JPH08213042A - Fuel cell reaction product water storage device - Google Patents

Fuel cell reaction product water storage device

Info

Publication number
JPH08213042A
JPH08213042A JP7021687A JP2168795A JPH08213042A JP H08213042 A JPH08213042 A JP H08213042A JP 7021687 A JP7021687 A JP 7021687A JP 2168795 A JP2168795 A JP 2168795A JP H08213042 A JPH08213042 A JP H08213042A
Authority
JP
Japan
Prior art keywords
oxygen
fuel cell
water
product water
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7021687A
Other languages
Japanese (ja)
Other versions
JP3771600B2 (en
Inventor
Katsuo Hashizaki
克雄 橋崎
Ryuji Horioka
竜治 堀岡
Toshihiro Tani
俊宏 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP02168795A priority Critical patent/JP3771600B2/en
Publication of JPH08213042A publication Critical patent/JPH08213042A/en
Application granted granted Critical
Publication of JP3771600B2 publication Critical patent/JP3771600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To store product water without enlarging an oxygen steam separator by storing the product water by cell reaction in order in oxygen and/or hydrogen cylinders when they become empty by temporarily storing the product water until a single one of an oxygen cylinder and/or a hydrogen cylinder is used up. CONSTITUTION: Reaction product water generated in a fuel cell main body 10 by cell reaction is sent to an oxygen cylinder 29' as a fuel storage vessel of an empty fuel supply source from an oxygen steam separator 14 by using a discharge pump 30. Therefore, a quantity of the reaction product water stored in the oxygen steam separator 14 can be reduced, and the volume of the oxygen steam separator 14 can be reduced. Therefore, the whole cell system to be housed in a sealed vessel 8 becomes small, and since a reaction product water storing vessel like the oxygen steam separator 14 does not become full, there is no need to stop and reoperate a cell system to drain water, and continuous operation becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
等の燃料電池において、供給された燃料中の水素と、酸
化剤中の酸素の電池反応により生成される、反応生成水
を貯留するための燃料電池反応生成水貯留装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, in a fuel cell such as a polymer electrolyte fuel cell, stores reaction product water produced by a cell reaction between hydrogen in a supplied fuel and oxygen in an oxidant. The present invention relates to a fuel cell reaction product water storage device.

【0002】[0002]

【従来の技術】燃料電池のうち、固体高分子型燃料電池
は、図2に示すように、電極反応で生成する水素イオン
と電子のうち、水素イオンのみを通過させる特性を持つ
電解質01に、例えば、スルホン酸基を持つフッ素樹脂
系イオン交換膜等の高分子イオン交換膜を用い、両電解
質01の両側に、例えば、白金系触媒等を用い、電極上
で酸化、あるいは還元反応を起させる触媒電極02,0
3を配置し、さらに、触媒電極02,03を担持させた
多孔質のカーボン電極04,05を備えた電極接合体0
6構造を設けている。
2. Description of the Related Art Among fuel cells, a polymer electrolyte fuel cell, as shown in FIG. 2, has an electrolyte 01 which has a characteristic of passing only hydrogen ions out of hydrogen ions and electrons produced by an electrode reaction. For example, a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group is used, and a platinum catalyst or the like is used on both sides of both electrolytes 01 to cause an oxidation or reduction reaction on the electrodes. Catalyst electrode 02,0
3, an electrode assembly 0 provided with porous carbon electrodes 04 and 05 carrying catalyst electrodes 02 and 03.
6 structures are provided.

【0003】このような電極接合体06において、アノ
ード極側のカーボン電極04に供給された加湿燃料中の
水素は、アノード極側の触媒電極02上で水素イオン化
され、その水素イオンは、電解質01中を水の介在のも
と、H+・xH2 Oとして、カソード極側へ水と共に移
動する。移動した水素イオンは、カソード極側の触媒電
極03上で、カソード極側の、カーボン電極05に供給
された酸化剤中の酸素、及びアノード極側の触媒電極0
2でイオン化され、電解質01を通過できず、分離され
て、カーボン電極04,05間に設けられた外部外路0
7を流通してきた電子と反応して水H2 Oを生成する。
その生成水H2 Oは、カソード極側の触媒電極03から
カーボン電極05へ移動して、カーボン電極05より、
カーボン電極05に供給され、水素イオンとの反応を起
さなかった未反応酸素を含む残存酸化剤に搬送されて、
固体高分子型燃料電池外へ排出されることになる。
In such an electrode assembly 06, hydrogen in the humidified fuel supplied to the carbon electrode 04 on the anode side is hydrogen-ionized on the catalyst electrode 02 on the anode side, and the hydrogen ion is converted into the electrolyte 01. Under the presence of water, H + · xH 2 O is transferred to the cathode side with water. The transferred hydrogen ions are on the cathode electrode side catalyst electrode 03, oxygen in the oxidizing agent supplied to the carbon electrode 05 on the cathode electrode side, and the anode electrode side catalyst electrode 0.
The external outer path 0 provided between the carbon electrodes 04 and 05 is ionized at 2, cannot pass through the electrolyte 01, and is separated.
It reacts with the electrons flowing through 7 to produce water H 2 O.
The produced water H 2 O moves from the catalyst electrode 03 on the cathode side to the carbon electrode 05, and from the carbon electrode 05,
It is supplied to the carbon electrode 05 and conveyed to the residual oxidant containing unreacted oxygen that has not reacted with hydrogen ions,
It will be discharged outside the polymer electrolyte fuel cell.

【0004】この時、外部回路07を流通する電子流れ
を取り出すことにより、直流の電気エネルギーとして利
用できる。なお、電解質01に用いる高分子イオン交換
膜に、前述のように、水素イオンを透過させるために
は、この高分子イオン交換膜を、常に、充分なる保水状
態に保持しておく必要があり、前述のようにカーボン電
極4に供給される燃料、又はカーボン電極5に供給され
る酸化剤に、常温〜100℃程度の、固体高分子型燃料
電池の運転温度近辺相当の飽和水蒸気を含ませて、すな
わち、加湿した燃料、および酸化剤を供給することによ
って、この高分子イオン交換膜の保水状態を保つように
している。
At this time, by extracting the electron flow flowing through the external circuit 07, it can be used as DC electric energy. Incidentally, in the polymer ion exchange membrane used for the electrolyte 01, as described above, in order to permeate hydrogen ions, it is necessary to always keep the polymer ion exchange membrane in a sufficient water retention state, As described above, the fuel supplied to the carbon electrode 4 or the oxidant supplied to the carbon electrode 5 is allowed to contain saturated steam at room temperature to about 100 ° C., which is equivalent to the operating temperature of the polymer electrolyte fuel cell. That is, the water-retentive state of the polymer ion-exchange membrane is maintained by supplying the humidified fuel and the oxidant.

【0005】このような、固体高分子型燃料電池を使用
して発電を行う場合、特に、固体高分子型燃料電池を使
用して水中等で発電を行う場合には、図3に示すよう
に、密閉容器8内に、図2に示す固体高分子型燃料電池
を積層して、大容量化した、固体高分子型燃料電池本体
(以下、単に燃料電池本体という)10を収容するとと
もに、燃料電池本体10を作動させるために必要とする
機器を収容して、組込み、電池システムを構成して行
う。
When power generation is performed using such a polymer electrolyte fuel cell, particularly when power generation is performed in water using a polymer electrolyte fuel cell, as shown in FIG. The polymer electrolyte fuel cell shown in FIG. 2 is stacked in a closed container 8 to accommodate a solid polymer electrolyte fuel cell body (hereinafter, simply referred to as a fuel cell body) 10 having a large capacity and a fuel. A device required to operate the battery body 10 is housed, incorporated, and a battery system is configured.

【0006】次に、燃料電池本体10とともに、この電
池システムを構成する、燃料電池本体10の作動に必要
な機器について説明する。燃料電池本体10の燃料とな
る水素は、密閉容器8の外に配置された複数の水素ボン
ベ9より供給され、配管を通じて、密閉容器8内の電池
システムに導入され、電池システムの締切弁A22、ま
たは締切弁B23を通り、水素側圧力制御弁19で調圧
後、水素加湿装置11に導入される。ここで、水素は所
定の温度、加湿状態に調整され、その後、加湿水素は、
燃料電池本体10に導入される。
Next, the equipment necessary for the operation of the fuel cell body 10 which constitutes this cell system together with the fuel cell body 10 will be described. Hydrogen serving as a fuel for the fuel cell main body 10 is supplied from a plurality of hydrogen cylinders 9 arranged outside the airtight container 8, is introduced into the cell system in the airtight container 8 through a pipe, and a shutoff valve A22 of the cell system, Alternatively, after passing through the shutoff valve B23, the pressure is adjusted by the hydrogen side pressure control valve 19 and then introduced into the hydrogen humidifier 11. Here, hydrogen is adjusted to a predetermined temperature and a humidified state, and then the humidified hydrogen is
It is introduced into the fuel cell body 10.

【0007】また、燃料電池本体10の酸化剤となる酸
素も、水素と同様、密閉容器8の外に配置された複数の
酸素ボンベ29より供給され、配管を通じて、密閉容器
8内の電池システムに導入され、締切弁C24、または
締切弁D25を通り、酸素側圧力制御弁20で調圧後、
酸素加湿装置12に導入される。ここで同様に、酸素も
所定の温度、加湿状態に調整され、その後、加湿酸素
は、燃料電池本体10に導入される。
Oxygen, which serves as an oxidant for the fuel cell main body 10, is supplied from a plurality of oxygen cylinders 29 arranged outside the closed container 8 like hydrogen, and is supplied to the battery system in the closed container 8 through a pipe. After being introduced and passing through the shutoff valve C24 or the shutoff valve D25, the pressure is adjusted by the oxygen side pressure control valve 20,
It is introduced into the oxygen humidifier 12. Here, similarly, oxygen is also adjusted to a predetermined temperature and a humidified state, and then the humidified oxygen is introduced into the fuel cell main body 10.

【0008】燃料電池10に導入された加湿状態の水素
と酸素は、前述したように、直流の電気エネルギーと水
を生成し、このうち電気エネルギーは、後述する水素循
環ポンプ、またはコンプレッサ15、および酸素循環ポ
ンプ、またはコンプレッサ16を駆動する電源として、
インバータ制御装置21から、これらの駆動モータに供
給されるとともに、電池システムとしての電気出力、い
わゆる送電端出力として外部へ取り出される。
As described above, the humidified hydrogen and oxygen introduced into the fuel cell 10 generate direct current electrical energy and water, of which electrical energy is the hydrogen circulation pump or the compressor 15 described later, and As a power source for driving the oxygen circulation pump or the compressor 16,
It is supplied to these drive motors from the inverter control device 21, and is taken out to the outside as an electric output as a battery system, that is, a so-called power transmission end output.

【0009】また、燃料電池本体10内で発電に利用さ
れず残った残存水素、および残存酸素は、電池反応に伴
って生成された前述の水分、並びに水素加湿装置11、
および酸素加湿装置12で、水素、および酸素の加湿に
それぞれ使用された加湿水分とともに、燃料電池本体1
0外に排出される。このうちの燃料電池本体10外に排
出された残存水素、および残存酸素は、それぞれ水素気
水分離器13、および酸素気水分離器14にそれぞれ導
入されて、気水分離され、残存水素は、駆動モータで駆
動される、水素循環ポンプ、またはコンプレッサ15に
よって、水素逆止弁17を経由して、水素ボンベ9から
燃料電池本体10へ通ずる水素供給ラインへ、また、残
存水素は、同様に、インバータ制御装置21から供給さ
れる電力によって駆動される、酸素循環ポンプ、または
コンプレッサ16、酸素逆止弁18を経由して、酸素ボ
ンベ29から燃料本体10へ通ずる酸素供給ラインに、
それぞれ戻され、循環利用される。
Residual hydrogen and oxygen remaining in the fuel cell main body 10 that is not used for power generation are the above-mentioned water content generated by the cell reaction, and the hydrogen humidifier 11.
In addition to the humidified water used for humidifying hydrogen and oxygen in the oxygen humidifier 12, the fuel cell body 1
It is discharged outside 0. The residual hydrogen and the residual oxygen discharged out of the fuel cell main body 10 are introduced into the hydrogen / water separator 13 and the oxygen / water separator 14, respectively, and separated into steam and water. By the hydrogen circulation pump or the compressor 15 driven by the drive motor, via the hydrogen check valve 17, to the hydrogen supply line communicating from the hydrogen cylinder 9 to the fuel cell main body 10, and the residual hydrogen is similarly To the oxygen supply line that is communicated from the oxygen cylinder 29 to the fuel main body 10 via the oxygen circulation pump or the compressor 16 and the oxygen check valve 18, which is driven by the electric power supplied from the inverter control device 21,
Each is returned and recycled.

【0010】また、燃料電池本体10外へ排出された、
電池反応により燃料電池内で生成された反応生成水、お
よび水素、酸素の加湿にそれぞれ使用された水は、水素
気水分離器13、および酸素気水分離器14で水素およ
び分離した後、一部は締切り弁26,27をそれぞれ通
り、水素加湿装置11、および酸素加湿装置12に供給
できるようにされると共に、密閉容器内に設けられた酸
素気水分離器14に集積されるようになっている。
Further, the fuel cell is discharged to the outside of the fuel cell body 10,
The reaction product water generated in the fuel cell by the cell reaction and the water used for humidifying hydrogen and oxygen are separated into hydrogen and hydrogen in the hydrogen / water separator 13 and the oxygen / water separator 14, respectively, and then The parts can be supplied to the hydrogen humidifier 11 and the oxygen humidifier 12 through the shutoff valves 26 and 27, respectively, and can be integrated in the oxygen-water separator 14 provided in the closed container. ing.

【0011】しかしながら、上述のように構成された固
体高分子型燃料電池本体を作動させて、発電を行うよう
にした電池システムの場合、次のような問題が生じるこ
とがあった。 (1)電池反応により生成された反応生成水を、酸素気
水分離器14に貯留するようにしているため、酸素気水
分離器14の容量を大きくする必要があり、電池システ
ム全体の体積が大きくなる。 (2)また、このような電池システムを、図3に示すよ
うに、水中で利用しようとした場合、大きな密閉容器8
が必要となる。さらに、発電を継続して行う場合、反応
生成水を貯留する酸素気水分離器14が、満杯になる都
度、電池システムを停止させ、密閉容器8を水中より取
り出し、又は酸素気水分離器14を密閉容器8から取り
出し、さらに大気中へ取り出し、大気中で水抜きをする
必要があり、このため、その度毎に電池システムの停
止、再稼動操作を行わなければならない。 (3)さらに、酸素気水分離器14の水中からの取り出
しの繁雑を避けるため、酸素気水分離器14に貯留した
反応生成水を、払出しポンプ等により、密閉容器8外に
排出しようとした場合、払出しポンプ、払出しポンプ用
駆動装置、および駆動源を必要とするとともに、密閉容
器8外の水圧に打勝って反応生成水を払出す必要があ
り、深海等高圧のかかる水中で使用する場合には、ポン
プ等のコストが嵩みシステム全体が高価となる。さら
に、払出しポンプの駆動源として、インバータ制御装置
21から電力を使用するようにした場合、発電効率が劣
化する。
However, in the case of a battery system in which the polymer electrolyte fuel cell main body constructed as described above is operated to generate power, the following problems may occur. (1) Since the reaction product water generated by the battery reaction is stored in the oxygen / water separator 14, it is necessary to increase the capacity of the oxygen / water separator 14, and the volume of the entire battery system is increased. growing. (2) Further, as shown in FIG. 3, when it is attempted to use such a battery system in water, a large closed container 8
Is required. Further, when the power generation is continuously performed, the oxygen-air-water separator 14 that stores the reaction product water is stopped every time the oxygen-water-separator 14 is full, and the closed container 8 is taken out of the water, or the oxygen-air-water separator 14 is used. Needs to be taken out from the closed container 8, further taken out into the atmosphere, and drained in the atmosphere. For this reason, the battery system must be stopped and restarted each time. (3) Further, in order to avoid the complexity of taking out the oxygen-air-water separator 14 from the water, the reaction product water stored in the oxygen-water separator 14 was tried to be discharged to the outside of the closed container 8 by a delivery pump or the like. In this case, when a discharge pump, a drive device for the discharge pump, and a drive source are required, and it is necessary to overcome the water pressure outside the closed container 8 to discharge the reaction product water, when using it in high-pressure water such as deep sea. However, the cost of the pump and the like increases, and the entire system becomes expensive. Furthermore, when electric power is used from the inverter control device 21 as the drive source of the delivery pump, the power generation efficiency deteriorates.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上述した、
従来の燃料電池本体、および燃料電池本体を作動させる
ための機器からなる電池システムの不具合を解消して、
電池システム全体の体積を小さくでき、水中で発電を行
う場合においても、電池システムからの反応生成水排出
のための電池システムの停止、又は再稼動操作が不要と
なり、連続発電ができ、また、電池システムを低廉にで
き、電池システムの発電効率を低下させることがない、
燃料電池反応生成水貯留装置を提供することを課題とす
る。
The present invention has been described above.
By eliminating the problems of the conventional fuel cell system and the battery system that consists of the equipment for operating the fuel cell system,
The volume of the entire battery system can be reduced, and even when power is generated in water, there is no need to stop or restart the battery system to discharge the reaction product water from the battery system, and continuous power generation is possible. The system can be made inexpensive, and the power generation efficiency of the battery system will not be reduced.
An object of the present invention is to provide a fuel cell reaction product water storage device.

【0013】[0013]

【課題を解決するための手段】このため、本発明の燃料
電池反応生成水貯留装置は、次の手段とした。燃料電池
の電池反応により、燃料電池本体内で生成される反応生
成水を、燃料電池に供給する燃料を貯留するための燃料
貯留タンク、若しくはボンベ等からなる燃料貯留容器、
および燃料電池に供給する酸化剤を貯留するための酸化
剤貯留タンク、若しくはボンベ等からなる酸化剤貯留容
器の何れか、又は両方に導き、貯留するようにした。
Therefore, the fuel cell reaction product water storage device of the present invention has the following means. A reaction storage water generated in the fuel cell main body by a cell reaction of the fuel cell, a fuel storage tank for storing fuel to be supplied to the fuel cell, or a fuel storage container including a cylinder,
The oxidant storage tank for storing the oxidant to be supplied to the fuel cell, the oxidant storage container made of a cylinder, or the like, or both, is introduced and stored.

【0014】なお、反応生成水を貯留する燃料貯留容
器、および/又は酸化剤貯留容器は、燃料電池に燃料、
および/又は酸化剤を供給しおえて、空になった容器を
使用するようにすることが好ましい。
The fuel storage container for storing the reaction product water and / or the oxidant storage container is a fuel for the fuel cell.
Preference is given to using empty containers by supplying and / or oxidizer.

【0015】さらに、燃料貯留容器および/又は酸化剤
貯留容器への反応生成水の貯留にあたっては、水素を分
離した水素気水分離器の生成水を、酸素気水分離器に一
旦集積し、酸素気水分離器に設置した払出し配管、およ
びポンプにより移送するようにすることが好ましい。
Further, when the reaction product water is stored in the fuel storage container and / or the oxidant storage container, the product water of the hydrogen gas / water separator from which hydrogen has been separated is temporarily accumulated in the oxygen gas / water separator to generate oxygen. It is preferable to transfer by a delivery pipe installed in a steam separator and a pump.

【0016】[0016]

【作用】本発明の燃料電池反応生成水貯留装置は、上述
の手段により、 (1)電池発電反応により、燃料電池本体内で生成され
た反応生成水を、燃料供給源の燃料貯留タンク、ボン
ベ、および/又は酸化剤供給源の酸化剤貯留タンク、ボ
ンベに導き、貯留できるようにすることで、従来、反応
生成水の貯留に利用されている酸素気水分離器に貯留さ
れる反応生成水の量を少なくすることができ、酸素気水
分離器が小さくてすみ、電池システム全体を小さくでき
る。 (2)さらに、酸素気水分離器のような反応生成水を貯
留する容器が満杯になり、発電不能になることがなくな
るため、水抜きのためのシステムの停止、再稼動操作を
行う必要がなくなる。すなわち、連続運転が可能とな
る。 (3)電池システムを密閉容器に収納し、水中での発電
に利用しようとした場合、貯留容器に貯留した反応生成
水を払出し、密閉容器外の水中に排出しようとすると、
密閉容器外の水圧に打勝って、反応生成水を払出す必要
があり、払出しに大きい駆動力を必要とするが、空の貯
留容器に貯留するようにすることにより、小さい駆動力
で済む。これにより、燃料電池の送電端出力を大きくで
きる。 (4)さらに、反応生成水を酸素気水分離器に、一旦集
積した後、貯留容器に貯留するようにしたので、電池シ
ステムがコンパクトに纏まると共に、貯留に必要な機
器、配管を少くすることができ、空になった燃料供給源
の貯留容器、および/又は酸化剤供給源の貯留容器に反
応生成水を送水する、ポンプの低圧化に伴うコストの低
下と相挨って、電池システム全体を安くすることができ
る。
The fuel cell reaction product water storage device of the present invention has the above-mentioned means. (1) The reaction product water generated in the fuel cell main body by the cell power generation reaction is supplied to the fuel storage tank and the cylinder of the fuel supply source. , And / or the reaction product water stored in the oxygen-water separator conventionally used for storing the reaction product water by guiding it to the oxidant storage tank or cylinder of the oxidant supply source and enabling the storage. Can be reduced, the oxygen-water separator can be made small, and the entire battery system can be made small. (2) Further, the container for storing the reaction product water, such as the oxygen-water separator, will not become full and the power generation will not be disabled. Therefore, it is necessary to stop and restart the system for draining water. Disappear. That is, continuous operation becomes possible. (3) When the battery system is housed in a closed container and is used for power generation in water, if the reaction product water stored in the storage container is discharged and is discharged into the water outside the closed container,
The reaction product water needs to be discharged to overcome the water pressure outside the closed container, and a large driving force is required for the discharging, but a small driving force is sufficient by storing the reaction product water in an empty storage container. As a result, the output at the power transmission end of the fuel cell can be increased. (4) Furthermore, since the reaction product water is once accumulated in the oxygen-air-water separator and then stored in the storage container, the battery system can be compactly packed and the equipment and piping required for storage can be reduced. The reaction product water is sent to the storage container of the fuel supply source and / or the storage container of the oxidant supply source that have become empty, and there is a decrease in cost due to the lowering of the pressure of the pump. Can be cheaper.

【0017】[0017]

【実施例】以下、本発明の燃料電池反応生成水貯留装置
を、実施例にもとづき説明する。図1は、本発明の燃料
電池反応生成水貯留装置の一実施例を示す、電池システ
ムのブロック図である。なお、同図において、図3に示
す符番と同一符番のものは、図3に示すものと同一のも
のであり、詳細説明は省略する。
EXAMPLES Hereinafter, the fuel cell reaction product water storage device of the present invention will be described based on examples. FIG. 1 is a block diagram of a battery system showing an embodiment of a fuel cell reaction product water storage device of the present invention. In the figure, the same reference numerals as those shown in FIG. 3 are the same as those shown in FIG. 3, and detailed description thereof will be omitted.

【0018】図1に示すように、本実施例では、水中で
発電ができるように、密閉容器8内に電池システムは、
収納されている。また、その密閉容器8内に払出しポン
プ30を設け、酸素気水分離器14に集積された反応生
成水を吸引し、密閉容器8外の酸化剤供給源、ここで
は、酸素ボンベ29に反応生成水を送水できるようにし
ている。
As shown in FIG. 1, in this embodiment, the battery system is provided in the closed container 8 so that power can be generated in water.
It is stored. Further, a delivery pump 30 is provided in the closed container 8 to suck the reaction product water accumulated in the oxygen-water separator 14 and generate a reaction in an oxidant supply source outside the closed container 8, here, an oxygen cylinder 29. The water can be sent.

【0019】燃料電池本体10における、電池反応の燃
料となる水素は、密閉容器の外に配置された、燃料貯留
容器としての複数の水素ボンベ9より供給され、配管を
通じて密閉容器8内に導入され、締切弁A22、または
締切弁B23を通り、水素側圧力制御弁19で調圧後、
水素加湿装置11に導入される。ここで、水素は所定の
温度、加湿状態に調整され、燃料電池本体10に導入さ
れる。
Hydrogen serving as a fuel for cell reaction in the fuel cell main body 10 is supplied from a plurality of hydrogen cylinders 9 as fuel storage containers arranged outside the closed container and introduced into the closed container 8 through a pipe. , After passing through the shutoff valve A22 or the shutoff valve B23, and after adjusting the pressure by the hydrogen side pressure control valve 19,
It is introduced into the hydrogen humidifier 11. Here, hydrogen is adjusted to a predetermined temperature and a humidified state and introduced into the fuel cell body 10.

【0020】また、電池反応の酸化剤となる酸素も、水
素と同様、密閉容器8の外に配置された、酸化剤貯留容
器としての複数の酸素ボンベ29より供給されるが、本
実施例ではまず、締切弁C24側の酸素ボンベ29′よ
り、酸素供給を行いはじめ、その酸素は配管を通じて密
閉容器8内に導入され、締切弁C24を通り、圧力制御
弁酸素側20で調圧後、酸素加湿装置12に導入され
る。ここで、酸素は所定の温度、加湿状態に調整され、
その後、加湿酸素は、燃料電池本体10に導入され、前
述した燃料電池本体10に導入された加湿水素と電池反
応を起して発電を行う。このようにして発電を行い、、
締切弁C24側の酸素ボンベ29′内の酸素がなくなれ
ば、次に、締切弁D25側の酸素ボンベ29″から酸素
を供給するようにする。
Oxygen, which serves as an oxidant for the battery reaction, is supplied from a plurality of oxygen cylinders 29 serving as oxidant storage containers, which are arranged outside the closed container 8 like hydrogen, in the present embodiment. First, oxygen supply is started from the oxygen cylinder 29 'on the shutoff valve C24 side, and the oxygen is introduced into the closed container 8 through a pipe, passes through the shutoff valve C24, is pressure-controlled on the oxygen side 20 of the pressure control valve, and is then oxygen. It is introduced into the humidifier 12. Here, oxygen is adjusted to a predetermined temperature and humidity,
After that, the humidified oxygen is introduced into the fuel cell main body 10, and the humidified hydrogen introduced into the fuel cell main body 10 causes a cell reaction to generate power. In this way, power is generated,
When the oxygen cylinder 29 'on the shutoff valve C24 side runs out of oxygen, next, oxygen is supplied from the oxygen cylinder 29''on the shutoff valve D25 side.

【0021】一方、燃料電池本体10に導入された加湿
水素、又は加湿酸素のうち、燃料電池本体10内での電
池反応に利用されず、残った残存水素、または残存酸素
は、電池反応に伴って生成された水分、及び加湿水分と
ともに燃料電池本体10外に排出される。燃料電池本体
10外に排出された残存水素、または残存酸素は、それ
ぞれ水素気水分離器13、酸素気水分離器14により気
水分離され、水素循環ポンプ、またはコンプレッサ1
5、水素逆止弁17、および酸素循環ポンプ、またはコ
ンプレッサ16、酸素逆止弁18を介して、燃料電池本
体10へ通ずる水素供給ライン、および酸素供給ライン
に戻され、循環利用される。
On the other hand, of the humidified hydrogen or humidified oxygen introduced into the fuel cell main body 10, the residual hydrogen or residual oxygen that is not used for the cell reaction in the fuel cell main body 10 is accompanied by the cell reaction. The generated water and the humidified water are discharged to the outside of the fuel cell body 10. The residual hydrogen or residual oxygen discharged to the outside of the fuel cell body 10 is separated into water and water by a hydrogen / water separator 13 and an oxygen / water separator 14, respectively, and a hydrogen circulation pump or a compressor 1
5, the hydrogen check valve 17 and the oxygen circulation pump, or the compressor 16 and the oxygen check valve 18 are returned to the hydrogen supply line and the oxygen supply line which communicate with the fuel cell main body 10, and are recycled.

【0022】また、燃料電池本体10外に排出され、水
素気水分離器13で水素と分離した、電池反応により燃
料電池本体10内で生成された反応生成水、および加湿
水分は、密閉容器8内に設けられた酸素気水分離器14
に、一旦集積される。そして、電池反応の継続によっ
て、締切弁C24側の酸素ボンベ29′側の酸化剤がな
くなり、酸素ボンベ29′が空になった時点で、酸素気
水分離器14に一旦集積された、水素を気水分離した反
応生成水、加湿水分と、酸素気水分離器14で酸素を分
離させた反応生成水、加湿水分とともに、インバータ制
御装置21から供給される電力で作動する、モータ33
で駆動される払出しポンプ30を利用して、締切弁H3
1を通じて、空になった締切弁C24側の酸素ボンベ2
9′に送水しはじめる。
Further, the reaction product water and the humidified water, which are discharged to the outside of the fuel cell main body 10 and separated from hydrogen by the hydrogen / water separator 13 in the fuel cell main body 10 due to the cell reaction, are contained in the closed container 8. Oxygen-water separator 14 provided inside
, Once accumulated. Then, as the cell reaction continues, the oxidizing agent on the oxygen cylinder 29 'side on the shutoff valve C24 side disappears, and when the oxygen cylinder 29' becomes empty, the hydrogen once accumulated in the oxygen-water separator 14 is removed. The motor 33, which is operated by the electric power supplied from the inverter control device 21, together with the reaction product water and humidified water that have been separated into steam and water, and the reaction product water and the humidified water that has been separated into oxygen in the oxygen steam separator 14.
Using the dispensing pump 30 driven by
Oxygen cylinder 2 on the shutoff valve C24 side that became empty through 1
Start sending water to 9 '.

【0023】これにより、酸素気水分離器14は、反応
生成水および加湿水で溢れることなく、電池システム
は、連続運転可能な状態となる。なお、この時、締切弁
C24側の酸素ボンベ29′内には、微量の酸素が残っ
ているので、反応生成水の充填とともに、酸素ボンベ2
9′内の圧力が上昇してくる。これを防止するために、
締切弁C24は閉じ、バイパスラインに設けられた締切
弁I28を開けることで酸素ボンベ29′内の圧力の上
昇を防ぐことができる。
As a result, the oxygen-air-water separator 14 does not overflow with the reaction product water and the humidifying water, and the battery system is brought into a continuously operable state. At this time, since a small amount of oxygen remains in the oxygen cylinder 29 'on the shutoff valve C24 side, the oxygen cylinder 2 is filled with the reaction product water.
The pressure in 9'is rising. To prevent this,
By closing the shutoff valve C24 and opening the shutoff valve I28 provided in the bypass line, it is possible to prevent the pressure in the oxygen cylinder 29 'from rising.

【0024】このように、本実施例の燃料電池反応生成
水貯留装置は、電池反応により、燃料電池本体10内で
生成された反応生成水を、酸素気水分離器14から、払
出しポンプ30を利用して、空になった燃料供給源の燃
料貯留容器としての酸素ボンベ29′に、送水できるよ
うにすることで、酸素気水分離器14に貯留される反応
生成水の量を少なくすることができ、酸素気水分離器1
4の容積が小さくてすむ。
As described above, in the fuel cell reaction product water storage device of this embodiment, the reaction product water produced in the fuel cell main body 10 by the cell reaction is discharged from the oxygen-water separator 14 to the discharge pump 30. By utilizing this, the amount of reaction product water stored in the oxygen-water separator 14 can be reduced by allowing water to be supplied to the oxygen cylinder 29 ′ serving as a fuel storage container of an empty fuel supply source. Oxygen / water separator 1
The volume of 4 is small.

【0025】そのため、密閉容器8に収容する電池シス
テム全体が小さくなる。また、酸素気水分離器14のよ
うな反応生成水を貯留する容器が、満杯になることがな
くなるため、水抜きのための電池システムの停止、再稼
動操作を行う必要がなくなり、連続運転が可能となる。
さらに、高深度の水中で電池システムを利用する場合、
酸素気水分離器14に貯留した反応生成水を払出す払出
しポンプに、高圧ポンプが不要となり、低廉な低圧ポン
プですみ、反応生成水を酸素気水分離器14に、一旦集
積して、酸素ボンベ29′に反応生成水を送水するよう
にしたことによる、ポンプ、配管を少くできることと相
挨って、電池システム全体を安くすることができる。ま
た、反応生成水の送水に伴う動力を小さくでき、燃料電
池の効率を向上できる。
Therefore, the entire battery system housed in the closed container 8 becomes small. Further, the container for storing the reaction product water, such as the oxygen-water separator 14, does not become full, so that it is not necessary to stop and restart the battery system for draining water, and continuous operation is possible. It will be possible.
In addition, when using the battery system in deep water,
The delivery pump that dispenses the reaction product water stored in the oxygen-water separator 14 does not need a high-pressure pump, and an inexpensive low-pressure pump can be used. The reaction product water is temporarily accumulated in the oxygen-water separator 14 to generate oxygen. By supplying the reaction product water to the cylinder 29 ', the number of pumps and pipes can be reduced, and the battery system as a whole can be reduced in cost. In addition, the power required for sending the reaction product water can be reduced, and the efficiency of the fuel cell can be improved.

【0026】なお、本発明は上記実施例に限定されるも
のではなく、反応生成水の貯留容器としては、当然燃料
供給源側の水素ボンベ9を用いることは勿論のこと、酸
素ボンベ29、および水素ボンベ9を併用することもで
き、さらには、複数本のボンベ9,29を、反応生成水
の貯留容器とすることもできるものである。さらに、ボ
ンベに限らずタンク等も使用できるものである。
The present invention is not limited to the above-described embodiment, and as the storage container for the reaction product water, the hydrogen cylinder 9 on the fuel supply source side is of course used, and the oxygen cylinder 29, and The hydrogen cylinder 9 can be used in combination, and the plurality of cylinders 9 and 29 can be used as a storage container for the reaction product water. Further, not only the cylinder but also a tank or the like can be used.

【0027】[0027]

【発明の効果】以上述べたように、本発明の燃料電池生
成水貯留装置によれば、特許請求の範囲に示す簡素な構
成により、 (1)従来反応生成水の貯留に使用されていた酸素気水
分離器が小さくてすみ、電池システム全体を小さくでき
る。 (2)反応生成水の水抜きのための、電池システムの停
止、再稼動操作を行う必要がなくなり、電池システムの
連続運転ができる。 (3)電池システム全体が安くでき、また、電池システ
ムに要する動力を低減でき燃料電池の効率を向上でき
る。
As described above, according to the fuel cell produced water storage device of the present invention, the oxygen used in the conventional reaction product water storage is (1) the simple structure shown in the claims. The air-water separator can be small and the entire battery system can be made small. (2) It is not necessary to stop and restart the battery system to drain the reaction product water, and the battery system can be continuously operated. (3) The entire battery system can be made cheaper, the power required for the battery system can be reduced, and the efficiency of the fuel cell can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池反応生成水貯留装置の一実施
例を示す、電池システムのブロック図。
FIG. 1 is a block diagram of a battery system showing an embodiment of a fuel cell reaction product water storage device of the present invention.

【図2】図1の実施例を適用する固体高分子型燃料電池
の発電原理を示す図。
FIG. 2 is a diagram showing a power generation principle of a polymer electrolyte fuel cell to which the embodiment of FIG. 1 is applied.

【図3】従来の固体高分子型燃料電池システムの一例を
示すブロック図である。
FIG. 3 is a block diagram showing an example of a conventional polymer electrolyte fuel cell system.

【符号の説明】[Explanation of symbols]

01 電解質(イオン交換膜) 02 触媒電極(アノード極) 03 触媒電極(カソード極) 04 多孔質カーボン電極(アノード
極) 05 多孔質カーボン電極(カソード
極) 06 電極接合体 07 外部回路 08 密閉容器 09 貯留容器としての水素ボンベ 10 燃料電池本体 11 水素加湿装置 12 酸素加湿装置 13 水素気水分離器 14 酸素気水分離器 15 水素循環ポンプ、またはコンプ
レッサ 16 酸素循環ポンプ、またはコンプ
レッサ 17 水素逆止弁 18 酸素逆止弁 19 水素側圧力制御弁 20 酸素側圧力制御弁 21 インバータ制御装置 22 締切り弁A 23 締切り弁B 24 締切り弁C 25 締切り弁D 26 締切り弁E 27 締切り弁F 28 締切り弁G 29,29′,29″ 酸化剤貯留容器としての酸素ボ
ンベ 30 送水ポンプ 31 締切り弁H 32 締切り弁I 33 送水ポンプ用モータ
01 electrolyte (ion exchange membrane) 02 catalyst electrode (anode electrode) 03 catalyst electrode (cathode electrode) 04 porous carbon electrode (anode electrode) 05 porous carbon electrode (cathode electrode) 06 electrode assembly 07 external circuit 08 sealed container 09 Hydrogen cylinder as storage container 10 Fuel cell main body 11 Hydrogen humidifier 12 Oxygen humidifier 13 Hydrogen gas / water separator 14 Oxygen gas / water separator 15 Hydrogen circulation pump or compressor 16 Oxygen circulation pump or compressor 17 Hydrogen check valve 18 Oxygen check valve 19 Hydrogen side pressure control valve 20 Oxygen side pressure control valve 21 Inverter control device 22 Closing valve A 23 Closing valve B 24 Closing valve C 25 Closing valve D 26 Closing valve E 27 Closing valve F 28 Closing valve G 29, 29 ', 29 "Oxygen cylinder as oxidizer storage container 30 Water supply Pump 31 motor shut-off valve H 32 block valve I 33 water pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料中の水素と酸化剤の酸素の電気化学
反応により、発電を行う燃料電池の電池反応で生成され
る反応生成水を、前記燃料電池に供給する前記燃料を貯
留する燃料貯留容器、および前記燃料電池に供給する前
記酸化剤を貯留する酸化剤貯留容器の、少くとも一方に
導き、貯留するようにしたことを特徴とする燃料電池反
応生成水貯留装置
1. A fuel storage for storing the fuel, which supplies reaction-produced water generated by a cell reaction of a fuel cell that generates electricity by an electrochemical reaction between hydrogen in the fuel and oxygen of the oxidant to the fuel cell. A fuel cell reaction product water storage device, characterized in that the container and the oxidant storage container for storing the oxidant to be supplied to the fuel cell are led to and stored in at least one of them.
JP02168795A 1995-02-09 1995-02-09 Solid polymer fuel cell reaction product water storage device Expired - Lifetime JP3771600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02168795A JP3771600B2 (en) 1995-02-09 1995-02-09 Solid polymer fuel cell reaction product water storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02168795A JP3771600B2 (en) 1995-02-09 1995-02-09 Solid polymer fuel cell reaction product water storage device

Publications (2)

Publication Number Publication Date
JPH08213042A true JPH08213042A (en) 1996-08-20
JP3771600B2 JP3771600B2 (en) 2006-04-26

Family

ID=12061988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02168795A Expired - Lifetime JP3771600B2 (en) 1995-02-09 1995-02-09 Solid polymer fuel cell reaction product water storage device

Country Status (1)

Country Link
JP (1) JP3771600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040846A (en) * 2004-07-30 2006-02-09 Equos Research Co Ltd Fuel cell system and its operating method
JP2007280705A (en) * 2006-04-05 2007-10-25 Japan Steel Works Ltd:The Closed fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040846A (en) * 2004-07-30 2006-02-09 Equos Research Co Ltd Fuel cell system and its operating method
JP2007280705A (en) * 2006-04-05 2007-10-25 Japan Steel Works Ltd:The Closed fuel cell system

Also Published As

Publication number Publication date
JP3771600B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
CN110911712B (en) Fuel cell system and method for purging and draining water during shutdown and startup of fuel cell system
JP3297125B2 (en) Shutdown storage method of solid polymer electrolyte fuel cell
JP3739826B2 (en) Polymer electrolyte fuel cell system
JP2000058092A (en) Solid polymer type fuel cell system
JP2008235203A (en) Fuel cell system and method of discharging water produced in fuel cell system
US7413822B2 (en) Device and method to release the overpressure of a fuel cell coolant tank
JP2001229951A (en) Fuel-cell system for moving object
JP3705182B2 (en) Water circulation device
US20040121218A1 (en) Fuel cell water management
JP2008181768A (en) Fuel cell system
JP3771600B2 (en) Solid polymer fuel cell reaction product water storage device
JP4694203B2 (en) Power supply having a fuel cell that does not release substances to the outside and a method for controlling such a power supply
JPH11154528A (en) Fuel cell
JP2005203355A (en) Fuel cell system and method of generating electric power in fuel cell system
JP2005032601A (en) Fuel cell system and power generation method of fuel cell
JP6776794B2 (en) Fuel cell system
JPH11283646A (en) Solid polymer type fuel cell system
JP3367774B2 (en) Solid polymer fuel cell power supply system
CN100414752C (en) Fuel cell capable of improving hydrogen utilization rate
JPH09147896A (en) Solid high polymer fuel cell system
KR20180133267A (en) Fuel cell system for a ship
JP6510339B2 (en) Fuel cell system
JP2006156283A (en) Fuel cell system
JP5653732B2 (en) Fuel supply method and fuel cell vehicle
JPH11111318A (en) Solid polymer fuel cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term