JPH08215538A - Method for removing halogen-containing gas - Google Patents

Method for removing halogen-containing gas

Info

Publication number
JPH08215538A
JPH08215538A JP7029741A JP2974195A JPH08215538A JP H08215538 A JPH08215538 A JP H08215538A JP 7029741 A JP7029741 A JP 7029741A JP 2974195 A JP2974195 A JP 2974195A JP H08215538 A JPH08215538 A JP H08215538A
Authority
JP
Japan
Prior art keywords
halogen
weight
parts
gas
koh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7029741A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichimaru
広志 市丸
Shinsuke Nakagawa
伸介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP7029741A priority Critical patent/JPH08215538A/en
Publication of JPH08215538A publication Critical patent/JPH08215538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To safely remove poisonous gaseous halogen or halogen-contg. gas by fixing the gas as solid halides. CONSTITUTION: Gaseous halogen or halogen-contg. gas (F2 , Cl2 , Br2 , HF, ClF3 , SiF4 , BrF3 , BrF5 , WF6 , TiF4 , BF3 , MoF6 , HCl or SiCl4 ) is fixed by being allowed to react with a Ca(OH)2 -KOH mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、毒性のあるハロゲン系
ガスを、固体アルカリ化合物と効率よく反応させ固体ハ
ロゲン化物として固定化することにより、安全に除去す
るハロゲン系ガスの除去法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for safely removing a halogen-containing gas by efficiently reacting a toxic halogen-containing gas with a solid alkali compound and immobilizing it as a solid halide.

【0002】[0002]

【従来技術】ハロゲン系ガスを化学的に分類すると、単
体としてはF2 、Cl2 、Br2 、インターハロゲンと
してはClF3 、BrF3 、BrF5 がある。また、ハ
ロゲン化金属ガスとしてもSiF4 をはじめ多く存在す
る。ハロゲン系ガスは、ハロゲン原子の持つ高い反応性
を特徴とし、半導体製造用をはじめ化学工業分野におい
て多くの用途がある。それらを使用した場合、その反応
物としても多くのハロゲン系ガスを生成する。これらの
ハロゲン系ガスは高い反応性を有するものが多く、危険
性および毒性の強いものが多い。そのため、これらのハ
ロゲン系ガスをそのまま大気中に放出することはできな
い。
2. Description of the Related Art Chemically classifying halogen-based gases includes F 2 , Cl 2 and Br 2 as simple substances and ClF 3 , BrF 3 and BrF 5 as interhalogens. In addition, there are many metal halide gases such as SiF 4 . Halogen-based gas is characterized by the high reactivity of halogen atoms and has many applications in the chemical industry including semiconductor manufacturing. When they are used, a large amount of halogen-based gas is produced as a reaction product. Many of these halogen-based gases are highly reactive and highly dangerous and highly toxic. Therefore, these halogen-based gases cannot be released into the atmosphere as they are.

【0003】従来は、これらハロゲン系ガスをアルカリ
スクラバーにより湿式方式で除去を行っていた。この方
式の多くは、高い塔の中にガスを導入し上方からアルカ
リ水を噴射させ接触させることによりハロゲン系ガスを
反応除去するものである。アルカリ水は除去可能であれ
ば循環再使用する場合や逐次一部抜き出し排出を行いア
ルカリ水を追加する場合がある。
Conventionally, these halogen-based gases have been removed by an alkali scrubber by a wet method. In most of these systems, a halogen-based gas is reacted and removed by introducing a gas into a tall tower and injecting alkaline water from above to bring them into contact with each other. If the alkaline water can be removed, it may be reused in a circulating manner, or it may be sequentially withdrawn and discharged to add the alkaline water.

【0004】[0004]

【発明が解決しようとする問題点】上記従来技術では、
ガス除去装置が大型化し、スケール除去の必要等の多く
の問題があった。一方、乾式除去方法としては、ソーダ
石灰や活性アルミナを充填した固体層にハロゲン系ガス
を通して除去する方法があるが、除去量が少ないといっ
た問題がある。最近では活性炭等の吸着薬剤による小型
のハロゲン系ガスの除去装置が出てきているが、それら
においては吸着除去薬剤の廃棄処理が困難等の問題があ
る。そのため、ガス除去装置が小型で除去量が多く使用
済みの除去剤の廃棄の容易なハロゲン系ガス除去法の開
発が待たれていた。
[Problems to be Solved by the Invention] In the above prior art,
There have been many problems such as the need for scale removal as the gas removal device has become larger. On the other hand, as a dry removal method, there is a method in which a halogen-based gas is passed through a solid layer filled with soda lime or activated alumina, but the removal amount is small. Recently, small-sized halogen-based gas removing devices using an adsorbing agent such as activated carbon have come out, but these have a problem that disposal processing of the adsorbing and removing agent is difficult. Therefore, the development of a halogen-based gas removal method in which the gas removal device is small and the amount of removal is large and the used removing agent can be easily discarded has been awaited.

【0005】[0005]

【問題点を解決するための具体的手段】本発明は反応性
の高いハロゲン系ガスを固体アルカリ化合物と反応さ
せ、効率よく除去することを特徴とするハロゲン系ガス
の除去法を提供するものである。本発明者らは、ソーダ
石灰(水酸化カルシウムおよび水酸化ナトリウムの混合
物)と比べ、水酸化カルシウムに水酸化カリウムを加え
ることにより、ハロゲン系ガスを効率よく反応させ除去
量を増大させることを見い出し本発明に到着したもので
ある。
The present invention provides a method for removing a halogen-containing gas, which is characterized in that a highly reactive halogen-containing gas is reacted with a solid alkali compound to efficiently remove the halogen-containing gas. is there. The present inventors have found that by adding potassium hydroxide to calcium hydroxide as compared with soda lime (a mixture of calcium hydroxide and sodium hydroxide), halogen-based gas is efficiently reacted to increase the removal amount. The present invention has arrived.

【0006】すなわちハロゲン系ガスを固体アルカリ化
合物で除去する場合、ハロゲン系ガスの種類に応じて固
体アルカリ化合物の組成を、詳細には水酸化カルシウム
(95重量部)をベースとして水酸化カリウムを0.5
〜15重量部の範囲で混合し使用する。最適には、0.
5〜5重量部範囲が好ましい。これによりハロゲン系ガ
スを乾式で効率よく反応させ除去量を増大させることが
できるため、ガス除去装置が小型で除去量の多いハロゲ
ン系ガス除去法が実現できる。また、反応メカニズムが
吸着ではなく、固体アルカリ化合物との不可逆反応であ
るため使用済みの除去剤の廃棄が安全であるといった特
徴をもつ。
That is, when the halogen-based gas is removed with a solid alkali compound, the composition of the solid alkali compound depends on the kind of the halogen-based gas, specifically, calcium hydroxide (95 parts by weight) is used as a base and potassium hydroxide is 0%. .5
The mixture is used in the range of 15 to 15 parts by weight. Optimally, 0.
A range of 5 to 5 parts by weight is preferable. As a result, the halogen-based gas can be efficiently reacted in a dry manner to increase the removal amount, so that a halogen-based gas removal method with a small gas removal device and a large removal amount can be realized. In addition, since the reaction mechanism is not adsorption but an irreversible reaction with a solid alkali compound, it is safe to dispose of the used removing agent.

【0007】[0007]

【実施例】以下実施例を挙げ、本発明を詳述するが係る
実施例に限定されるものではない。
The present invention will be described in detail below with reference to examples, but the invention is not limited to the examples.

【0008】実施例1〜14 ハロゲン系ガスを窒素ガスで10%の濃度に希釈したガ
スを5〜15メッシュの粒状の固体アルカリ化合物1K
gを充填した内径2.5cm、長さ1mの固定床式縦型
反応器上部より、100cc/分で室温、大気圧下で供
給し除去した。除去後のガスをNH4 OH=1%の希釈
水に通し、フッ素、塩素、臭素といったハロゲンを捕捉
し、イオン電極法により定量分析した。いずれのハロゲ
ンにおいてもガス中換算でその濃度が1ppm以上で除
去の終点とし除去能力を求めた。各実施例の条件及び結
果を表1、表2に示した。
Examples 1 to 14 Halogen-based gas diluted with nitrogen gas to a concentration of 10% is a solid alkali compound 1K in the form of particles of 5 to 15 mesh
From the upper part of the fixed bed type vertical reactor having an inner diameter of 2.5 cm and a length of 1 m filled with g, 100 g / min was supplied at room temperature under atmospheric pressure to remove the same. The removed gas was passed through diluted water of NH 4 OH = 1% to capture halogens such as fluorine, chlorine and bromine, and quantitatively analyzed by an ion electrode method. For any halogen, the concentration was 1 ppm or more in terms of gas, and the removal capacity was determined as the end point of removal. The conditions and results of each example are shown in Tables 1 and 2.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】実施例1−1〜1−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させF2 ガスを処理した
場合、1−1のソーダライム組成と比較して1−2のよ
うにKOHを加えることにより処理能力は増大する。さ
らに1−3のようにKOHの割合を5重量部と高くする
ことにより処理能力は更に増大する。
As in Examples 1-1 to 1-3, when the solid alkaline composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed within a range of 5 parts by weight, and F 2 gas is treated. The throughput is increased by adding KOH as in 1-2 as compared to 1-1 soda lime composition. Further, by increasing the proportion of KOH to 5 parts by weight like 1-3, the processing capacity is further increased.

【0012】実施例2−1〜2−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させCl2 ガスを処理し
た場合、2−1のソーダライム組成と比較して2−2の
ようにKOHを加えることにより処理能力は増大する。
さらに2−3のようにKOHの割合を5重量部と高くす
ることにより処理能力は更に増大する。
When the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed in the range of 5 parts by weight as in Examples 2-1 to 2-3, and Cl 2 gas is treated. The throughput is increased by adding KOH as in 2-2 compared to the soda lime composition of 2-1.
Further, by increasing the proportion of KOH to 5 parts by weight as in 2-3, the processing capacity is further increased.

【0013】実施例3−1〜3−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させBr2 ガスを処理し
た場合、3−1のソーダライム組成と比較して3−2の
ようにKOHを加えることにより処理能力は増大する。
さらに3−3のようにKOHの割合を5重量部と高くす
ることにより処理能力は更に増大する。
As in Examples 3-1 to 3-3, when the solid alkaline composition is Ca (OH) 2 (95 parts by weight) and KOH is changed within the range of 5 parts by weight, and the Br 2 gas is treated. The throughput is increased by adding KOH as in 3-2 compared to the soda lime composition of 3-1.
Further, by increasing the proportion of KOH to 5 parts by weight like 3-3, the processing capacity is further increased.

【0014】実施例4−1〜4−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させHFガスを処理した
場合、4−1のソーダライム組成と比較して4−2のよ
うにKOHを加えることにより処理能力は増大する。さ
らに4−3のようにKOHの割合を5重量部と高くする
ことにより処理能力は更に増大する。
As in Examples 4-1 to 4-3, when HF gas is treated by changing the solid alkali composition to Ca (OH) 2 (95 parts by weight) in the range of 5 parts by weight of KOH, The throughput is increased by adding KOH as in 4-2 compared to the soda lime composition of 4-1. Further, by increasing the proportion of KOH to 5 parts by weight like 4-3, the processing capacity is further increased.

【0015】実施例5−1〜5−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させClF3 ガスを処理
した場合、5−1のソーダライム組成と比較して5−2
のようにKOHを加えることにより処理能力は増大す
る。さらに5−3のようにKOHの割合を5重量部と高
くすることにより処理能力は更に増大する。
As in Examples 5-1 to 5-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed within a range of 5 parts by weight, and ClF 3 gas is treated. 5-2 compared to the soda lime composition of 5-1
The throughput is increased by adding KOH. Further, by increasing the ratio of KOH to 5 parts by weight like 5-3, the processing capacity is further increased.

【0016】実施例6−1〜6−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させSiF4 ガスを処理
した場合、6−1のソーダライム組成と比較して6−2
のようにKOHを加えることにより処理能力は増大す
る。さらに6−3のようにKOHの割合を5重量部と高
くすることにより処理能力は更に増大する。
As in Examples 6-1 to 6-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed in the range of 5 parts by weight, and SiF 4 gas is treated. , 6-2 compared to the soda lime composition of 6-1
The throughput is increased by adding KOH. Further, by increasing the KOH ratio to 5 parts by weight like 6-3, the processing capacity is further increased.

【0017】実施例7−1〜7−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させBrF3 ガスを処理
した場合、7−1のソーダライム組成と比較して7−2
のようにKOHを加えることにより処理能力は増大す
る。さらに7−3のようにKOHの割合を5重量部と高
くすることにより処理能力は更に増大する。
As in Examples 7-1 to 7-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) and KOH is changed within the range of 5 parts by weight, and BrF 3 gas is treated. , 7-2 compared to the soda lime composition of 7-1
The throughput is increased by adding KOH. Further, by increasing the proportion of KOH to 5 parts by weight like 7-3, the processing capacity is further increased.

【0018】実施例8−1〜8−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させBrF5 ガスを処理
した場合、8−1のソーダライム組成と比較して8−2
のようにKOHを加えることにより処理能力は増大す
る。さらに8−3のようにKOHの割合を5重量部と高
くすることにより処理能力は更に増大する。
As in Examples 8-1 to 8-3, when the solid alkaline composition is Ca (OH) 2 (95 parts by weight) and KOH is changed within the range of 5 parts by weight, and BrF 5 gas is treated. , 8-1 compared to 8-1 soda lime composition
The throughput is increased by adding KOH. Further, by increasing the proportion of KOH to 5 parts by weight like 8-3, the processing capacity is further increased.

【0019】実施例9−1〜9−3のように、固体アル
カリ組成をCa(OH)2(95重量部)をベースとして
KOHを5重量部の範囲で変化させWF6 ガスを処理し
た場合、9−1のソーダライム組成と比較して9−2の
ようにKOHを加えることにより処理能力は増大する。
さらに9−3のようにKOHの割合を5重量部と高くす
ることにより処理能力は更に増大する。
As in Examples 9-1 to 9-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed in the range of 5 parts by weight, and WF 6 gas is treated. , 9-1 compared to the soda lime composition of 9-2 increases the throughput by adding KOH as in 9-2.
Further, by increasing the proportion of KOH to 5 parts by weight like 9-3, the processing capacity is further increased.

【0020】実施例10−1〜10−3のように、固体
アルカリ組成をCa(OH)2(95重量部)をベースと
してKOHを5重量部の範囲で変化させTiF4 ガスを
処理した場合、10−1のソーダライム組成と比較して
10−2のようにKOHを加えることにより処理能力は
増大する。さらに10−3のようにKOHの割合を5重
量部と高くすることにより処理能力は更に増大する。
As in Examples 10-1 to 10-3, when the solid alkaline composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed within a range of 5 parts by weight, TiF 4 gas is treated. The throughput is increased by adding KOH as in 10-2 compared to the soda lime composition of 10-1. Further, by increasing the KOH ratio to 5 parts by weight such as 10-3, the processing capacity is further increased.

【0021】実施例11−1〜11−3のように、固体
アルカリ組成をCa(OH)2(95重量部)をベースと
してKOHを5重量部の範囲で変化させBF3 ガスを処
理した場合、11−1のソーダライム組成と比較して1
1−2のようにKOHを加えることにより処理能力は増
大する。さらに11−3のようにKOHの割合を5重量
部と高くすることにより処理能力は更に増大する。
As in Examples 11-1 to 11-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed within a range of 5 parts by weight, and BF 3 gas is treated. , 1 in comparison with the soda lime composition of 11-1
The throughput is increased by adding KOH as in 1-2. Further, by increasing the proportion of KOH to 5 parts by weight like 11-3, the processing capacity is further increased.

【0022】実施例12−1〜12−3のように、固体
アルカリ組成をCa(OH)2(95重量部)をベースと
してKOHを5重量部の範囲で変化させMoF6 ガスを
処理した場合、12−1のソーダライム組成と比較して
12−2のようにKOHを加えることにより処理能力は
増大する。さらに12−3のようにKOHの割合を5重
量部と高くすることにより処理能力は更に増大する。
As in Examples 12-1 to 12-3, when MoF 6 gas was treated by changing the solid alkali composition based on Ca (OH) 2 (95 parts by weight) in the range of 5 parts by weight of KOH. , 12-1 compared to the soda lime composition, 12-2 increases the throughput by adding KOH as in 12-2. Further, by increasing the proportion of KOH to 5 parts by weight like 12-3, the processing capacity is further increased.

【0023】実施例13−1〜13−3のように、固体
アルカリ組成をCa(OH)2(95重量部)をベースと
してKOHを5重量部の範囲で変化させHClガスを処
理した場合、13−1のソーダライム組成と比較して1
3−2のようにKOHを加えることにより処理能力は増
大する。さらに13−3のようにKOHの割合を5重量
部と高くすることにより処理能力は更に増大する。
As in Examples 13-1 to 13-3, when the solid alkaline composition was treated with HCl gas while changing KOH within the range of 5 parts by weight based on Ca (OH) 2 (95 parts by weight), 1 compared to 13-1 soda lime composition
The throughput is increased by adding KOH as in 3-2. Further, by increasing the proportion of KOH to 5 parts by weight like 13-3, the processing capacity is further increased.

【0024】実施例14−1〜14−3のように、固体
アルカリ組成をCa(OH)2(95重量部)をベースと
してKOHを5重量部の範囲で変化させSiCl4 ガス
を処理した場合、14−1のソーダライム組成と比較し
て14−2のようにKOHを加えることにより処理能力
は増大する。さらに14−3のようにKOHの割合を5
重量部と高くすることにより処理能力は更に増大する。
As in Examples 14-1 to 14-3, when the solid alkali composition is Ca (OH) 2 (95 parts by weight) as a base and KOH is changed in the range of 5 parts by weight, and SiCl 4 gas is treated. , 14-1 compared with the soda lime composition of 14-1 increases the throughput by adding KOH as in 14-2. Furthermore, the ratio of KOH is 5 like 14-3.
By increasing the weight to be higher, the processing capacity is further increased.

【0025】[0025]

【発明の効果】以上詳述したように、本発明によれば反
応性の高いハロゲン系ガスを適切な組成の固体アルカリ
化合物と反応させ、効率よく除去することをことができ
る。
As described in detail above, according to the present invention, a highly reactive halogen-based gas can be reacted with a solid alkali compound having an appropriate composition to be efficiently removed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲンを含むガス(以下ハロゲン系ガ
ス)を水酸化カルシウムおよび水酸化カリウムの混合物
と反応させ、固体ハロゲン化物として固定化させること
を特徴とするハロゲン系ガスの除去法。
1. A method for removing a halogen-containing gas, which comprises reacting a gas containing halogen (hereinafter referred to as a halogen-based gas) with a mixture of calcium hydroxide and potassium hydroxide to immobilize it as a solid halide.
【請求項2】 ハロゲン系ガスがF2 、Cl2 、B
2 、HF、ClF3 、SiF4 、BrF3 、Br
5 、WF6 、TiF4 、BF3 、MoF6 、HCl、
SiCl4 より選択される1種または2種以上であるこ
とを特徴とする特許請求範囲第1項記載のハロゲン系ガ
スの除去法。
2. The halogen-based gas is F 2 , Cl 2 , or B.
r 2 , HF, ClF 3 , SiF 4 , BrF 3 , Br
F 5 , WF 6 , TiF 4 , BF 3 , MoF 6 , HCl,
The method for removing a halogen-based gas according to claim 1, characterized in that it is one or more selected from SiCl 4 .
JP7029741A 1995-02-17 1995-02-17 Method for removing halogen-containing gas Pending JPH08215538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7029741A JPH08215538A (en) 1995-02-17 1995-02-17 Method for removing halogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7029741A JPH08215538A (en) 1995-02-17 1995-02-17 Method for removing halogen-containing gas

Publications (1)

Publication Number Publication Date
JPH08215538A true JPH08215538A (en) 1996-08-27

Family

ID=12284536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7029741A Pending JPH08215538A (en) 1995-02-17 1995-02-17 Method for removing halogen-containing gas

Country Status (1)

Country Link
JP (1) JPH08215538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771579A1 (en) * 1995-10-30 1997-05-07 Central Glass Company, Limited Method for decomposing halide-containing gas
EP1087906A1 (en) * 1998-04-09 2001-04-04 UHP Materials, Inc. Preparation and purification of diborane
US6309618B1 (en) 1999-03-12 2001-10-30 Showa Denko K. K. Method for treating exhaust gas containing fluorine-containing interhalogen compound, and treating agent and treating apparatus
WO2020129726A1 (en) 2018-12-21 2020-06-25 昭和電工株式会社 Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771579A1 (en) * 1995-10-30 1997-05-07 Central Glass Company, Limited Method for decomposing halide-containing gas
EP1087906A1 (en) * 1998-04-09 2001-04-04 UHP Materials, Inc. Preparation and purification of diborane
EP1087906A4 (en) * 1998-04-09 2005-11-09 Uhp Materials Inc Preparation and purification of diborane
KR100731836B1 (en) * 1998-04-09 2007-06-25 허니웰 인터내셔널 인코포레이티드 Preparation and purification of diborane
US6309618B1 (en) 1999-03-12 2001-10-30 Showa Denko K. K. Method for treating exhaust gas containing fluorine-containing interhalogen compound, and treating agent and treating apparatus
WO2020129726A1 (en) 2018-12-21 2020-06-25 昭和電工株式会社 Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
KR20210087083A (en) 2018-12-21 2021-07-09 쇼와 덴코 가부시키가이샤 Halogen Fluoride Removal Method and Quantitative Analysis Method and Quantitative Analysis Apparatus for Gas Components Contained in Halogen Fluoride Mixed Gas
CN113164862A (en) * 2018-12-21 2021-07-23 昭和电工株式会社 Method for removing halogen fluoride, method for quantitatively analyzing gas-containing component in halogen fluoride mixed gas, and quantitative analyzer
US11779877B2 (en) 2018-12-21 2023-10-10 Resonac Corporation Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer

Similar Documents

Publication Publication Date Title
US6649082B2 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
US7976808B2 (en) Method for removing halogen series gas and agent for removing halogen series gas
US5322674A (en) Method of treating waste gases containing halogen compounds
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
EP1842579A1 (en) Method for removing halogen based gas and agent for removing halogen based gas
JPH08215539A (en) Treatment of halogen-containing gas
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JP3840877B2 (en) Halogen-based gas detoxifying agent, detoxifying method and use thereof
KR100481584B1 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
US5968467A (en) Dioxin formation preventative in incinerators and method for preventing the formation of dioxins
JPH08215538A (en) Method for removing halogen-containing gas
JP4564242B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride
KR0173468B1 (en) Process for treating waste gases containing clf3
EP0739236B1 (en) Metallo-oxomeric scrubber compositions, and method of gas purification utilizing same
JPH02273511A (en) Method for detoxifying halides of nitrogen or carbon
JP4357018B2 (en) Detoxification method using halogenated gas treatment agent
JPH0716582B2 (en) Method for removing gaseous acidic halogen compounds
JPH1170319A (en) Treatment of exhaust gas containing inorganic halogenated gas and treatment device
JP2007137739A (en) METHOD FOR RECOVERING CaF2
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JPS60175522A (en) Composition for treating waste gas during semiconductor manufacturing process
JPH08192024A (en) Processing agent for waste gas and treatment of the gas
JP3650588B2 (en) Perfluoro compound recycling method