JPH08215806A - Production of high cleanliness steel using vertical tundish - Google Patents

Production of high cleanliness steel using vertical tundish

Info

Publication number
JPH08215806A
JPH08215806A JP5506695A JP5506695A JPH08215806A JP H08215806 A JPH08215806 A JP H08215806A JP 5506695 A JP5506695 A JP 5506695A JP 5506695 A JP5506695 A JP 5506695A JP H08215806 A JPH08215806 A JP H08215806A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
inclusions
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5506695A
Other languages
Japanese (ja)
Inventor
Toshiaki Okimura
利昭 沖村
Yoshio Nakajima
義夫 中島
Koji Akiyama
浩二 秋山
Atsuo Yamamoto
厚夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5506695A priority Critical patent/JPH08215806A/en
Publication of JPH08215806A publication Critical patent/JPH08215806A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To supply high cleanliness molten steel into a continuous casting mold from a ladle by using a vertical tundish effective for float-up and separation of the inclusion. CONSTITUTION: The molten steel 2 is supplied into the tundish 10 having large depth in comparison with the cross sectional area from the ladle 1, and after executing an adjustment of components 11, forced stirrings 13, 14 and an adjustment of temp. 15 along the flowing direction of the molten steel flowed down in the tundish 10, the killed molten steel under straightening condition 16 is supplied into the mold 5 for continuous casting. By this method, since sufficient molten steel depth can be obtd., the coagulation and growth, and the float-up and separation of inclusions are effectively executed to obtain the molten steel having high cleanliness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精錬機能を備えたタン
ディッシュで不純物を除去し、連続鋳型に注湯される高
清浄度鋼を得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of removing impurities with a tundish having a refining function to obtain high cleanliness steel poured into a continuous mold.

【0002】[0002]

【従来の技術】真空脱ガス処理を併用した連続鋳造法で
は、次の工程を経て連鋳片が製造される。すなわち、R
H等の真空脱ガス装置で、脱炭等の成分調整した後、A
23 等の脱酸生成物を溶鋼の還流によって浮上分離
させる。処理された取鍋内溶鋼は、タンディッシュで受
けられ、連続的に鋳型内に注湯され、連鋳片に鋳造され
る。このとき使用されるタンディッシュとしては、従来
から舟型のタンディッシュが使用されている。鋼材に対
する高品質化傾向が強くなっている最近では、介在物の
低減が製鋼工程における重要課題の一つになっている。
しかし、連続鋳造では鋳型内における溶鋼の凝固速度が
早く、介在物が浮上する前に凝固シェルに捕捉されてし
まうことがあり、鋳片の清浄度が悪化しがちである。そ
のため、真空脱ガス装置からタンディッシュを経て鋳型
に至る過程で、種々の介在物低減手段が提案され、採用
されている。
2. Description of the Related Art In a continuous casting method combined with vacuum degassing, a continuous cast piece is manufactured through the following steps. That is, R
After adjusting the components such as decarburization with a vacuum degasser such as H,
Deoxidized products such as l 2 O 3 are floated and separated by the reflux of molten steel. The treated molten steel in the ladle is received by the tundish, continuously poured into the mold, and cast into a continuous cast piece. As a tundish used at this time, a boat-shaped tundish has been conventionally used. In recent years, the tendency to improve the quality of steel products has become stronger, and the reduction of inclusions has become one of the important issues in the steelmaking process.
However, in continuous casting, the solidification rate of molten steel in the mold is high, and inclusions may be trapped by the solidification shell before floating, and the cleanliness of the slab tends to deteriorate. Therefore, various inclusion reducing means have been proposed and adopted in the process from the vacuum degassing device to the mold through the tundish.

【0003】介在物を低減させる手段は、(1)真空脱
ガス装置で介在物の分離を促進させること,(2)堰の
設置やガス吹込みによりタンディッシュ内で介在物の浮
上を促進させること,(3)鋳型内で溶鋼の流動を制御
し、或いはガスを吹き込むことにより介在物の浮上を促
進させることに大別される。真空脱ガス装置内では、脱
酸後の溶鋼還流時間を長く設定することによりAl2
3 等の浮上時間を確保し、介在物の源であるAl23
等の脱酸生成物が溶鋼内に残留することを極力少なくす
る。タンディッシュ内では、底面や浴面部等に耐火物製
の邪魔板やフィルターを設置し、或いはArガス等の不
活性ガスを導入することにより、介在物が溶湯と共に鋳
型内に直送されることを防止し、且つ介在物の浮上分離
を促進させている。鋳型内における介在物の浮上分離に
は、静磁場等の作用で溶鋼の流動を整流化させる方法,
浸漬ノズルの閉塞防止を兼ねてArガス等の不活性ガス
を導入する方法等が採用されている。
The means for reducing inclusions are (1) promoting the separation of inclusions by a vacuum degassing device, and (2) promoting the floating of inclusions in the tundish by installing a weir and blowing gas. (3) It is roughly classified into controlling the flow of molten steel in the mold or injecting gas to promote the floating of inclusions. In the vacuum degassing device, by setting the molten steel reflux time after deoxidation to be long, Al 2 O
Ascent time of 3 etc. is secured, and the source of inclusions is Al 2 O 3
Deoxidation products such as remain in the molten steel as much as possible. In the tundish, inclusions such as refractory baffles and filters are installed on the bottom surface and bath surface, or by introducing an inert gas such as Ar gas, inclusions are sent directly into the mold together with the molten metal. This prevents the inclusions and promotes the floating separation of inclusions. For floating separation of inclusions in the mold, a method of rectifying the flow of molten steel by the action of a static magnetic field,
For example, a method of introducing an inert gas such as Ar gas for preventing clogging of the immersion nozzle is adopted.

【0004】[0004]

【発明が解決しようとする課題】真空脱ガス装置で溶鋼
の還流時間を長くするほど、介在物の分離が促進され
る。しかし、処理時間が増すことによって、たとえば極
低炭素鋼のように比較的長時間の脱炭処理が必要とされ
る鋼種では、転炉及び連鋳の前後工程との間におけるマ
ッチングに支障を来し易い。そのため、生産管理が困難
となり、連続鋳造の利点である生産性が阻害される虞れ
もある。また、処理時間の長期化に伴って溶鋼温度が下
がることから、連鋳に必要な温度を補償するために多量
の熱エネルギーが消費される。タンディッシュで内部堰
やガス吹込みにより介在物を分離させる場合、従来の舟
型タンディッシュでは十分な浴深が確保されないため、
介在物の浮上に必要な時間が十分でない。そのため、微
細な介在物は、浮上せずに鋳型に随伴される可能性が大
きくなる。また、横長で大気との接触面積が大きいタン
ディッシュでは、大気による溶鋼の再酸化や吸窒が問題
となる。
The longer the reflux time of the molten steel in the vacuum degassing device, the more the separation of inclusions is promoted. However, due to the increase in processing time, for steel types such as ultra-low carbon steel that require a relatively long decarburization process, matching between the converter and the continuous casting process is hindered. Easy to do. Therefore, production management becomes difficult, and productivity, which is an advantage of continuous casting, may be impaired. Further, since the molten steel temperature decreases as the processing time increases, a large amount of heat energy is consumed to compensate for the temperature required for continuous casting. When separating inclusions by an internal weir or gas injection in a tundish, the conventional boat-type tundish does not ensure a sufficient bath depth.
The time required for floating inclusions is not enough. Therefore, fine inclusions are more likely to be attached to the mold without floating. Further, in a tundish that is horizontally long and has a large contact area with the atmosphere, reoxidation of molten steel and absorption of nitrogen by the atmosphere pose problems.

【0005】そこで、タンディッシュ内で介在物を浮上
分離させ、且つ再酸化や吸窒を防止するため、タンディ
ッシュ内の受湯側と出湯側とを真空脱ガス装置で接続す
ること(特開平3−17221号公報)が知られている
が、設備の複雑化を招く割りには所期の効果が得られて
いない。また、特開平3−32453号公報では、複数
のタンディッシュを多段に配置して成分調整と清浄化と
を分担させる方式が紹介されているが、この方式も設備
が複雑化する点で問題がある。鋳型内で介在物を浮上分
離させる方法では、介在物の浮上分離に有効な鋳型のス
トレート部を十分に確保できない場合が多く、しかも凝
固速度が速いことから、微細な介在物が浮上せずに凝固
シェルに捕捉されてしまう傾向がみられる。また、介在
物の浮上を促進させるために供給された不活性ガスの気
泡が介在物と同様に凝固シェルに捕捉される虞れもあ
り、鋳片に持ち込まれた気泡や介在物は鋳造欠陥の原因
となる。本発明は、このような問題を解消すべく案出さ
れたものであり、従来の舟型に替えて竪型のタンディッ
シュを使用し、タンディッシュ内に生起した溶鋼の下降
流に沿って成分調整,介在物除去,温度調整等の処理を
施すことにより、鋳造に最適な状態で清浄度の高い溶鋼
を連鋳鋳型に送り出し、介在物に起因した欠陥のない健
全な鋳片を得ることを目的とする。
Therefore, in order to float and separate inclusions in the tundish and prevent reoxidation and nitrogen absorption, the hot water supply side and the hot water discharge side in the tundish should be connected by a vacuum degassing device. No. 3-17221) is known, but the desired effect is not obtained despite the complexity of the equipment. Further, JP-A-3-32453 discloses a method in which a plurality of tundishes are arranged in multiple stages to share component adjustment and cleaning, but this method also has a problem in that the equipment becomes complicated. is there. In the method in which the inclusions are floated and separated in the mold, it is often not possible to secure a sufficient straight part of the mold that is effective for the floatation and separation of inclusions, and since the solidification rate is fast, fine inclusions do not float. It tends to be trapped by the solidified shell. In addition, the bubbles of the inert gas supplied to promote the floating of inclusions may be trapped in the solidified shell in the same manner as the inclusions. Cause. The present invention has been devised in order to solve such a problem, using a vertical tundish instead of the conventional boat type, and components along the downward flow of molten steel generated in the tundish. By performing adjustment, removal of inclusions, temperature adjustment, etc., molten steel with a high degree of cleanliness can be sent to the continuous casting mold in the optimal state for casting, and a sound cast without defects due to inclusions can be obtained. To aim.

【0006】[0006]

【課題を解決するための手段】本発明の高清浄度鋼製造
方法は、その目的を達成するため、断面積に比較して深
さの大きなタンディッシュに取鍋から溶鋼を供給し、タ
ンディッシュ内を流下する溶鋼の流れ方向に沿って成分
調整,強制撹拌及び温度調整した後、鎮静化された整流
状態の溶鋼を連続鋳造用鋳型に供給することを特徴とす
る。
In order to achieve the object, the method for producing high-cleanliness steel according to the present invention is to supply molten steel from a ladle to a tundish having a depth larger than that of a cross-sectional area, thereby forming a tundish. The composition is characterized in that after the components are adjusted, the force is agitated and the temperature is adjusted along the flow direction of the molten steel flowing through the inside, the calcined rectified molten steel is supplied to the continuous casting mold.

【0007】[0007]

【作用】本発明者等は、タンディッシュ内における介在
物の浮上分離に関し種々の観点から調査・研究した。そ
して、模擬介在物としてシリカバルーンを使用したタン
ディッシュの水モデル試験により、タンディッシュから
鋳型に送り出される介在物の排出率ηは、ほぼ次式
(1)で表されることを見い出した。 η=Aexp(−Vp ・H・L) ・・・・(1) ただし、A:定数 Vp :介在物のストークス終末浮上速度(cm/秒) H:タンディッシュ内の浴深(cm) L:流入口から流出口までの距離(cm) ここで、ストークス終末浮上速度Vp は、式(2)で表
される。 Vp =CD ・g(1−ρinc /ρFe)D2 /18ν ・・・・(2) ただし、g:重力加速度 (cm/秒2) ρinc :介在物
密度 (g/cm3) ρFe:溶鋼密度 (g/cm3) D:介在物粒径(cm) ν:液体の動粘度(cm2 /秒) CD :抵抗係数
The present inventors investigated and studied from various viewpoints the floating separation of inclusions in the tundish. Then, by a water model test of a tundish using a silica balloon as a simulated inclusion, it was found that the discharge rate η of the inclusions sent from the tundish to the mold is approximately represented by the following equation (1). η = Aexp (-V p · H · L) ···· (1) However, A: constant V p: Stokes terminal ascent rate of inclusions (cm / sec) H: bath depth in the tundish (cm) L: Distance from inflow port to outflow port (cm) Here, the Stokes terminal levitation speed V p is expressed by equation (2). V p = C D · g (1-ρ inc / ρ Fe ) D 2 / 18ν ··· (2) However, g: Gravitational acceleration (cm / sec 2 ) ρ inc : Inclusion density (g / cm 3 ) ρ Fe : Molten steel density (g / cm 3 ) D: Inclusion particle size (cm) ν: Kinematic viscosity of liquid (cm 2 / sec) CD : Resistance coefficient

【0008】式(1)から、タンディッシュ内における
浴深が大きいほど、介在物排出率ηが低下していること
が判る。また、式(2)から、介在物の浮上速度は、介
在物の粒径Dの二乗に比例し、粒径の大きな介在物ほど
浮上速度が大きいことが判る。したがって、タンディッ
シュ内で介在物を効率よく浮上分離させるためには、タ
ンディッシュ内の浴深を大きく取り、且つ介在物の凝集
・合体を促進させることが必要である。本発明者等は、
コールドモデルでの基礎研究を重ねた結果、浴深を大き
くとるために、タンディッシュを竪型にすることが有効
であることを解明した。竪型タンディッシュでは、強制
撹拌領域と鎮静整流化領域を垂直方向に分割して設ける
ことができる。そのため、強制撹拌領域では介在物の凝
集・合体を、鎮静整流化領域では介在物の浮上分離をそ
れぞれ効率よく促進させることが可能となる。
From equation (1), it can be seen that the inclusion discharge rate η decreases as the bath depth in the tundish increases. Further, from the formula (2), it is understood that the floating speed of inclusions is proportional to the square of the particle diameter D of inclusions, and the floating speed is higher for inclusions having larger particle diameters. Therefore, in order to efficiently float and separate inclusions in the tundish, it is necessary to increase the bath depth in the tundish and promote aggregation and coalescence of inclusions. The present inventors
As a result of repeated basic research using a cold model, it was clarified that it is effective to make the tundish vertical in order to increase the bath depth. In the vertical tundish, the forced stirring area and the sedative rectification area can be provided in a vertically divided manner. Therefore, it is possible to efficiently promote the aggregation and coalescence of inclusions in the forced stirring region and the floating separation of inclusions in the sedation rectification region.

【0009】以下、本発明の作用及び効果を、図面を参
照しながら具体的に説明する。本発明に従った高清浄度
鋼の製造では、図1に示すような構造を持つ竪型タンデ
ィッシュを使用する。この竪型タンディッシュは、断面
積に比較して垂直方向長さが大きなタンディッシュ槽1
0をもち、取鍋1から溶鋼2がロングノズル3を介して
供給される。溶鋼2としては、清浄性が要求される鋼種
が使用され、低炭素Alキルド鋼に代表される普通鋼,
ステンレス鋼,鋼合金鋼等の全ての鋼種が本発明に従っ
て処理される。タンディッシュ内に送り込まれた溶鋼2
は、タンディッシュ槽10の内部を垂直下方に流下する
間に、合金添加装置11から合金添加材12が送り込ま
れる成分調整領域,電磁撹拌装置13及び/又は不活性
ガス導入装置14を使用した強制撹拌領域,誘導コイル
15により加熱される温度調整領域及び静磁場16の印
加により溶鋼2が鎮静化される鎮静整流化領域を順次通
過し、介在物が極限まで分離除去されると共に、成分及
び温度が厳格にコントロールされる。
The operation and effect of the present invention will be specifically described below with reference to the drawings. In the production of the high cleanliness steel according to the present invention, a vertical tundish having a structure as shown in FIG. 1 is used. This vertical tundish is a tundish tank 1 with a large vertical length compared to the cross-sectional area.
The molten steel 2 has a value of 0 and is supplied from the ladle 1 through the long nozzle 3. As the molten steel 2, a steel type requiring cleanliness is used, and ordinary steel represented by low carbon Al killed steel,
All steel grades, such as stainless steel, steel alloy steels, are treated according to the present invention. Molten steel 2 sent into the tundish
Is a compulsory component adjusting region into which the alloy additive material 12 is fed from the alloy additive device 11, a magnetic stirring device 13 and / or an inert gas introduction device 14 while vertically flowing down inside the tundish tank 10. The molten steel 2 is sequentially passed through the stirring region, the temperature adjusting region heated by the induction coil 15, and the calming rectification region where the molten steel 2 is calmed by the application of the static magnetic field 16, and the inclusions are separated and removed to the limit, and the components and temperature Is strictly controlled.

【0010】本発明で使用する竪型タンディッシュで
は、タンディッシュ槽10内の溶鋼体積に対する表面積
の比が小さいため、大気雰囲気であっても大気による溶
鋼2の再酸化や吸窒が低く抑えられる。しかし、再酸化
や吸窒を防止する上では、ロングノズル3の挿入口及び
合金添加口にあたる部分だけが開口した蓋をタンディッ
シュ槽10に装着することが好ましい。タンディッシュ
槽10の内部を大気から遮断する蓋としては、内部を不
活性ガス雰囲気に維持するために不活性ガス導入口を備
えた蓋が好適である。これにより、溶鋼2の汚染がほぼ
皆無になる。成分調整には、塊状の合金源を上方から添
加する方法,粉末状の合金源をインジェクションする方
法,合金元素を内包するワイヤをフィーダで送り込む方
法等の何れも採用可能である。しかし、歩留まりが一定
で、成分の微調整が容易なことから、図示したワイヤフ
ィード法が好ましい。
In the vertical tundish used in the present invention, since the ratio of the surface area to the volume of molten steel in the tundish tank 10 is small, reoxidation and nitrification of molten steel 2 due to the atmosphere can be suppressed to a low level even in the atmosphere. . However, in order to prevent reoxidation and nitrogen absorption, it is preferable to attach a lid to the tundish tank 10 in which only the insertion opening of the long nozzle 3 and the alloy addition opening are opened. As a lid for shutting the inside of the tundish tank 10 from the atmosphere, a lid provided with an inert gas inlet for maintaining the inside of the tundish tank is suitable. As a result, there is almost no contamination of the molten steel 2. For the component adjustment, any of a method of adding a massive alloy source from above, a method of injecting a powdery alloy source, a method of feeding a wire containing alloy elements with a feeder, and the like can be adopted. However, the illustrated wire feed method is preferable because the yield is constant and the fine adjustment of the components is easy.

【0011】成分添加された溶鋼2は、成分調整領域の
下方に位置する強制撹拌領域に至り、直ちに撹拌され、
均一に混合される。溶鋼2の撹拌には、電磁撹拌や不活
性ガス吹込みが有効である。電磁撹拌装置13による浴
内撹拌で、介在物の衝突・合体が頻繁に起こり、凝集肥
大化した介在物の浮上分離が促進される。一方、不活性
ガスを多孔質ノズル等から溶鋼2中に吹き込むと、介在
物は、ガス気泡の表面に吸着され、気泡と共に浮上分離
される。連続鋳造中には、取鍋交換時のようにタンディ
ッシュ槽10内への溶鋼2の供給が停止し、槽内の溶鋼
レベルが変化したり、前鍋内の最終溶鋼注入時或いは次
鍋を使用した溶鋼注入開始時のように溶鋼の汚染度が著
しく高くなる非定常部が存在する。そこで、タンディッ
シュ槽10内の溶鋼レベルや溶鋼2の清浄度に応じて電
磁撹拌装置13の撹拌用磁極の位置や強度を変更した
り、不活性ガスの導入位置や流量を調整することによ
り、適度な撹拌を溶鋼2に与えることができる。そのた
め、定常部或いは非定常部に拘らず、高い清浄度をもっ
た溶鋼2を連鋳鋳型5に送り込むことができる。
The molten steel 2 to which the components have been added reaches a forced stirring region located below the component adjusting region and is immediately stirred,
Mix evenly. For stirring the molten steel 2, electromagnetic stirring or blowing of an inert gas is effective. When the electromagnetic stirrer 13 stirs in the bath, collisions and coalescence of inclusions frequently occur, and floating separation of the aggregated and enlarged inclusions is promoted. On the other hand, when an inert gas is blown into the molten steel 2 through a porous nozzle or the like, the inclusions are adsorbed on the surface of the gas bubbles and floated and separated together with the bubbles. During continuous casting, the supply of molten steel 2 into the tundish tank 10 is stopped as when the ladle is replaced, the molten steel level in the tank changes, and when the final molten steel is poured into the previous ladle or the next ladle is opened. There is an unsteady part where the degree of contamination of the molten steel becomes extremely high as at the start of the injection of the molten steel used. Therefore, by changing the position and strength of the magnetic poles for stirring of the electromagnetic stirring device 13 according to the molten steel level in the tundish tank 10 and the cleanliness of the molten steel 2, or by adjusting the introduction position and flow rate of the inert gas, The molten steel 2 can be provided with appropriate agitation. Therefore, the molten steel 2 having high cleanliness can be fed to the continuous casting mold 5 regardless of the steady portion or the non-steady portion.

【0012】成分調整及び撹拌が施された溶鋼2は、誘
導コイル15に供給された電流によって誘導加熱され、
温度調整される。このとき、タンディッシュ槽10の上
流側にある溶鋼2の温度を連続的に測定しながら、測定
結果を加熱装置にフィードフォワードして出力電流を調
整すると、目標とする鋳込み温度に高精度で調整され
る。タンディッシュ槽10内での最終工程は、鎮静整流
化である。ここでは、静磁場16の印加によって、鎮静
整流化領域にある溶鋼2の局部的な速い流れにローレン
ツ力による制動力を加え、鋳造速度に応じた層流状態に
する。これにより、溶鋼2に残留している介在物の浮上
が促進され、高清浄度の溶鋼2が浸漬ノズル4を経て連
鋳鋳型5に送り出される。また、上層側の強制撹拌領域
で凝集肥大化した介在物は、この鎮静整流化領域でほぼ
全量が浮上分離される。鎮静整流化された溶鋼2は、浸
漬ノズル4を介して連鋳鋳型5に供給される際、浸漬ノ
ズル4内に偏流を生じさせることなく、均一な流量分布
で連鋳鋳型5の内部に供給される。この点でも、鎮静整
流化領域は、連続鋳造に有効である。
The molten steel 2 whose components have been adjusted and stirred is induction-heated by the electric current supplied to the induction coil 15,
The temperature is adjusted. At this time, while continuously measuring the temperature of the molten steel 2 on the upstream side of the tundish tank 10, if the measurement result is fed forward to the heating device and the output current is adjusted, the target casting temperature is adjusted with high accuracy. To be done. The final step in the tundish tank 10 is sedative rectification. Here, by applying the static magnetic field 16, the braking force by the Lorentz force is applied to the locally fast flow of the molten steel 2 in the sedative rectification region, and a laminar flow state according to the casting speed is obtained. As a result, the floating of the inclusions remaining in the molten steel 2 is promoted, and the highly clean molten steel 2 is sent out to the continuous casting mold 5 through the immersion nozzle 4. In addition, almost all of the inclusions that have been flocculated and enlarged in the upper-layer side forced stirring region are floated and separated in this sedation-rectifying region. The sedated and rectified molten steel 2 is supplied to the interior of the continuous casting mold 5 with a uniform flow rate distribution without causing a drift in the immersion nozzle 4 when being supplied to the continuous casting mold 5 through the immersion nozzle 4. To be done. Also in this respect, the sedation-rectifying region is effective for continuous casting.

【0013】電磁撹拌装置13や静磁場16を印加する
手段としては、公知のものが使用される。また、タンデ
ィッシュ槽10が水平断面積の小さい竪型になっている
ことから、磁場を印加する領域が小さく、その分だけエ
ネルギー効果が高くなる。更に、円筒形断面を持つ竪型
タンディッシュ槽10を使用するとき、加えられた磁場
が効率よく溶鋼2に作用する。清浄化された溶鋼2は、
タンディッシュ槽10の底部に装着されている浸漬ノズ
ル4を経て、連鋳鋳型5に注湯される。そして、高清浄
度鋼スラブに鋳造される。竪型タンディッシュ内におい
ては、溶鋼2は、下降流となって取鍋1側から連鋳鋳型
5側に移行する。この溶鋼流動過程のため、取鍋1から
十分な処理を受けずに連鋳鋳型5側に直接流動する溶鋼
が無くなり、また成分調整,脱ガス等の処理を受けた溶
鋼2が大気との接触で再酸化・吸窒することがない。し
かも、溶鋼2は、連鋳鋳型5への注湯に先立って鎮静整
流化領域を通過するため、浮遊している介在物が確実に
浮上分離され、清浄度が極めて高い溶鋼流として連鋳鋳
型5に送り込まれる。
As means for applying the electromagnetic stirrer 13 and the static magnetic field 16, known ones are used. Further, since the tundish tank 10 has a vertical shape with a small horizontal cross-sectional area, the region to which the magnetic field is applied is small, and the energy effect is correspondingly increased. Furthermore, when using the vertical tundish tank 10 having a cylindrical cross section, the applied magnetic field efficiently acts on the molten steel 2. The cleaned molten steel 2 is
It is poured into the continuous casting mold 5 through the immersion nozzle 4 attached to the bottom of the tundish tank 10. Then, it is cast into a high cleanliness steel slab. In the vertical tundish, the molten steel 2 becomes a downward flow and moves from the ladle 1 side to the continuous casting mold 5 side. Due to this molten steel flow process, there is no molten steel that flows directly to the continuous casting mold 5 side without being sufficiently treated from the ladle 1, and the molten steel 2 that has undergone component adjustment, degassing, etc. comes into contact with the atmosphere. It does not reoxidize or absorb nitrogen. Moreover, since the molten steel 2 passes through the sedation and rectification region before pouring the molten steel 2 into the continuous casting mold 5, the floating inclusions are surely floated and separated, and the continuous casting mold has a very high cleanliness as a molten steel flow. Sent to 5.

【0014】タンディッシュ槽1内の浴深Hと内径Dの
比H/Dは、図2に示した介在物の排出率ηとの関係か
ら、H/D≧1とすることが好ましい。介在物の排出率
ηは、H/D<1では60%以上となり、従来の舟型タ
ンディッシュと同程度で、竪型タンディッシュの効果が
発揮されない。このように、本発明によるとき、タンデ
ィッシュ内で必要十分な介在物の浮上分離が行われるた
め、その前後の工程で従来行われていた介在物低減のた
めの負荷が軽減される。たとえば、真空脱ガス処理で介
在物の分離を促進させるための溶鋼還流時間を半分程度
に短縮しても、残る介在物がタンディッシュにおいて分
離除去される。そのため、真空脱ガスに要する処理時間
を必要最小限に留めることができ、たとえば極低炭素鋼
のように長時間の脱炭処理を要する鋼種であっても、転
炉−連続鋳造の前後工程とのマッチングに支障を来すこ
となく、連続鋳造の長所である高生産性が維持される。
また、本発明に従ったタンディッシュ処理では介在物が
徹底的に除去されることから、従来浸漬ノズルへの介在
物の付着が主因で生じがちであったノズル閉塞を防止す
るために鋳型内で行われていた不活性ガス吹込みも省略
できる。そのため、不活性ガスが介在物と同様に凝固シ
ェルに捕捉され、製造された連鋳スラブに鋳造欠陥を発
生させることがなくなる。
The ratio H / D of the bath depth H and the inner diameter D in the tundish tank 1 is preferably H / D ≧ 1 from the relationship with the discharge rate η of inclusions shown in FIG. The discharge rate η of inclusions is 60% or more when H / D <1, which is about the same as that of the conventional boat tundish, and the effect of the vertical tundish is not exhibited. As described above, according to the present invention, the necessary and sufficient amount of inclusions are floated and separated in the tundish, so that the load for reducing inclusions, which has been conventionally performed in the steps before and after the separation, is reduced. For example, even if the molten steel reflux time for promoting the separation of inclusions by vacuum degassing is reduced to about half, the remaining inclusions are separated and removed in the tundish. Therefore, the processing time required for vacuum degassing can be kept to a necessary minimum, and even for steel types that require long-term decarburization processing, such as ultra-low carbon steel, it can be used as a converter before and after continuous casting. The high productivity, which is an advantage of continuous casting, is maintained without affecting the matching of
Further, since the inclusions are thoroughly removed in the tundish processing according to the present invention, in the mold to prevent the nozzle clogging, which was apt to occur mainly due to the adhesion of the inclusions to the conventional immersion nozzle, in the mold. The inert gas injection that was performed can also be omitted. Therefore, the inert gas is not trapped by the solidified shell like the inclusions, and casting defects are not generated in the manufactured continuous casting slab.

【0015】[0015]

【実施例】転炉で溶製した低炭素鋼をRH真空脱ガス装
置で成分・温度調整した後、4分間還流して極低炭素の
Alキルド溶鋼を溶製した。この溶鋼を、図1に示した
竪型タンディッシュを経由させ、連続鋳造した。竪型タ
ンディッシュとしては、浴深3m,内径1m,容量16
トンのタンディッシュ槽10をもつものを使用した。強
制撹拌領域では、電磁撹拌装置13により溶鋼2に対し
て磁界の回転速度が60rpmとなるように磁場を印加
し、回転流を発生させると共に、100Nl/分の流量
でArガスを多孔質ノズルから吹込んだ。温度調整領域
では、電力容量1MWの誘導コイルを使用し、上層域の
溶鋼温度を連続的に検出しながら、溶鋼温度に応じて誘
導コイルの出力を調整しながら、溶鋼2を誘導加熱し
た。また、鎮静整流化領域では、最大磁束密度0.2テ
スラーの静磁場を印加した。タンディッシュから鋳型5
にかけては、不活性ガスの導入を一切行わずに、85ト
ン/鍋の溶鋼を8鍋分連続鋳造した。
[Examples] The composition and temperature of a low carbon steel melted in a converter were adjusted by an RH vacuum degassing apparatus, and then refluxed for 4 minutes to melt an extremely low carbon Al-killed steel melt. This molten steel was continuously cast through the vertical tundish shown in FIG. As a vertical tundish, bath depth 3m, inner diameter 1m, capacity 16
A tonne dish tank having a capacity of 10 tons was used. In the forced stirring area, a magnetic field is applied to the molten steel 2 by the electromagnetic stirring device 13 so that the rotating speed of the magnetic field is 60 rpm to generate a rotating flow, and at the same time, Ar gas is supplied from the porous nozzle at a flow rate of 100 Nl / min. I blew in. In the temperature adjustment region, an induction coil with a power capacity of 1 MW was used, and the molten steel 2 was induction-heated while continuously detecting the molten steel temperature in the upper layer region and adjusting the output of the induction coil according to the molten steel temperature. In the sedation rectification region, a static magnetic field having a maximum magnetic flux density of 0.2 Tesler was applied. Tundish to mold 5
In the meantime, 85 tons of molten steel was continuously cast for 8 pots without introducing any inert gas.

【0016】比較のため、従来の舟型タンディッシュを
使用した代表的製造方法で同様の極低炭素Alキルド鋼
を連続鋳造した。この場合には、転炉で溶製した低炭素
溶鋼をRH真空脱ガス装置で成分・温度調整した後、8
分間還流して極低炭素のAlキルド溶鋼を溶製した。得
られた溶鋼を、舟型タンディッシュを経由して連鋳用鋳
型に注湯し、連続鋳造した。舟型タンディッシュとして
は、浴深が0.9mで容量が約30トンのタンディッシ
ュ槽をもつものを使用した。また、鋳造中に浸漬ノズル
の上部からArガスを10nl/分の流量で吹き込ん
だ。鋳造量は、本発明実施例と同じ85トン/鍋の溶鋼
8鍋分に設定した。RH真空脱ガス装置における還流前
の溶鋼中全酸素量(T.[O]RH)とタンディッシュ出
口での溶鋼中全酸素量(T.[O]TD)との比を、介在
物排出率ηとして算出した。算出結果は、図3(a)に
みられるように、実施例の排出率ηが0.2であるのに
対し、比較例の排出率ηは0.6と高い値を示した。こ
のことから、本発明に従った実施例では、鋳型に送り込
まれる介在物の排出量が1/3と激減していることが確
認された。また、実施例では、RH真空脱ガス装置にお
ける還流時間を比較例の8分から4分に半減させてお
り、真空脱ガスによる介在物低減には不利な条件となっ
ているにも拘らず、介在物の鋳型への排出量が著しく減
少している。これは、本発明に従った竪型タンディッシ
ュ内での強制撹拌領域における介在物の凝集肥大化及び
鎮静整流化領域における介在物の浮上促進が効率よく行
われたことを示すものである。
For comparison, a similar ultra low carbon Al killed steel was continuously cast by a typical manufacturing method using a conventional boat type tundish. In this case, after adjusting the composition and temperature of the low carbon molten steel produced in the converter with the RH vacuum degassing device, 8
It was refluxed for a minute to melt an extremely low carbon Al-killed molten steel. The obtained molten steel was poured into a continuous casting mold via a boat tundish, and continuously cast. The boat-type tundish used had a bath depth of 0.9 m and a tundish tank with a capacity of about 30 tons. In addition, Ar gas was blown into the casting nozzle from above during the casting at a flow rate of 10 nl / min. The casting amount was set to the same 85 tons / pot of 8 molten steel pots as in the example of the present invention. The ratio of the total oxygen content in molten steel (T. [O] RH ) before reflux in the RH vacuum degasser to the total oxygen content in molten steel (T. [O] TD ) at the tundish outlet was calculated as the inclusion emission rate. It was calculated as η. As shown in FIG. 3A, the calculation result shows that the discharge rate η of the example is 0.2, whereas the discharge rate η of the comparative example is as high as 0.6. From this, it was confirmed that in the example according to the present invention, the discharge amount of inclusions fed into the mold was drastically reduced to 1/3. Further, in the example, the reflux time in the RH vacuum degassing apparatus was halved from 8 minutes in the comparative example to 4 minutes, which is a disadvantageous condition for reducing inclusions by vacuum degassing, but The amount of material discharged into the mold is significantly reduced. This shows that the coagulation and enlargement of inclusions in the forced stirring region and the floating promotion of inclusions in the sedative rectification region in the vertical tundish according to the present invention were efficiently promoted.

【0017】連続鋳造した鋳片について、ピンホールの
量を鋳片断面の顕微鏡観察によって測定した。比較例の
ピンホール指数を基準値1とし、これとの対比で本発明
実施例で得られた鋳片のピンホール指数を図3(b)に
示す。図3(b)から明らかなように、本発明に従って
得られた鋳片は、比較例の鋳片に比べてピンホールが8
0%も低減できている。これは、比較例ではノズル閉塞
防止のためにArガスを吹き込んだのに対し、本発明実
施例ではタンディッシュでの介在物低減効果を見越して
一切ガスを導入したかったことに起因するものと推察さ
れる。しかも、本発明に従った実施例では、閉塞防止用
のArをガス吹き込んでいないにも拘らず、8鍋分の鋳
造を終えた段階での浸漬ノズルにAl23 等の介在物
の付着が検出されなかった。また、鋳造中の溶鋼温度
は、比較例の15℃に対して、本発明実施例では比較例
の1/3に当る5℃の範囲に変動幅を抑制することがで
きた。更に、RH真空脱ガス処理後からタンディッシュ
出口までの間における溶鋼中窒素の変化量は、比較例が
8ppmであったのに対し、本発明実施例では1ppm
と低く、吸窒量も1/8に低減することができた。
The amount of pinholes in the continuously cast slab was measured by observing the cross section of the slab with a microscope. The pinhole index of the comparative example is set to a reference value of 1, and the pinhole index of the slabs obtained in the examples of the present invention is shown in FIG. As is clear from FIG. 3B, the slab obtained according to the present invention has 8 pinholes as compared with the slab of the comparative example.
It can be reduced by 0%. This is because Ar gas was blown in to prevent clogging of the nozzle in the comparative example, whereas in the inventive example, it was desired to introduce the gas in anticipation of the effect of reducing inclusions in the tundish. Inferred. Moreover, in the embodiment according to the present invention, although the Ar for preventing clogging is not blown in the gas, adhesion of inclusions such as Al 2 O 3 to the immersion nozzle at the stage when the casting for 8 pots is completed. Was not detected. Further, the temperature range of molten steel during casting could be suppressed within a range of 5 ° C., which is 1/3 of the comparative example, in comparison with 15 ° C. of the comparative example, which is a comparative example. Furthermore, the amount of change in nitrogen in the molten steel from the RH vacuum degassing process to the tundish outlet was 8 ppm in the comparative example, whereas it was 1 ppm in the inventive example.
And the amount of absorbed nitrogen could be reduced to 1/8.

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、竪型タンディッシュ内を流下する溶鋼の下降流に沿
って成分調整,脱ガス,温度調整,鎮静・整流化等の処
理を溶鋼に順次施している。そのため、各処理が効率よ
く行われ、介在物の凝集・肥大化が促進されることか
ら、介在物の浮上分離が促進され、清浄度の高い溶鋼が
得られる。また、従来の舟型タンディッシュに比較して
大気に露出する浴面積が小さく、大気による再酸化や吸
窒が抑制され、成分,温度等が高精度にコントロールさ
れる。このようにして本発明によるとき、清浄度が極め
て高い溶鋼が得られるため、この溶鋼から鋳造された鋳
片はピンホール等の鋳造欠陥がない高品質の製品とな
る。
As described above, in the present invention, the processing such as component adjustment, degassing, temperature adjustment, sedation and rectification is performed along the downward flow of the molten steel flowing down the vertical tundish. Are sequentially applied to. Therefore, each treatment is efficiently performed, and the aggregation and enlargement of the inclusions are promoted, so that the floating separation of the inclusions is promoted and the molten steel with high cleanliness is obtained. In addition, the bath area exposed to the atmosphere is smaller than that of the conventional boat tundish, reoxidation and nitrogen absorption by the atmosphere are suppressed, and the components, temperature, etc. are controlled with high accuracy. In this way, according to the present invention, molten steel having an extremely high degree of cleanliness can be obtained, so that a slab cast from this molten steel becomes a high quality product free from casting defects such as pinholes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明が実施される竪型タンディッシュの概
略構造
FIG. 1 is a schematic structure of a vertical tundish in which the present invention is implemented.

【図2】 タンディッシュの浴深と内径との比が介在物
の排出率に及ぼす影響を表したグラフ
FIG. 2 is a graph showing the effect of the ratio between the bath depth and the inner diameter of the tundish on the discharge rate of inclusions.

【図3】 竪型タンディッシュを使用した本発明実施例
と舟型タンディッシュを使用した比較例において介在物
の排出率(a)及び鋳片のピンホール指数(b)を比較
したグラフ
FIG. 3 is a graph comparing the discharge rate (a) of inclusions and the pinhole index (b) of a slab in an example of the present invention using a vertical tundish and a comparative example using a boat tundish.

【符号の説明】[Explanation of symbols]

1:取鍋 2:溶鋼 3:ロングノズル 4:浸
漬ノズル 5:連鋳鋳型 10:タンディッシュ槽
11:合金添加装置 12:合金添加材 13:電磁撹拌装置 14:不活性ガス導入装置
15:誘導コイル 16:静磁場
1: Ladle 2: Molten steel 3: Long nozzle 4: Immersion nozzle 5: Continuous casting mold 10: Tundish tank 11: Alloy addition device 12: Alloy addition material 13: Electromagnetic stirrer 14: Inert gas introduction device
15: Induction coil 16: Static magnetic field

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 厚夫 広島県呉市昭和町11番1号 日新製鋼株式 会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsuo Yamamoto 11-11 Showa-cho, Kure-shi, Hiroshima Nisshin Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面積に比較して深さの大きなタンディ
ッシュに取鍋から溶鋼を供給し、タンディッシュ内を流
下する溶鋼の流れ方向に沿って成分調整,強制撹拌及び
温度調整した後、鎮静化された整流状態の溶鋼を連続鋳
造用鋳型に供給することを特徴とする高清浄度鋼の製造
方法。
1. A molten steel is supplied from a ladle to a tundish having a greater depth than a cross-sectional area, and after the components are adjusted along the flow direction of the molten steel flowing down in the tundish, forced stirring, and temperature adjustment, A method for producing a high-cleanliness steel, which comprises supplying the quiescent rectified molten steel to a continuous casting mold.
JP5506695A 1995-02-20 1995-02-20 Production of high cleanliness steel using vertical tundish Withdrawn JPH08215806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5506695A JPH08215806A (en) 1995-02-20 1995-02-20 Production of high cleanliness steel using vertical tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5506695A JPH08215806A (en) 1995-02-20 1995-02-20 Production of high cleanliness steel using vertical tundish

Publications (1)

Publication Number Publication Date
JPH08215806A true JPH08215806A (en) 1996-08-27

Family

ID=12988327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5506695A Withdrawn JPH08215806A (en) 1995-02-20 1995-02-20 Production of high cleanliness steel using vertical tundish

Country Status (1)

Country Link
JP (1) JPH08215806A (en)

Similar Documents

Publication Publication Date Title
JP2018066030A (en) Manufacturing method of high cleanliness steel
CA2016499C (en) Method of and apparatus for removing non-metallic inclusions in molten metal
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP2018066031A (en) Manufacturing method of high cleanliness steel
JPH08215806A (en) Production of high cleanliness steel using vertical tundish
CN210996370U (en) Up-drawing continuous casting furnace
JPH08332551A (en) Method for adjusting component of molten steel by using vertical tundish
WO1993005907A1 (en) Method of continuously casting steel slabs by use of electromagnetic field
JP3988538B2 (en) Manufacturing method of continuous cast slab
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
JP4264291B2 (en) Steel continuous casting method
JPH08257707A (en) Method for melting high cleanliness steel
JP7389335B2 (en) Method for producing thin slabs
JP3264238B2 (en) Tundish for casting clean steel
JP2011194420A (en) Method of producing high cleanliness steel
JPH08267198A (en) Production of high cleanliness steel
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
JPH08197206A (en) Tundish for continuously casting high cleanliness steel
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JPH0987729A (en) Ferro-alloy wire for adjusting molten steel component and tundish for small lot suitable to use it
JP2006255759A (en) Method for continuously casting steel
RU2080206C1 (en) Method of production of ingots
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JPH10109146A (en) Method for continuously casting high oxygen steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507