕冷温水回路36は、蒸発器6を通過した冷温水
を、室内に設置された室内熱交換器37に導き、室内空
気と熱交換した冷温水を再び蒸発器へ導く回路で、この
冷温水回路36中には、室内熱交換器37の他に、冷温
水を圧送する冷温水ポンプ38が設けられている。ま
た、室内熱交換器37には、室内熱交換器37を流れる
冷温水と室内空気とを強制的に熱交換し、熱交換後の空
気を室内に吹き出させるための室内ファン39が設けら
れている。
[Cold / hot water circuit 36 and indoor heat exchanger 37
Description] The hot / cold water circuit 36 is a circuit for guiding the cold / hot water that has passed through the evaporator 6 to an indoor heat exchanger 37 installed indoors, and for guiding the cold / hot water that has exchanged heat with indoor air to the evaporator again. In the cold / hot water circuit 36, in addition to the indoor heat exchanger 37, a cold / hot water pump 38 for pumping cold / hot water is provided. Further, the indoor heat exchanger 37 is provided with an indoor fan 39 for forcibly exchanging heat between the cold and warm water flowing through the indoor heat exchanger 37 and the room air, and blowing out the air after the heat exchange into the room. There is.

【0026】〔吸収器7の説明〕吸収器7は、上述のよ
うに、蒸発吸収容器33に覆われる。そして、吸収器7
は、蒸発吸収容器33の内部の内側に、高液管23から
供給される高濃度吸収液を冷却する吸収用熱交換器41
が配置されている。この吸収用熱交換器41は、環状の
コイルで、内部には、コイル上に散布された高濃度吸収
液を冷却する冷却水が供給される。なお、吸収用熱交換
器41を通過した冷却水は、凝縮器5の凝縮用熱交換器
26を通過した後、後述する冷却水回路46に導かれ、
冷却手段47で冷却された後、再び吸収用熱交換器41
に導かれる。
[Description of Absorber 7] The absorber 7 is covered with the evaporative absorption container 33 as described above. And the absorber 7
Is an absorption heat exchanger 41 for cooling the high-concentration absorption liquid supplied from the high-liquid pipe 23 inside the evaporative absorption container 33.
Is arranged. The absorption heat exchanger 41 is an annular coil, and cooling water for cooling the high-concentration absorption liquid dispersed on the coil is supplied to the inside of the absorption heat exchanger 41. The cooling water that has passed through the absorption heat exchanger 41 is guided to the cooling water circuit 46, which will be described later, after passing through the condensation heat exchanger 26 of the condenser 5.
After being cooled by the cooling means 47, the absorption heat exchanger 41 is again used.
Be led to.

【0027】一方、吸収用熱交換器41の上部には、高
液管23から供給される高濃度吸収液を吸収用熱交換器
41に散布する吸収液散布具42が配置される。吸収用
熱交換器41に散布された高濃度吸収液は、吸収用熱交
換器41のコイル表面を伝って上方から下方へ落下する
間に、蒸発用熱交換器34において蒸発により生成され
た気化冷媒を吸収する。この結果、蒸発吸収容器33の
底に落下した吸収液は、濃度が薄くなった低濃度吸収液
となる。蒸発吸収容器33の底には、蒸発吸収容器33
の底の低濃度吸収液を加熱部2の沸騰器11に供給する
ための低液管43が接続されている。この低液管43に
は、ほぼ真空状態の蒸発吸収容器33内から沸騰器11
に向けて低濃度吸収液を流すために、溶液ポンプ44が
設けられている。
On the other hand, above the absorption heat exchanger 41, there is arranged an absorption liquid spraying tool 42 for spraying the high-concentration absorption liquid supplied from the high liquid pipe 23 to the absorption heat exchanger 41. The high-concentration absorbing liquid sprinkled on the absorption heat exchanger 41 is vaporized by evaporation in the evaporation heat exchanger 34 while traveling along the coil surface of the absorption heat exchanger 41 and falling downward. Absorbs refrigerant. As a result, the absorbing liquid that has dropped to the bottom of the evaporative absorption container 33 becomes a low-concentration absorbing liquid with a reduced concentration. At the bottom of the evaporation / absorption container 33, the evaporation / absorption container 33 is provided.
A low liquid pipe 43 for supplying the low-concentration absorption liquid at the bottom of the heater to the boiling device 11 of the heating unit 2 is connected. The low liquid pipe 43 is connected to the evaporator 11 from the inside of the evaporation and absorption container 33 in a substantially vacuum state.
A solution pump 44 is provided for flowing the low-concentration absorption liquid toward the.

【0028】〔冷却水回路46および冷却手段47の説
明〕冷却水回路46は、吸収器7および凝縮器5を通過
して、温度の上昇した冷却水を、吸収式冷凍サイクル1
の外部の冷却手段47へ導き、この冷却手段47で冷却
された冷却水を再び吸収器7および凝縮器5へ送る回路
で、この冷却水回路46中には、冷却された冷却水を吸
収器へ圧送する冷却水ポンプ48が設けられている。
[Explanation of Cooling Water Circuit 46 and Cooling Means 47] The cooling water circuit 46 passes the absorber 7 and the condenser 5 to cool the cooling water whose temperature has risen to the absorption refrigeration cycle 1
Is a circuit for guiding the cooling water cooled by the cooling means 47 to the absorber 7 and the condenser 5 again, and the cooling water circuit 46 sends the cooled cooling water to the absorber. A cooling water pump 48 is provided for pumping to.

【0029】冷却手段47は、冷却水回路46中に設け
られた冷却塔51と冷却水ファン52とから構成され
る。冷却塔51は、吸収器7および凝縮器5を通過した
冷却水を、上方から下方へ流し、流れている間に外気と
熱交換して放熱するとともに、流れている間に一部蒸発
させて、蒸発時に流れている冷却水から気化熱を奪い、
流れている冷却水を冷却する蒸発型のもので、上方にお
いて冷却水を散布する散布部53と、冷却水が流れる広
い表面積の蒸発部54と、この蒸発部54を通過した冷
却水を集める収集部55とから構成される。
The cooling means 47 comprises a cooling tower 51 and a cooling water fan 52 provided in the cooling water circuit 46. The cooling tower 51 causes the cooling water that has passed through the absorber 7 and the condenser 5 to flow from the upper side to the lower side, exchanges heat with the outside air to radiate heat while flowing, and partially evaporates while flowing. , Takes the heat of vaporization from the cooling water flowing at the time of evaporation,
It is an evaporative type that cools the cooling water that is flowing, and has a spraying part 53 that sprays the cooling water in the upper part, an evaporating part 54 having a large surface area through which the cooling water flows, and collecting and collecting the cooling water that has passed through this evaporating part 54. And a part 55.

【0030】一方、冷却水ファン52は、蒸発部54に
空気流を生じさせ、蒸発部54における冷却水の蒸発お
よび冷却を促進するものである。収集部55で収集され
た冷却水は、下部に設置された冷却水タンク56に導か
れる。冷却水タンク56には、内部の冷却水の水位を検
出する水位センサ(図示しない)を備え、水位が低下す
ると、冷却水を補充するように設けられている。
On the other hand, the cooling water fan 52 causes an air flow in the evaporation section 54 to promote evaporation and cooling of the cooling water in the evaporation section 54. The cooling water collected by the collecting unit 55 is guided to the cooling water tank 56 installed in the lower part. The cooling water tank 56 is provided with a water level sensor (not shown) that detects the water level of the cooling water inside, and is provided so as to replenish the cooling water when the water level drops.

【0031】〔上記以外の構成部品の説明〕図1に示す
符号60は、高温再生器3から低温再生器4へ流れる中
濃度吸収液と、吸収器7から加熱部2へ流れる低濃度吸
収液とを熱交換する高温熱交換器で、高温再生器3から
低温再生器4へ流れる中濃度吸収液を冷却し、逆に吸収
器7から加熱部2へ流れる低濃度吸収液を加熱するもの
である。また、図1に示す符号61は、低温再生器4か
ら吸収器7へ流れる高濃度吸収液と、吸収器7から加熱
部2へ流れる低濃度吸収液とを熱交換する低温熱交換器
で、低温再生器4から吸収器7へ流れる高濃度吸収液を
冷却し、逆に吸収器7から加熱部2へ流れる低濃度吸収
液を加熱するものである。
[Description of Components Other Than Above] Reference numeral 60 shown in FIG. 1 indicates a medium-concentration absorption liquid flowing from the high-temperature regenerator 3 to the low-temperature regenerator 4 and a low-concentration absorption liquid flowing from the absorber 7 to the heating unit 2. Is a high-temperature heat exchanger for exchanging heat with and for cooling the medium-concentration absorbent flowing from the high-temperature regenerator 3 to the low-temperature regenerator 4, and conversely heating the low-concentration absorbent flowing from the absorber 7 to the heating unit 2. is there. Reference numeral 61 shown in FIG. 1 is a low temperature heat exchanger for exchanging heat between the high concentration absorbent flowing from the low temperature regenerator 4 to the absorber 7 and the low concentration absorbent flowing from the absorber 7 to the heating unit 2. The high-concentration absorption liquid flowing from the low-temperature regenerator 4 to the absorber 7 is cooled, and conversely, the low-concentration absorption liquid flowing from the absorber 7 to the heating unit 2 is heated.

【0032】〔暖房運転手段63の説明〕また、本実施
例の吸収式冷凍サイクル1には、上述の作動による冷房
運転の他に、暖房運転を行うための暖房運転手段63が
設けられている。暖房運転手段63は、高温再生器3か
ら低温再生器4へ中濃度吸収液を導く中液管16の途中
から分岐して、温度の高い吸収液を蒸発器6および吸収
器7を収納する蒸発吸収容器33へ導く暖房管64と、
この暖房管64を開閉する冷暖切替弁65とから構成さ
れる。この冷暖切替弁65は、暖房運転時に開弁して高
温の吸収液を蒸発吸収容器33内へ導き、蒸発器6の蒸
発用熱交換器34内を流れる熱媒体を加熱するものであ
る。なお、暖房運転時は、冷却水を循環する冷却水ポン
プ48および冷却水ファン52は停止し、熱媒体を循環
させる冷温水ポンプ38および室内ファン39が運転す
るように、後述する制御装置70によって通電制御され
る。
[Description of Heating Operation Means 63] Further, the absorption refrigeration cycle 1 of this embodiment is provided with heating operation means 63 for performing heating operation in addition to the cooling operation by the above-described operation. . The heating operation means 63 branches from the middle of the middle liquid pipe 16 that guides the medium-concentration absorption liquid from the high temperature regenerator 3 to the low temperature regenerator 4, and evaporates the high temperature absorption liquid in the evaporator 6 and the absorber 7. A heating pipe 64 leading to the absorption container 33,
A heating / cooling switching valve 65 for opening / closing the heating pipe 64 is provided. The cooling / heating switching valve 65 is opened during the heating operation to guide the high-temperature absorbing liquid into the evaporative absorption container 33 and heat the heat medium flowing in the evaporative heat exchanger 34 of the evaporator 6. During the heating operation, the cooling water pump 48 and the cooling water fan 52 that circulate the cooling water are stopped, and the cold / hot water pump 38 and the indoor fan 39 that circulate the heat medium are operated by the control device 70 described later. Energization is controlled.

【0033】〔制御装置70の説明〕制御装置70は、
上述の冷媒弁32、冷暖切替弁65、溶液ポンプ44、
冷温水ポンプ38、冷却水ポンプ48、室内ファン3
9、冷却水ファン52などの電気機能部品、および加熱
部2の電気機能部品(燃焼ファン10、ガス量調節弁7
1、ガス開閉弁72、点火装置73等)を、使用者によ
って手動設定されるコントローラ(図示しない)の操作
指示や、複数設けられた各センサの入力信号に応じて通
電制御するものである。
[Description of Control Device 70] The control device 70 includes
The above-mentioned refrigerant valve 32, cooling / heating switching valve 65, solution pump 44,
Cold / hot water pump 38, cooling water pump 48, indoor fan 3
9, electrical functional components such as the cooling water fan 52, and electrical functional components of the heating unit 2 (combustion fan 10, gas amount control valve 7
1, gas on-off valve 72, ignition device 73, and the like) are energized and controlled according to an operation instruction of a controller (not shown) manually set by a user or an input signal of each of a plurality of sensors.

【0034】制御装置70は、備えるセンサとして、冷
却塔51から吸収器7へ導かれる冷却水の温度を検出す
る冷却水温度センサ75と、冷却塔51が設置された室
外空気の温度を検出する外気温度センサ76(外気温度
検出手段)を備える。そして、制御装置70は、外気温
度センサ76で検出される外気温度に基づき、冷却手段
47の冷却水ファン52の運転状態を制御して、冷却水
温度センサ75で検出される冷却水の温度を調節する冷
却水温度調節手段77を備える。
The control device 70 has, as sensors, a cooling water temperature sensor 75 for detecting the temperature of the cooling water guided from the cooling tower 51 to the absorber 7, and a temperature of the outdoor air in which the cooling tower 51 is installed. An outside air temperature sensor 76 (outside air temperature detecting means) is provided. Then, the control device 70 controls the operating state of the cooling water fan 52 of the cooling means 47 based on the outside air temperature detected by the outside air temperature sensor 76 to control the temperature of the cooling water detected by the cooling water temperature sensor 75. The cooling water temperature adjusting means 77 for adjusting is provided.

【0035】本実施例の冷却水温度調節手段77は、外
気温度と、加熱部2の加熱状態(ガスの燃焼状態)とに
基づき、冷却水の温度を調節するものである。ここで、
本実施例の加熱部2は、冷房負荷(例えば、室内熱交換
器37から蒸発用熱交換器34に流入する冷温水の温度
等)に応じて、ガスバーナ8におけるガスの燃焼状態
が、停止(0kcal/h)、低(例えば2500kc
al/h)、高(例えば6000kcal/h)の3段
階に制御される。
The cooling water temperature adjusting means 77 of this embodiment adjusts the temperature of the cooling water based on the outside air temperature and the heating state (gas combustion state) of the heating section 2. here,
In the heating unit 2 of the present embodiment, the combustion state of the gas in the gas burner 8 is stopped (in accordance with the cooling load (for example, the temperature of cold / hot water flowing from the indoor heat exchanger 37 to the evaporation heat exchanger 34)). 0 kcal / h), low (eg 2500 kc)
al / h) and high (for example, 6000 kcal / h).

【0036】そして、冷却水温度調節手段77による冷
却水の温度制御の作動を、図2のフローチャートに基づ
き説明する。冷房運転中(スタート)、ガスバーナ8の
燃焼状態が停止状態か否かの判断を行う(ステップS1
)。この判断結果がYES の場合はステップS1 へ戻
る。ステップS1 の判断結果がNOの場合は、ガスバーナ
8の燃焼状態が低の状態か否かの判断を行う(ステップ
S2 )。この判断結果がYES の場合(ガスバーナ8の燃
焼状態が低)は、外気温度センサ76で検出される外気
温度が25℃以上か否かの判断を行う(ステップS3
)。この判断結果がNOの場合は、冷却水温度センサ7
5で検出される温度が27℃に保たれるように冷却水フ
ァン52の通電状態を制御する(ステップS4 )。ま
た、ステップS3 の判断結果がYES の場合は、冷却水温
度センサ75で検出される温度が29℃に保たれるよう
に冷却水ファン52の通電状態を制御する(ステップS
5 )。
The operation of controlling the temperature of the cooling water by the cooling water temperature adjusting means 77 will be described with reference to the flowchart of FIG. During the cooling operation (start), it is determined whether or not the combustion state of the gas burner 8 is stopped (step S1).
). If the result of this determination is YES, the process returns to step S1. If the determination result in step S1 is NO, it is determined whether the combustion state of the gas burner 8 is low (step S2). If the result of this determination is YES (the combustion state of the gas burner 8 is low), it is determined whether the outside air temperature detected by the outside air temperature sensor 76 is 25 ° C. or higher (step S3).
). If the result of this determination is NO, the cooling water temperature sensor 7
The energization state of the cooling water fan 52 is controlled so that the temperature detected in 5 is maintained at 27 ° C. (step S4). If the decision result in the step S3 is YES, the energization state of the cooling water fan 52 is controlled so that the temperature detected by the cooling water temperature sensor 75 is kept at 29 ° C. (step S).
Five ).

【0037】ステップS2 の判断結果がNOの場合(ガス
バーナ8の燃焼状態が高)は、外気温度センサ76で検
出される外気温度が25℃以上か否かの判断を行う(ス
テップS6 )。この判断結果がNOの場合は、ステップS
5 へ進み、冷却水温度センサ75で検出される温度が2
9℃に保たれるように冷却水ファン52の通電状態を制
御する。また、ステップS6 の判断結果がYES の場合
は、冷却水温度センサ75で検出される温度が31℃に
保たれるように冷却水ファン52の通電状態を制御する
(ステップS7 )。
When the result of the determination in step S2 is NO (the combustion state of the gas burner 8 is high), it is determined whether the outside air temperature detected by the outside air temperature sensor 76 is 25 ° C. or higher (step S6). If the determination result is NO, step S
5 and the temperature detected by the cooling water temperature sensor 75 is 2
The energization state of the cooling water fan 52 is controlled so as to be maintained at 9 ° C. If the decision result in the step S6 is YES, the energization state of the cooling water fan 52 is controlled so that the temperature detected by the cooling water temperature sensor 75 is maintained at 31 ° C. (step S7).

【0038】〔第1実施例の効果〕ガスバーナ8のガス
の燃焼状態が高で、外気温度が25℃よりも低いとき、
冷却水温度調節手段77は、冷却水の温度を外気温度が
高い場合の31℃より低い29℃に制御する。冷却水の
温度が31℃よりも低い29℃で制御されると、吸収器
7で気化冷媒を吸収液に吸収させる能力が高くなる。ま
た、凝縮器5においても気化冷媒を液化させる能力が高
くなる。このように、吸収器7、凝縮器5における冷媒
の吸収能力および液化能力が高くなることにより、吸収
式冷凍サイクル1の効率が向上し、吸収式冷凍サイクル
1の冷房能力が高くなる。冷房能力が高くなると、室内
が冷やされ、ガスバーナ8のガスの燃焼状態が高から低
に移行する時期が早くなる。
[Effects of the First Embodiment] When the combustion state of the gas in the gas burner 8 is high and the outside air temperature is lower than 25 ° C.,
The cooling water temperature adjusting means 77 controls the temperature of the cooling water to 29 ° C., which is lower than 31 ° C. when the outside air temperature is high. When the temperature of the cooling water is controlled at 29 ° C., which is lower than 31 ° C., the ability of the absorber 7 to absorb the vaporized refrigerant into the absorbing liquid becomes high. Further, the condenser 5 also has a high ability to liquefy the vaporized refrigerant. In this way, the absorption capacity and the liquefaction capacity of the refrigerant in the absorber 7 and the condenser 5 are increased, so that the efficiency of the absorption refrigeration cycle 1 is improved and the cooling capacity of the absorption refrigeration cycle 1 is increased. When the cooling capacity becomes high, the room is cooled, and the gas combustion state of the gas burner 8 shifts from high to low at an earlier time.

【0039】ガスバーナ8のガスの燃焼状態が低で、外
気温度が25℃よりも低いとき、冷却水温度調節手段7
7は、冷却水の温度を外気温度が高い場合の29℃より
低い27℃に制御する。冷却水の温度が29℃よりも低
い27℃で制御されると、吸収器7で気化冷媒を吸収液
に吸収させる能力がさらに高くなる。また、凝縮器5に
おいても気化冷媒を液化させる能力がさらに高くなる。
このように、吸収器7、凝縮器5における冷媒の吸収能
力および液化能力が高くなることにより、吸収式冷凍サ
イクル1の効率が向上し、吸収式冷凍サイクル1の冷房
能力が高くなる。冷房能力が高くなると、室内が冷やさ
れ、ガスバーナ8のガスの燃焼状態が低から停止に移行
する時期が早くなる。
When the combustion state of the gas in the gas burner 8 is low and the outside air temperature is lower than 25 ° C., the cooling water temperature adjusting means 7
7 controls the temperature of the cooling water to 27 ° C. which is lower than 29 ° C. when the outside air temperature is high. When the temperature of the cooling water is controlled at 27 ° C. which is lower than 29 ° C., the ability of the absorber 7 to absorb the vaporized refrigerant into the absorbing liquid becomes higher. Further, also in the condenser 5, the ability to liquefy the vaporized refrigerant is further enhanced.
In this way, the absorption capacity and the liquefaction capacity of the refrigerant in the absorber 7 and the condenser 5 are increased, so that the efficiency of the absorption refrigeration cycle 1 is improved and the cooling capacity of the absorption refrigeration cycle 1 is increased. When the cooling capacity increases, the interior of the gas burner 8 is cooled, and the gas combustion state of the gas burner 8 transitions from low to stop soon.

【0040】このように、外気温度が25℃よりも低い
場合、冷却水の温度を低く設定することで、ガスバーナ
8のガスの燃焼状態が、高→低、低→停止へと、早い時
期に移行するため、ガスバーナ8におけるガスの燃焼量
を低く抑えることができる。つまり、吸収式冷凍サイク
ル1を用いて冷房を行う場合の消費エネルギーを低く抑
えることができる。
As described above, when the outside air temperature is lower than 25 ° C., by setting the temperature of the cooling water low, the combustion state of the gas in the gas burner 8 is changed from high to low and low to stopped at an early stage. Since the transition is made, the combustion amount of gas in the gas burner 8 can be suppressed to a low level. That is, it is possible to suppress energy consumption when cooling is performed using the absorption refrigeration cycle 1.

【0041】〔第2実施例〕図3および図4は請求項2
を採用した第2実施例を示すもので、図3は吸収式冷暖
房装置の概略構成図、図4は冷却水温度調節手段77の
作動を示すフローチャートである。制御装置70は、冷
房運転中における冷房負荷を検出する冷房負荷検出手段
を備える。本実施例の冷房負荷検出手段は、蒸発用熱交
換器34を通過して冷却された冷温水の温度を検出する
冷温水出口温度センサ81を用いる。そして、この実施
例では、冷温水出口温度センサ81で検出された温度が
9℃より高いと冷房負荷が大きいと判断し、7℃より低
いと冷房負荷が小さいと判断し、7〜9℃の間は冷房負
荷が中と判断するものである。また、本実施例の冷却水
温度調節手段77は、冷温水出口温度センサ81で検出
される冷温水の温度に基づき、冷却手段47の冷却水フ
ァン52の運転状態を制御して、冷却水温度センサ75
で検出される冷却水の温度を調節する。
[Second Embodiment] FIG. 3 and FIG.
FIG. 3 is a schematic configuration diagram of the absorption type cooling and heating apparatus, and FIG. 4 is a flowchart showing the operation of the cooling water temperature adjusting means 77. The control device 70 includes a cooling load detection unit that detects a cooling load during the cooling operation. The cooling load detecting means of the present embodiment uses the cold / hot water outlet temperature sensor 81 for detecting the temperature of the cold / hot water cooled by passing through the evaporation heat exchanger 34. In this embodiment, if the temperature detected by the hot / cold water outlet temperature sensor 81 is higher than 9 ° C, it is determined that the cooling load is large, and if it is lower than 7 ° C, it is determined that the cooling load is small, and the temperature is 7-9 ° C. During this period, the cooling load is judged to be medium. In addition, the cooling water temperature adjusting means 77 of the present embodiment controls the operating state of the cooling water fan 52 of the cooling means 47 based on the temperature of the cold / hot water detected by the cold / hot water outlet temperature sensor 81, and thereby the cooling water temperature. Sensor 75
Adjust the temperature of the cooling water detected at.

【0042】この冷却水温度調節手段77による冷却水
の温度制御の作動を、図4のフローチャートに基づき説
明する。冷房運転中(スタート)、冷温水出口温度セン
サ81で検出される冷温水出口温度が7℃未満か否かの
判断を行う(ステップS11)。この判断結果がYES の場
合(冷房負荷が小)は、冷却水温度センサ75で検出さ
れる冷却水温度が27℃に保たれるように冷却水ファン
52の通電状態を制御する(ステップS12)。また、ス
テップS12の判断結果がNOの場合は、冷温水出口温度セ
ンサ81で検出される冷温水出口温度が9℃未満か否か
の判断を行う(ステップS13)。この判断結果がYES の
場合(冷房負荷が中)は、冷却水温度センサ75で検出
される冷却水温度が29℃に保たれるように冷却水ファ
ン52の通電状態を制御する(ステップS14)。ステッ
プS13の判断結果がNOの場合(冷房負荷が大)は、冷却
水温度センサ75で検出される冷却水温度が31℃に保
たれるように冷却水ファン52の通電状態を制御する
(ステップS15)。
The operation of controlling the temperature of the cooling water by the cooling water temperature adjusting means 77 will be described with reference to the flowchart of FIG. During the cooling operation (start), it is determined whether the cold / hot water outlet temperature detected by the cold / hot water outlet temperature sensor 81 is lower than 7 ° C. (step S11). If this determination is YES (the cooling load is small), the energization state of the cooling water fan 52 is controlled so that the cooling water temperature detected by the cooling water temperature sensor 75 is maintained at 27 ° C (step S12). . If the determination result in step S12 is NO, it is determined whether the cold / hot water outlet temperature detected by the cold / hot water outlet temperature sensor 81 is lower than 9 ° C. (step S13). If the determination result is YES (cooling load is medium), the energization state of the cooling water fan 52 is controlled so that the cooling water temperature detected by the cooling water temperature sensor 75 is maintained at 29 ° C. (step S14). . When the determination result of step S13 is NO (the cooling load is large), the energization state of the cooling water fan 52 is controlled so that the cooling water temperature detected by the cooling water temperature sensor 75 is maintained at 31 ° C. (step). S15).

【0043】〔第2実施例の効果〕上記の作動で示した
ように、冷房負荷が中の時、冷却水温度調節手段77
は、冷却水の温度を冷房負荷が大の場合の31℃より低
い29℃に制御する。冷却水の温度が31℃よりも低い
29℃で制御されると、吸収器7で気化冷媒を吸収液に
吸収させる能力が高くなる。また、凝縮器5においても
気化冷媒を液化させる能力が高くなる。このように、吸
収器7、凝縮器5における冷媒の吸収能力および液化能
力が高くなることにより、吸収式冷凍サイクル1の効率
が向上し、吸収式冷凍サイクル1の冷房能力が高くな
る。
[Effects of Second Embodiment] As shown in the above operation, when the cooling load is medium, the cooling water temperature adjusting means 77.
Controls the temperature of the cooling water to 29 ° C, which is lower than 31 ° C when the cooling load is large. When the temperature of the cooling water is controlled at 29 ° C., which is lower than 31 ° C., the ability of the absorber 7 to absorb the vaporized refrigerant into the absorbing liquid becomes high. Further, the condenser 5 also has a high ability to liquefy the vaporized refrigerant. In this way, the absorption capacity and the liquefaction capacity of the refrigerant in the absorber 7 and the condenser 5 are increased, so that the efficiency of the absorption refrigeration cycle 1 is improved and the cooling capacity of the absorption refrigeration cycle 1 is increased.

【0044】また、冷房負荷が小の時、冷却水温度調節
手段77は、冷却水の温度を冷房負荷が中の場合の29
℃より低い27℃に制御する。冷却水の温度が29℃よ
りも低い27℃で制御されると、吸収器7で気化冷媒を
吸収液に吸収させる能力がさらに高くなる。また、凝縮
器5においても気化冷媒を液化させる能力がさらに高く
なる。このように、吸収器7、凝縮器5における冷媒の
吸収能力および液化能力が高くなることにより、吸収式
冷凍サイクル1の効率が向上し、吸収式冷凍サイクル1
の冷房能力が高くなる。
When the cooling load is small, the cooling water temperature adjusting means 77 controls the temperature of the cooling water to 29 when the cooling load is medium.
Control at 27 ° C, which is lower than 0 ° C. When the temperature of the cooling water is controlled at 27 ° C. which is lower than 29 ° C., the ability of the absorber 7 to absorb the vaporized refrigerant into the absorbing liquid becomes higher. Further, also in the condenser 5, the ability to liquefy the vaporized refrigerant is further enhanced. In this way, the absorption capacity and the liquefaction capacity of the refrigerant in the absorber 7 and the condenser 5 are increased, so that the efficiency of the absorption refrigeration cycle 1 is improved and the absorption refrigeration cycle 1 is improved.
The cooling capacity of the

【0045】上記に示したように、冷房能力が高くなる
と、室内が冷やされ、ガスバーナ8のガスの燃焼状態が
高から低、あるいは低から停止に移行する時期が早くな
る。この結果、ガスバーナ8におけるガスの燃焼量を低
く抑えることができる。つまり、吸収式冷凍サイクル1
を用いて冷房を行う場合の消費エネルギーを低く抑える
ことができる。
As described above, when the cooling capacity becomes high, the interior of the gas burner 8 is cooled and the combustion state of the gas in the gas burner 8 becomes high or low, or the time from low to stop becomes early. As a result, the combustion amount of gas in the gas burner 8 can be suppressed low. In other words, absorption refrigeration cycle 1
It is possible to suppress the energy consumption in the case of performing cooling by using.

【0046】〔変形例〕上記実施例で示した数値は、実
施例を説明するための一例であって、本願発明は実施例
の数値になんら限定されるものではなく、使用目的や装
置に適した数値を採用可能なものである。外気温度に対
応して段階的に冷却水の温度を制御した例を示したが、
外気温度に対応して連続的あるいは多段階的に冷却水の
温度を制御しても良い。冷房負荷に対応して段階的に冷
却水の温度を制御した例を示したが、冷房負荷に対応し
て連続的あるいは多段階的に冷却水の温度を制御しても
良い。冷房負荷を検出する一例として冷温水出口温度か
ら冷房負荷を検出した例を示したが、冷温水入口温度と
冷温水出口温度との差や、使用される室内熱交換器の数
等から冷房負荷を検出するなど、他の検出方法によって
冷房負荷を検出するように設けても良い。請求項1にか
かる発明と、請求項2にかかる発明を組み合わせて用い
ても良い。つまり、例えば、第1実施例と第2実施例と
を組み合わせても良い。
[Modification] The numerical values shown in the above embodiments are examples for explaining the embodiments, and the present invention is not limited to the numerical values of the embodiments and is suitable for the purpose of use and the device. It is possible to adopt the numerical value. An example was shown in which the temperature of the cooling water was controlled stepwise according to the outside air temperature.
The temperature of the cooling water may be controlled continuously or in multiple stages according to the outside air temperature. Although the example in which the temperature of the cooling water is controlled stepwise according to the cooling load has been shown, the temperature of the cooling water may be controlled continuously or in multiple steps depending on the cooling load. As an example of detecting the cooling load, the cooling load was detected from the hot / cold water outlet temperature, but the cooling load is determined from the difference between the cold / hot water inlet temperature and the cold / hot water outlet temperature, and the number of indoor heat exchangers used. It may be provided so as to detect the cooling load by another detection method such as detection of. The invention according to claim 1 and the invention according to claim 2 may be used in combination. That is, for example, the first embodiment and the second embodiment may be combined.

【0047】上記の実施例では、2重効用型の吸収式冷
凍サイクルを例に示したが、1重効用型の吸収式冷凍サ
イクルでも良いし、3重以上の多重効用型の吸収式冷凍
サイクルでも良い。また、低温再生器内に中濃度吸収液
を注入する際、低温再生器の上方から注入する例を示し
たが、下方から注入しても良い。
In the above embodiment, the double-effect absorption refrigeration cycle is shown as an example, but a single-effect absorption refrigeration cycle may be used, or a triple-effect multiple-effect absorption refrigeration cycle. But good. Further, when the medium-concentration absorption liquid is injected into the low temperature regenerator, an example in which it is injected from above the low temperature regenerator has been shown, but it may be injected from below.

【0048】加熱部の加熱源としてガスバーナを用いた
が、石油バーナや電気ヒータを用いたり、他の装置(例
えば内燃機関)の排熱を利用しても良い。凝縮用熱交換
器、蒸発用熱交換器、吸収用熱交換器をコイル状に設け
た例を示したが、チューブアンドフィンや、積層型熱交
換器など他の形式の熱交換器を用いても良い。吸収液の
一例として臭化リチウム水溶液を例に示したが、冷媒に
アンモニア、吸収剤に水を利用したアンモニア水溶液な
ど他の吸収液を用いても良い。
Although the gas burner is used as the heating source of the heating section, a petroleum burner or an electric heater may be used, or exhaust heat of another device (for example, an internal combustion engine) may be used. Although an example in which a condensing heat exchanger, an evaporating heat exchanger, and an absorbing heat exchanger are provided in a coil shape is shown, other types of heat exchangers such as a tube-and-fin or a laminated heat exchanger may be used. Is also good. Although an aqueous lithium bromide solution has been shown as an example of the absorbing liquid, other absorbing liquids such as an ammonia aqueous solution using ammonia as a refrigerant and water as an absorbent may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式冷暖房装置の概略構成図である(第1実
施例)。
FIG. 1 is a schematic configuration diagram of an absorption type air conditioner (first embodiment).

【図2】冷却水温調節手段の作動を示すフローチャート
である(第1実施例)。
FIG. 2 is a flowchart showing the operation of the cooling water temperature adjusting means (first embodiment).

【図3】吸収式冷暖房装置の概略構成図である(第2実
施例)。
FIG. 3 is a schematic configuration diagram of an absorption type cooling and heating device (second embodiment).

【図4】冷却水温調節手段の作動を示すフローチャート
である(第2実施例)。
FIG. 4 is a flowchart showing the operation of the cooling water temperature adjusting means (second embodiment).

【符号の説明】[Explanation of symbols]

1 吸収式冷凍サイクル 2 加熱部 3 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 37 室内熱交換器 46 冷却水回路 47 冷却手段 76 外気温度センサ(外気温度検出手段) 77 冷却水温調節手段 81 冷温水出口温度センサ(冷房負荷検出手段) 1 Absorption type refrigeration cycle 2 Heating part 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 37 Indoor heat exchanger 46 Cooling water circuit 47 Cooling means 76 Outside air temperature sensor (outside air temperature detecting means) 77 Cooling water temperature Adjusting means 81 Cold / hot water outlet temperature sensor (cooling load detecting means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸収液を加熱させる加熱部と、 この加熱部で吸収液を加熱することによって吸収液に含
まれる冷媒を気化させる再生器、この再生器で発生した
気化冷媒を冷却して液化する凝縮器、この凝縮器で液化
した液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器
で蒸発した気化冷媒を吸収液に吸収させる吸収器を具備
する吸収式冷凍サイクルと、 前記吸収器で吸収液を冷却するとともに、前記凝縮器で
冷媒を冷却する冷却水が循環する冷却水回路と、 この冷却水回路に設けられ、冷却水を室外空気によって
冷却する冷却手段とを備え、 前記蒸発器で液化冷媒が蒸発する際に蒸発潜熱が奪われ
て冷却された熱媒体を、室内に設置された室内熱交換器
へ導くことによって、室内を冷房する冷房運転を行うこ
とのできる吸収式冷房装置において、 この吸収式冷房装置は、 室外の温度を検出する外気温度検出手段を備えるととも
に、 この外気温度検出手段で検出される温度が高い場合、前
記吸収器および前記凝縮器へ供給される冷却水の温度が
所定温度となるように前記冷却手段を調節し、前記外気
温度検出手段で検出される温度が低い場合、前記吸収器
および前記凝縮器へ供給される冷却水の温度が前記所定
温度よりも低い温度となるように前記冷却手段を調節す
る冷却水温調節手段を備えることを特徴とする吸収式冷
房装置。
1. A heating unit for heating an absorption liquid, a regenerator for evaporating a refrigerant contained in the absorption liquid by heating the absorption liquid by the heating unit, and a vaporized refrigerant generated in the regenerator for liquefaction. A condenser, an evaporator for evaporating the liquefied refrigerant liquefied by the condenser under low pressure, an absorption refrigeration cycle including an absorber for absorbing the vaporized refrigerant evaporated by the evaporator into an absorption liquid, and the absorber The evaporator includes a cooling water circuit that circulates cooling water that cools the absorption liquid and cools the refrigerant in the condenser, and a cooling unit that is provided in the cooling water circuit and cools the cooling water by outdoor air. When the liquefied refrigerant is evaporated, the absorption heat is removed by removing the latent heat of vaporization and guiding the cooled heat medium to the indoor heat exchanger installed in the room. To In addition, this absorption type cooling device is provided with an outside air temperature detecting means for detecting the temperature outside the room, and when the temperature detected by the outside air temperature detecting means is high, the cooling water supplied to the absorber and the condenser. The temperature of the cooling means is adjusted to be a predetermined temperature, and when the temperature detected by the outside air temperature detecting means is low, the temperature of the cooling water supplied to the absorber and the condenser is lower than the predetermined temperature. An absorption type air conditioner comprising cooling water temperature adjusting means for adjusting the cooling means so that the cooling water temperature becomes even lower.
【請求項2】吸収液を加熱させる加熱部と、 この加熱部で吸収液を加熱することによって吸収液に含
まれる冷媒を気化させる再生器、この再生器で発生した
気化冷媒を冷却して液化する凝縮器、この凝縮器で液化
した液化冷媒を低圧下で蒸発させる蒸発器、この蒸発器
で蒸発した気化冷媒を吸収液に吸収させる吸収器を具備
する吸収式冷凍サイクルと、 前記吸収器で吸収液を冷却するとともに、前記凝縮器で
冷媒を冷却する冷却水が循環する冷却水回路と、 この冷却水回路に設けられ、冷却水を室外空気によって
冷却する冷却手段とを備え、 前記蒸発器で液化冷媒が蒸発する際に蒸発潜熱が奪われ
て冷却された熱媒体を、室内に設置された室内熱交換器
へ導くことによって、室内を冷房する冷房運転を行うこ
とのできる吸収式冷房装置において、 この吸収式冷房装置は、 前記室内熱交換器による室内の冷房負荷を検出する冷房
負荷検出手段を備えるとともに、 この冷房負荷検出手段で検出される冷房負荷が大きい場
合、前記吸収器および前記凝縮器へ供給される冷却水の
温度が所定温度となるように前記冷却手段を調節し、前
記外気温度検出手段で検出される冷房負荷が小さい場
合、前記吸収器および前記凝縮器へ供給される冷却水の
温度が前記所定温度よりも低い温度となるように前記冷
却手段を調節する冷却水温調節手段を備えることを特徴
とする吸収式冷房装置。
2. A heating part for heating the absorbing liquid, a regenerator for evaporating a refrigerant contained in the absorbing liquid by heating the absorbing liquid by the heating part, and a vaporized refrigerant generated in the regenerator for cooling and liquefying. A condenser, an evaporator for evaporating the liquefied refrigerant liquefied by the condenser under low pressure, an absorption refrigeration cycle including an absorber for absorbing the vaporized refrigerant evaporated by the evaporator into an absorption liquid, and the absorber The evaporator includes a cooling water circuit that circulates cooling water that cools the absorption liquid and cools the refrigerant in the condenser, and a cooling unit that is provided in the cooling water circuit and cools the cooling water by outdoor air. When the liquefied refrigerant is evaporated, the absorption heat is removed by removing the latent heat of vaporization and guiding the cooled heat medium to the indoor heat exchanger installed in the room. To Then, the absorption type cooling device is provided with a cooling load detecting means for detecting an indoor cooling load by the indoor heat exchanger, and when the cooling load detected by the cooling load detecting means is large, the absorber and the The cooling means is adjusted so that the temperature of the cooling water supplied to the condenser becomes a predetermined temperature, and when the cooling load detected by the outside air temperature detecting means is small, the cooling water is supplied to the absorber and the condenser. An absorption type air conditioner comprising: cooling water temperature adjusting means for adjusting the cooling means so that the temperature of the cooling water is lower than the predetermined temperature.
JP6156306A 1994-07-07 1994-07-07 Absorption cooling system Expired - Fee Related JP2898202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6156306A JP2898202B2 (en) 1994-07-07 1994-07-07 Absorption cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156306A JP2898202B2 (en) 1994-07-07 1994-07-07 Absorption cooling system

Publications (2)

Publication Number Publication Date
JPH0821670A true JPH0821670A (en) 1996-01-23
JP2898202B2 JP2898202B2 (en) 1999-05-31

Family

ID=15624922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156306A Expired - Fee Related JP2898202B2 (en) 1994-07-07 1994-07-07 Absorption cooling system

Country Status (1)

Country Link
JP (1) JP2898202B2 (en)

Also Published As

Publication number Publication date
JP2898202B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP2002357370A (en) Control method of absorption refrigerating machine
JP2650654B2 (en) Absorption refrigeration cycle device
JP2898202B2 (en) Absorption cooling system
JP2839442B2 (en) Absorption refrigeration cycle device
JP3283780B2 (en) Absorption cooling device
JP3660493B2 (en) Absorption refrigeration system controller
JP2902305B2 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP2618192B2 (en) Absorption refrigeration cycle device
JP2846582B2 (en) Absorption air conditioner
JP3322994B2 (en) Absorption air conditioner
KR100219910B1 (en) Absorption type air conditioner
JPH0829000A (en) Absorption type air conditioner
KR100321582B1 (en) Absorption air conditioner
JP3328156B2 (en) Absorption air conditioner
JP2746323B2 (en) Absorption air conditioner
JP3920979B2 (en) Absorption air conditioner control device
JP3372662B2 (en) Absorption refrigeration cycle device
JP3117631B2 (en) Absorption air conditioner
KR100295093B1 (en) Control method of diluting operation of absorption air conditioner
JP2003014258A (en) Absorption air conditioner
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3904726B2 (en) Absorption refrigeration system
JP3113195B2 (en) Bleeding device for absorption refrigeration system
JPH0829002A (en) Absorptive refrigerating cycle apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees