JPH08210689A - System for estimating air-conditioning thermal load - Google Patents

System for estimating air-conditioning thermal load

Info

Publication number
JPH08210689A
JPH08210689A JP7019309A JP1930995A JPH08210689A JP H08210689 A JPH08210689 A JP H08210689A JP 7019309 A JP7019309 A JP 7019309A JP 1930995 A JP1930995 A JP 1930995A JP H08210689 A JPH08210689 A JP H08210689A
Authority
JP
Japan
Prior art keywords
air
next day
heat load
conditioning heat
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7019309A
Other languages
Japanese (ja)
Inventor
Noriko Suzuki
紀子 鈴木
Nobuo Yomo
信夫 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP7019309A priority Critical patent/JPH08210689A/en
Publication of JPH08210689A publication Critical patent/JPH08210689A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To estimate an air-conditioning load highly accurately with a small amount of data which is easily available. CONSTITUTION: The estimate value of the air-conditioning thermal load accumulated value of next day is outputted by a method wherein informations, detected sequentially by an indoor atmosphere detecting means 28, an outdoor atmosphere detecting means 30, a time information detecting means 32 and a next day estimated weather detecting means 36, are inputted into an air-conditioning thermal load estimating means 50, taking a neural network prestudied by a studying means 52 thereinto, while a network operation is effected by the neural network. On the other hand, the amount of sunshine of next day is estimated by a photographing means 68, a picture memory means 70, a picture processing means 72, a knowledge processing means 74 and an amount of sunshine estimating means 76 to correct the estimated value of the air-conditioning thermal load accumulated value of next day, estimated by the air-conditioning thermal load estimating means 50, in accordance with the estimated amount of sunshine. A highly accurate estimation can be effected by few data in such a manner while the change of estimated value of air-conditioning thermal load accumulated value of next day due to the sudden change of weather can be coped by observing the condition of sky.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調熱負荷予測システ
ムに係り、特に翌日の空調負荷を予測することにより蓄
熱式空調設備の有効活用を支援するための空調熱負荷予
測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning heat load prediction system, and more particularly to an air conditioning heat load prediction system for predicting an air conditioning load of the next day to support effective use of a heat storage type air conditioner.

【0002】[0002]

【従来の技術】蓄熱式空調設備は、安価な夜間電力を利
用して冷凍機器等の熱源機器で夜の間に蓄熱槽に蓄熱
し、その蓄熱された熱(冷水又は温水)を翌日の空調機
の空調熱源として利用することにより空調のランニング
コストを削減する目的で設置される。
2. Description of the Related Art A heat storage type air conditioner uses inexpensive nighttime electric power to store heat in a heat storage tank at night with a heat source device such as a refrigerating machine, and stores the stored heat (cold water or hot water) in the next day. It is installed for the purpose of reducing the running cost of air conditioning by using it as a heat source for air conditioning.

【0003】この蓄熱式空調設備では、被空調室の翌日
の空調熱負荷積算値を予測して、翌日消費される分だけ
の熱量を蓄熱槽に蓄熱させるタイプと、翌日の空調熱負
荷積算値を予測しないで、蓄熱槽に蓄熱できる限り蓄熱
させるタイプの2通りがある。
[0003] In this heat storage type air conditioning equipment, a type in which the air conditioning heat load integrated value of the air-conditioned room on the next day is predicted and the amount of heat consumed by the next day is stored in the heat storage tank, and the air conditioning heat load integrated value of the next day is stored. There are two types of types that store heat as much as possible in the heat storage tank without predicting.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、翌日の
空調熱負荷積算値を予測しないで、できる限り蓄熱槽に
に蓄熱させるタイプのものは、中間期のように空調負荷
が少ないときは蓄熱した分を使い切れないため蓄熱槽を
低温(冷水)又は高温(温水)に保つ時間が長くなるの
で、熱損失が大きくなるという欠点がある。
However, the type of storing heat in the heat storage tank as much as possible without predicting the integrated value of the air-conditioning heat load of the next day is the amount of heat stored when the air-conditioning load is low, such as in the intermediate period. Since the heat storage tank cannot be used up, the time for keeping the heat storage tank at low temperature (cold water) or high temperature (warm water) becomes long, so that there is a disadvantage that heat loss becomes large.

【0005】一方、翌日の空調熱負荷積算値を予測する
タイプのものは、翌日の空調熱負荷積算値を予測しない
タイプのものより経済的ではあるが、従来の空調熱負荷
予測システムは予測精度が低かったり、多数の観測デー
タが必要であったり、観測の難しいデータが必要であっ
たりするという欠点がある。また、急激な天候の変化に
対応できないという欠点があり、まだ実用面で十分では
なかった。
On the other hand, the type that predicts the integrated value of the air-conditioning heat load on the next day is more economical than the type that does not predict the integrated value of the air-conditioning heat load on the next day, but the conventional air-conditioning heat load prediction system has a prediction accuracy. However, there are drawbacks such as low data rate, large amount of observation data, and difficult observation data. In addition, it has the drawback of not being able to cope with sudden changes in weather, which is not yet practically sufficient.

【0006】本発明は、このような問題に鑑みてなされ
たもので、蓄熱式空調システムの適正な運転を支援する
ために、入手が容易で少ないデータで精度の高い空調熱
負荷予測を行うことのでき、更には急激な天候の変化に
も対応できる空調熱負荷予測システムを提供することを
目的とする。
The present invention has been made in view of such a problem, and in order to support the proper operation of the heat storage type air conditioning system, it is possible to easily predict the air conditioning heat load with a small amount of data and to obtain it accurately. It is an object of the present invention to provide an air conditioning heat load prediction system capable of achieving the above and capable of coping with a sudden change in weather.

【0007】[0007]

【課題を解決する為の手段】本発明は、前記目的を達成
するために、翌日の被空調室の空調熱負荷積算値を予測
して予め蓄熱を行う蓄熱式空調設備に於いて、前記被空
調室内の室内環境情報を検出する室内環境検出手段と、
前記被空調室外の外気環境情報を検出する外気環境検出
手段と、時刻及び曜日等の時間情報を検出する時間情報
検出手段と、翌日の予想天気情報を収集又は検出する翌
日予想天気検出手段と、前記被空調室の空調熱負荷積算
値の実績値を検出する熱負荷検出手段と、前記各検出手
段で検出されたデータを蓄積する検出データ記憶手段
と、前記検出データ記憶手段に記憶された各情報を入力
すると、翌日の被空調室の空調熱負荷積算値の予測値を
出力するようにニューラルネットワークを予め学習する
と共に、前記各検出手段からの最新情報を加味してニュ
ーラルネットワークを更新する学習手段と、前記学習手
段から取り出したニューラルネットワークに前記室内環
境検出手段、前記外気環境検出手段、前記時間情報検出
手段及び翌日予想天気検出手段からの各情報を逐次入力
してネットワーク演算を行うことにより被空調室の翌日
の空調熱負荷積算値の予測値を出力する空調熱負荷予測
手段と、から成ることを特徴とする。
In order to achieve the above object, the present invention relates to a heat storage type air conditioner for predicting an air conditioning heat load integrated value of a room to be air-conditioned the next day and preliminarily storing heat. Indoor environment detection means for detecting indoor environment information in the air-conditioned room,
Outside air environment detecting means for detecting outside air environment information outside the air-conditioned room, time information detecting means for detecting time information such as time and day of the week, and next day expected weather detecting means for collecting or detecting expected weather information for the next day, Thermal load detection means for detecting the actual value of the integrated air-conditioning heat load value of the air-conditioned room, detection data storage means for accumulating the data detected by each detection means, and each stored in the detection data storage means. When information is input, the neural network is learned in advance so as to output the predicted value of the air conditioning heat load integrated value of the room to be air-conditioned the next day, and the neural network is updated in consideration of the latest information from the detection means. Means, and the neural network extracted from the learning means, the indoor environment detecting means, the outside air environment detecting means, the time information detecting means, and the next day forecast Characterized in that it consists, and the air conditioning heat load prediction unit for outputting a prediction value of the next day of the air conditioning heat load integrated value of the air conditioned room by performing a network operation by sequentially inputting each information from the detection means.

【0008】[0008]

【作用】本発明によれば、室内環境検出手段、外気環境
検出手段、時間情報検出手段及び翌日予想天気検出手段
で逐次検出される情報を、学習手段で予め学習してある
ニューラルネットワークを取り込んだ空調熱負荷予測手
段に入力して、該ニューラルネットワークでネットワー
ク演算を行うことにより翌日の空調熱負荷積算値の予測
値を出力する。このように、空調熱負荷予測に必要な室
内環境、外気環境、時間情報及び翌日予想天気と、被空
調室の翌日の空調熱負荷の関係を学習し、且つ前記各検
出手段の最新情報を加味して更新したニューラルネット
ワークを用いることにより、入手が容易で少ないデータ
で精度の高い空調熱負荷予測を行うことのできる。ま
た、ニューラルネットワークが前記各検出手段からの情
報を基に学習を行うことにより、過去にデータのない新
しい被空調室に対してもシミュレーションすることがで
きるので容易に精度の高い空調熱負荷予測を行うことが
できる。
According to the present invention, the neural network in which the learning means preliminarily learns the information successively detected by the indoor environment detecting means, the outside air environment detecting means, the time information detecting means and the next-day expected weather detecting means is incorporated. The predicted value of the air-conditioning heat load integrated value of the next day is output by inputting to the air-conditioning heat load predicting means and performing a network operation by the neural network. In this way, the relationship between the indoor environment, the outside air environment, the time information and the expected next day weather required for air conditioning heat load prediction and the air conditioning heat load of the next day in the air-conditioned room is learned, and the latest information of each detection means is added. By using the updated neural network, it is possible to easily predict the air-conditioning heat load with a small amount of data that is easily available. In addition, since the neural network learns based on the information from each of the detection means, it is possible to simulate a new air-conditioned room that has no data in the past, so it is possible to easily and accurately predict the air-conditioning heat load. It can be carried out.

【0009】また、撮影手段、画像記憶手段、画像処理
手段、知識処理手段、及び日照量予測手段により、翌日
の日照量を予測して、前記空調熱負荷予測手段で予測し
た翌日の空調熱負荷積算値の予測値を、予測日照量に応
じて補正するようにしたので、更に精度の高い予測を行
うことができると共に、空の様子を観察することにより
天候の急激な変化による翌日の空調熱負荷積算値の予測
値の変化にも対応できる。
Further, the photographing means, the image storing means, the image processing means, the knowledge processing means, and the sunshine quantity predicting means predict the sunshine quantity of the next day, and the air conditioning heat load of the next day predicted by the air conditioning heat load predicting means. Since the predicted value of the integrated value is corrected according to the predicted sunshine amount, it is possible to make more accurate predictions, and by observing the state of the sky, the air conditioning heat of the next day due to a sudden change in the weather can be obtained. It is also possible to cope with changes in the predicted value of the load integrated value.

【0010】[0010]

【実施例】以下添付図面に従って本発明に係る空調熱負
荷予測システムの好ましい実施例について詳説する。本
発明は、翌日の被空調室の空調熱負荷積算値を予測して
予め蓄熱を行う蓄熱式空調設備における空調熱負荷予測
システムであり、図1には、本発明に係る空調熱負荷予
測システムの実施例の概略構成図が示されている。同図
に示されるように、空調熱負荷予測システム10は、主
として、検出手段12、検出データ記憶手段14、予測
手段16、第1補正手段18、第2補正手段20とから
成り、空調熱負荷予測システムで予測した被空調室の翌
日の空調熱負荷積算値に基づいて制御目標決定手段22
により熱源機器26の制御目標である運転条件が決定さ
れ、制御手段24は制御目標に従って熱源機器26を運
転する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of an air conditioning heat load prediction system according to the present invention will be described in detail below with reference to the accompanying drawings. The present invention is an air conditioning heat load prediction system in a heat storage type air conditioning facility that predicts an air conditioning heat load integrated value of an air-conditioned room on the next day and stores heat in advance. FIG. 1 shows an air conditioning heat load prediction system according to the present invention. The schematic block diagram of the embodiment of FIG. As shown in the figure, the air conditioning heat load prediction system 10 mainly includes a detection unit 12, a detection data storage unit 14, a prediction unit 16, a first correction unit 18, and a second correction unit 20. Control target determining means 22 based on the integrated value of the air conditioning heat load of the room to be air-conditioned, which is predicted by the prediction system.
The operating condition which is the control target of the heat source device 26 is determined by the control means 24, and the control means 24 operates the heat source device 26 according to the control target.

【0011】次に、図2に従って空調熱負荷予測システ
ムの詳細構成を説明する。前記検出手段12は、室内環
境検出手段28、外気環境検出手段30、時間情報検出
手段32、熱負荷検出手段34及び翌日予想天気検出手
段36から構成される。そして、前記室内環境検出手段
28は被空調室の室温及び湿度を検出し、その検出デー
タを検出データ記憶手段14及び予測手段16の後述す
る空調熱負荷予測手段50に出力する。
Next, the detailed configuration of the air conditioning heat load prediction system will be described with reference to FIG. The detection means 12 is composed of an indoor environment detection means 28, an outside air environment detection means 30, a time information detection means 32, a heat load detection means 34 and a next day forecast weather detection means 36. Then, the indoor environment detecting means 28 detects the room temperature and humidity of the air-conditioned room, and outputs the detection data to the detected data storage means 14 and the air conditioning heat load predicting means 50 of the predicting means 16 described later.

【0012】前記外気環境検出手段30は外気温度、外
気湿度及び1日の日射量の積算値を検出し、その検出デ
ータを検出データ記憶手段14及び予測手段16の空調
熱負荷予測手段50に出力する。前記時間情報検出手段
32は、時刻と曜日を検出し、その検出データを検出デ
ータ記憶手段14及び予測手段16の空調熱負荷予測手
段50に出力する。
The outside air environment detecting means 30 detects the integrated value of the outside air temperature, the outside air humidity and the amount of solar radiation per day, and outputs the detected data to the detected data storage means 14 and the air conditioning heat load predicting means 50 of the predicting means 16. To do. The time information detection means 32 detects the time and day of the week and outputs the detection data to the detected data storage means 14 and the air conditioning heat load prediction means 50 of the prediction means 16.

【0013】前記熱負荷検出手段34は被空調室の空調
熱負荷積算値の実績値を検出し、その検出データを検出
データ記憶手段14に出力する。前記翌日予想天気検出
手段36は、気象庁から発表される翌日の予想最高気
温、翌日の予想最低気温、翌日の予想最大湿度、翌日の
予想最低湿度を収集し、その収集データを検出データ記
憶手段14及び予測手段16の空調熱負荷予測手段50
に出力する。尚、気象庁からのデータの収集に限定され
ず、翌日の天気情報を独自に検出する手段を備えるよう
にしてもよい。
The heat load detecting means 34 detects the actual value of the integrated value of the air conditioning heat load of the air-conditioned room and outputs the detection data to the detection data storage means 14. The next-day expected weather detection means 36 collects the expected maximum temperature of the next day, the expected minimum temperature of the next day, the expected maximum humidity of the next day, and the expected minimum humidity of the next day announced by the Meteorological Agency, and the collected data is detected data storage means 14 And the air conditioning heat load prediction means 50 of the prediction means 16
Output to. It should be noted that the present invention is not limited to the collection of data from the Meteorological Agency, and a means for independently detecting the weather information of the next day may be provided.

【0014】前記検出データ記憶手段14は、室内環境
データ記憶手段38、外気環境記憶手段40、時間情報
記憶手段42、熱負荷記憶手段44及び翌日予想天気記
憶手段46から構成され、各記憶手段38、40、4
2、44、46は、対応する検出手段で検出された検出
データを記憶すると共に、この検出データ記憶手段14
に記憶される検出データは、予測手段16の後述する学
習手段52に入力され、ニューラルネットワークを学習
させる際のデータとして用いられる。
The detection data storage means 14 comprises an indoor environment data storage means 38, an outside air environment storage means 40, a time information storage means 42, a heat load storage means 44 and a next day forecast weather storage means 46, and each storage means 38. , 40, 4
Reference numerals 2, 44 and 46 store the detection data detected by the corresponding detection means, and the detection data storage means 14
The detection data stored in is input to the learning means 52, which will be described later, of the prediction means 16, and is used as data when learning the neural network.

【0015】予測手段16は、学習手段52と空調熱負
荷予測手段50から構成される。学習手段52は検出デ
ータ記憶手段14に記憶された情報が入力されると、翌
日の空調熱負荷積算値の予測値を出力するようにニュー
ラルネットワークを予め学習すると共に、検出データ記
憶手段14からの最新情報を加味してニューラルネット
ワークを更新し、更新した最新のニューラルネットワー
クを記憶できるようになっている。
The predicting means 16 comprises a learning means 52 and an air conditioning heat load predicting means 50. When the information stored in the detection data storage means 14 is input, the learning means 52 preliminarily learns the neural network so as to output the predicted value of the air-conditioning heat load integrated value of the next day, and at the same time, outputs from the detection data storage means 14. The neural network can be updated by adding the latest information, and the updated latest neural network can be stored.

【0016】ここで、学習手段52と空調熱負荷予測手
段50に関して、その機能を司るニューラルネットワー
クについて説明する。図3には、ニューラルネットワー
クの機能説明図が示され、図4には、学習手段52に記
憶されているニューラルネットワークの構成が示されて
いる。ニューラルネットワークでは、ネットワーク演算
(順方向演算)を行う場合、入力値をx1 、x2 、…
…、xn 、内部係数(重み)をw1 、w2 、……、wn
とすると、累積処理部54の内部出力値Xは、 であり、ニューロユニット56からの出力値Yは、 Y=1/(1+exp(−AX)) 但し、Aは任意定数 である。
Here, the neural network that controls the functions of the learning means 52 and the air conditioning heat load prediction means 50 will be described. FIG. 3 shows a functional explanatory diagram of the neural network, and FIG. 4 shows the configuration of the neural network stored in the learning means 52. In the neural network, when performing network operation (forward operation), input values are x 1 , x 2 , ...
, X n , internal coefficients (weights) w 1 , w 2 , ..., w n
Then, the internal output value X of the accumulation processing unit 54 is The output value Y from the neuro unit 56 is: Y = 1 / (1 + exp (-AX)) where A is an arbitrary constant.

【0017】このニューロユニット56が複数個複数層
結合してニューラルネットワークを構成し、結合するニ
ューロユニット56の入出力関係は上記のようになる。
また、ニューラルネットワークを修正(逆方向演算)す
る場合、予測値の予測精度をもとにバックプロパケーシ
ョン法を用いて精度がよくなるように内部係数(重み)
を調整する。
A plurality of the neuro units 56 are connected in a plurality of layers to form a neural network, and the input / output relationships of the connected neuro units 56 are as described above.
When modifying the neural network (backward calculation), the internal coefficient (weight) is used to improve the accuracy by using the back-propagation method based on the prediction accuracy of the prediction value.
To adjust.

【0018】また、空調熱負荷予測手段50は、学習手
段52で更新された最新のニューラルネットワークを取
り出し、そのニューラルネットワークに、検出手段12
において21時(深夜電力運転が始まる1時間前)に検
出された外気温度、外気湿度、室温、1日の日射量、翌
日の曜日、翌日の予想最高気温、翌日の予想最低気温、
翌日の予想最大湿度、及び、翌日の予想最小湿度を入力
して、翌日の空調熱負荷積算値の予測値を算出する。
Further, the air conditioning heat load predicting means 50 takes out the latest neural network updated by the learning means 52, and the detecting means 12 is put in the neural network.
At 21:00 (1 hour before the start of midnight power operation), outside temperature, outside humidity, room temperature, solar radiation per day, next day of the week, expected maximum temperature of the next day, expected minimum temperature of the next day,
The predicted maximum humidity of the next day and the predicted minimum humidity of the next day are input to calculate the predicted value of the integrated value of the air conditioning heat load for the next day.

【0019】また、学習手段52は、空調熱負荷予測手
段50で算出した翌日の空調熱負荷積算値の予測値の予
測精度に応じて、記憶しているニューラルネットワーク
を新たに学習するか判断する。そして、学習したほうが
良いと判断した場合は、前記検出データ記憶手段14に
記憶されている検出データに基づいてバックプロパゲー
ション法により入力層58、中間層60、出力層62の
3層からなる9入力1出力のニューラルネットワーク
(図4参照)の内部係数(重み)を修正する。
Further, the learning unit 52 determines whether to newly learn the stored neural network according to the prediction accuracy of the predicted value of the integrated value of the air conditioning heat load of the next day calculated by the air conditioning heat load prediction unit 50. . When it is determined that the learning is better, the back propagation method is used to form the input layer 58, the intermediate layer 60, and the output layer 62 based on the detection data stored in the detection data storage unit 9. The internal coefficient (weight) of the input / output neural network (see FIG. 4) is corrected.

【0020】また、学習する情報を空調熱負荷シミュレ
ーションによって作成する場合のニューラルネットワー
クの構成は、図5に示すように、入力データとして21
時における外気温度、外気湿度、室内温度、1日の日射
量、翌日の曜日を入力し、被空調室を対象とした予測モ
デルをシミュレーションして、翌日の空調熱負荷積算値
の予測値を出力する。また、学習するための情報が無い
場合には、動的熱負荷計算プログラム、例えば、MIC
RO−HAPS/1982等を用いて学習すべき情報を
作成して学習しておくこともできる。このように、どの
ような学習方法を取った場合でも検出データ記憶手段1
4に記憶された各情報により新たに学習できるようにな
っている。
Further, as shown in FIG. 5, the construction of the neural network when the information to be learned is created by the air conditioning heat load simulation is 21 as input data.
Input the outdoor temperature, outdoor humidity, indoor temperature, amount of solar radiation per day, and the day of the next day, and simulate a prediction model for the room to be air-conditioned, and output the predicted value of the integrated air-conditioning heat load for the next day. To do. If there is no information for learning, a dynamic heat load calculation program, for example, MIC
Information to be learned can be created and learned using RO-HAPS / 1982 or the like. In this way, the detection data storage means 1 is used no matter what learning method is used.
It is possible to newly learn by each information stored in 4.

【0021】次に、第1補正手段18について説明す
る。第1補正手段18は、空調熱負荷予測手段50の予
測に影響されずに検出手段12からの室内環境情報、外
気環境情報及び時間情報を基に独自に翌日の空調熱負荷
積算値の予測を行い、空調熱負荷予測手段50での予測
値の補正を行うもので、機構的には空調熱負荷予測手段
50と同様にニューラルネットワークを用いる。そし
て、例えば、空調熱負荷予測手段50で予測した21時
以後1時間毎に翌日の8時(空調が開始される時刻)ま
で翌日の空調熱負荷積算値の予測を行う。この第1補正
手段18を備えることにより、例えば、空調熱負荷予測
手段50で21時に空調熱負荷積算値を予測した後に、
外気環境等が急激に変化した場合に容易に対応できる。
Next, the first correction means 18 will be described. The first correction means 18 independently predicts the integrated value of the air conditioning heat load of the next day based on the indoor environment information, the outside air environment information and the time information from the detecting means 12 without being influenced by the prediction of the air conditioning heat load predicting means 50. The air-conditioning heat load predicting means 50 corrects the predicted value, and a neural network is mechanically used similarly to the air-conditioning heat load predicting means 50. Then, for example, the air conditioning heat load predicting means 50 predicts the air conditioning heat load integrated value of the next day every hour after 21:00 until 8 o'clock of the next day (time when air conditioning is started). By providing the first correction means 18, for example, after the air conditioning heat load prediction means 50 predicts the air conditioning heat load integrated value at 21:00,
It can easily cope with a sudden change in the outside air environment.

【0022】次に、第2補正手段20について説明す
る。第2補正手段20は、翌日の日照量を予測すること
により、空調熱負荷予測手段50で予測された翌日の空
調負荷積算値の予測値を補正を行うものである。即ち、
第2補正手段20は、翌日の日照量を左右する日照量要
素として空の様子を撮影する撮影手段68(例えばビデ
オカメラ)と、撮影手段68で撮影された画像を記憶す
る画像記憶手段70と、画像記憶手段70から画像を取
り出して日照量に関係のある画像のみを残すように画像
処理する画像処理手段72と、学習機能を有するニュー
ラルネットワークを用いて画像処理手段72で処理され
た画像パターンと翌日の日照量との関係を予め学習した
知識処理手段74と、知識処理手段74から取り出した
ニューラルネットワークに画像処理手段72からの画像
を逐次入力してネットワーク演算を行うことにより翌日
の予測日照量を出力する日照量予測手段76と、から構
成される。この場合、知識処理手段74のニューラルネ
ットワークは、画像処理手段72からの最新データによ
り更新させるようにしてもよい。そして、第2補正手段
20の撮影手段68で撮影する日照量要素として、例え
ば、夕方は夕焼けの光と太陽光の光度を撮影し、撮影し
た画像を画像処理手段72により画像処理する。画像処
理された画像データは日照量予測手段76に入力される
と共に、日照量予測手段76は、知識処理手段74で予
め学習済のニューラルネットワークを用いて翌日の予測
日照量を出力する。同様に夜間は、撮影手段68により
天体を撮影し、撮影した画像を画像処理手段72により
画像処理する。この画像処理により、天体の動く速度の
画像のみ、即ち天体のみが抽出され、例えば、車のヘッ
ドライト等の速度の速い光は消去される。そして、画像
処理された画像データと、画像記憶手段70に記憶され
た過去のデータ及び撮影時の天文情報が日照量予測手段
76に入力され、日照量予測手段76は知識処理手段7
4で予め学習済のニューラルネットワークを用いて翌日
の予測日照量を出力する。また、日中は、撮影手段68
により空の青さや雲の量を撮影し、同様に日照量を予測
する。このように、第2補正手段20を備えることによ
り、翌日の空調熱負荷積算値の予測値の予測精度を向上
できると共に、空の様子を観察することにより、第1補
正手段18よりも精度良く天候の急激な変化を把握する
ことができるので、天候の急激な変化に伴う翌日の空調
熱負荷積算値の変化にも極めて精度良く対応できる。
Next, the second correction means 20 will be described. The second correction means 20 corrects the predicted value of the air conditioning load integrated value of the next day predicted by the air conditioning heat load prediction means 50 by predicting the sunshine amount of the next day. That is,
The second correction unit 20 includes a photographing unit 68 (for example, a video camera) that photographs the state of the sky as a sunshine amount element that influences the sunshine amount of the next day, and an image storage unit 70 that stores the image photographed by the photographing unit 68. An image processing unit 72 that takes out an image from the image storage unit 70 and processes the image so as to leave only an image related to the amount of sunlight, and an image pattern processed by the image processing unit 72 using a neural network having a learning function. And the amount of sunshine on the next day, the knowledge processing means 74 and the neural network extracted from the knowledge processing means 74 are sequentially input with the images from the image processing means 72 to perform network operation to predict the next day's sunshine. And a sunshine amount predicting means 76 for outputting the amount. In this case, the neural network of the knowledge processing means 74 may be updated with the latest data from the image processing means 72. Then, as the sunshine amount element photographed by the photographing means 68 of the second correction means 20, for example, the light of sunset and the luminosity of the sun are photographed in the evening, and the photographed image is processed by the image processing means 72. The image-processed image data is input to the sunshine amount predicting means 76, and the sunshine amount predicting means 76 outputs the next day's predicted sunshine amount using a neural network that has been learned in advance by the knowledge processing means 74. Similarly, at night, the celestial body is photographed by the photographing means 68, and the photographed image is processed by the image processing means 72. By this image processing, only the image of the moving speed of the celestial body, that is, only the celestial body is extracted, and, for example, high-speed light such as a headlight of a car is erased. Then, the image-processed image data, the past data stored in the image storage means 70, and the astronomical information at the time of photographing are input to the sunshine amount predicting means 76, and the sunshine amount predicting means 76 causes the knowledge processing means 7 to operate.
In step 4, the predicted sunshine amount for the next day is output using the neural network that has been learned in advance. In the daytime, the photographing means 68
To capture the blueness of the sky and the amount of clouds, and predict the amount of sunshine in the same way. As described above, by providing the second correcting means 20, the prediction accuracy of the predicted value of the air-conditioning heat load integrated value of the next day can be improved, and by observing the appearance of the sky, the accuracy is higher than that of the first correcting means 18. Since it is possible to grasp a sudden change in the weather, it is possible to respond to the change in the integrated value of the air conditioning heat load of the next day due to the sudden change in the weather with extremely high accuracy.

【0023】前記制御目標決定手段22は、前記予測手
段16で21時に予測された翌日の空調熱負荷積算値
と、前記第1補正手段18で予測された補正用の翌日の
空調熱負荷積算値及び第2補正手段20で予測された翌
日の予測日照量に基づいて、空調機26の制御目標を決
定する。前記制御手段24は、前記制御目標決定手段2
2で決定された熱源機器26の制御目標(運転条件)に
基づいて空調機26に動作信号を送り、熱源機器26の
運転を制御する。
The control target determining means 22 includes the integrated value of the air conditioning heat load for the next day predicted by the predicting means 16 at 21:00, and the integrated value of the air conditioning heat load for the next day predicted by the first correcting means 18. And the control target of the air conditioner 26 is determined based on the predicted sunshine amount of the next day predicted by the second correction means 20. The control means 24 controls the control target determination means 2
An operation signal is sent to the air conditioner 26 based on the control target (operating condition) of the heat source device 26 determined in 2 to control the operation of the heat source device 26.

【0024】前記熱源機器26は、制御手段24から送
られてくる動作信号に基づいて蓄熱槽に蓄熱する。前記
の如く構成される本発明に係る空調熱負荷予測システム
10の実施例の作用は次のようになる。予め、学習手段
52のニューラルネットワークを学習させておく。即
ち、検出手段12において以下の情報が検出される。室
内環境検出手段28では、被空調室の室温が検出され、
外気環境検出手段30では、外気温度、外気湿度及び1
日の日射量が検出され、時間情報検出手段32では、時
刻及び翌日の曜日が検出される。また、熱負荷検出手段
34では、空調負荷の1日の空調熱負荷積算値の実績値
が検出され、翌日予想天気検出手段36では、気象庁か
ら発表される翌日の予想最高気温、翌日の最低気温、翌
日の最高湿度及び翌日の最低湿度の各データが得られ、
記憶手段14に蓄積される。そして、これらのデータが
予測手段16の学習手段52のニューラルネットワーク
に入力されて翌日の空調熱負荷積算値を出力するように
学習されている。
The heat source device 26 stores heat in the heat storage tank based on the operation signal sent from the control means 24. The operation of the embodiment of the air conditioning heat load prediction system 10 according to the present invention configured as described above is as follows. The neural network of the learning means 52 is learned in advance. That is, the detection unit 12 detects the following information. The indoor environment detecting means 28 detects the room temperature of the air-conditioned room,
In the outside air environment detecting means 30, the outside air temperature, the outside air humidity, and 1
The solar radiation amount of the day is detected, and the time information detecting means 32 detects the time and the day of the week of the next day. Further, the heat load detecting means 34 detects the actual value of the integrated air-conditioning heat load value of the air conditioning load for one day, and the next day forecast weather detecting means 36 announces the expected maximum temperature of the next day and the minimum temperature of the next day announced by the Meteorological Agency. , The maximum humidity of the next day and the minimum humidity of the next day are obtained,
It is stored in the storage means 14. Then, these data are input to the neural network of the learning means 52 of the prediction means 16 and learned so as to output the integrated value of the air conditioning heat load of the next day.

【0025】そして、翌日の空調熱負荷積算値の予測
は、深夜電力運転の始まる1時間前の21時に行われ
る。即ち、時間情報検出手段32が21時を検出する
と、検出手段12で以下の情報が検出され、その検出デ
ータが予測手段16に出力される。室内環境検出手段2
8において、被空調室の室温が検出され、外気環境検出
手段30において、外気温度、外気湿度及び1日の日射
量の積算値が検出される。また、時間情報検出手段32
において、翌日の曜日が検出され、翌日予想天気検出手
段36において、気象庁から発表される翌日の予想最高
気温、翌日の最低気温、翌日の最高湿度及び翌日の最低
湿度のデータが取得される。
The prediction of the air-conditioning heat load integrated value of the next day is performed at 21:00, one hour before the start of the midnight power operation. That is, when the time information detecting means 32 detects 21:00, the detecting means 12 detects the following information and outputs the detected data to the predicting means 16. Indoor environment detecting means 2
At 8, the room temperature of the air-conditioned room is detected, and at the outside air environment detecting means 30, the integrated value of the outside air temperature, the outside air humidity, and the daily solar radiation amount is detected. Further, the time information detecting means 32
At, the next day of the week is detected, and the next-day expected weather detection means 36 acquires the data of the expected maximum temperature of the next day, the minimum temperature of the next day, the maximum humidity of the next day, and the minimum humidity of the next day announced by the Meteorological Agency.

【0026】前記検出手段12で21時に検出された前
記検出データは、空調熱負荷予測手段50に入力され、
空調熱負荷予測手段50では、学習手段52に記憶され
ている学習済のニューラルネットワークを用いてネット
ワーク演算を行い、翌日の空調熱負荷積算値の予測値を
出力する。また、第1補正手段は独自に、検出手段12
で21時以降に検出される検出データ(室内環境情報、
外気環境情報、時間情報)を基に1時間毎に翌日の8時
まで翌日の空調熱負荷積算値の予測値を出力する。
The detection data detected by the detecting means 12 at 21:00 is input to the air conditioning heat load predicting means 50,
The air conditioning heat load predicting means 50 performs network calculation using the learned neural network stored in the learning means 52 and outputs the predicted value of the air conditioning heat load integrated value of the next day. In addition, the first correction means independently detects the detection means 12
The detection data (indoor environment information,
Based on the outside air environment information and time information), the predicted value of the air-conditioning heat load integrated value of the next day is output every hour until 8:00 of the next day.

【0027】更に、第2補正手段20は、撮影手段68
で西の方角の空の様子を撮影し、この撮影手段68で撮
影した画像を画像記憶手段70に記憶する。この画像記
憶手段70に記憶された画像は、画像処理手段72で画
像処理された後、日照量予測手段76に入力され、日照
量予測手段76は知識処理手段74に記憶されている学
習済のニューラルネットワークを用いて翌日の日照量を
予測する。
Further, the second correction means 20 includes a photographing means 68.
The image of the sky in the west direction is photographed, and the image photographed by the photographing means 68 is stored in the image storage means 70. The image stored in the image storage means 70 is image-processed by the image processing means 72 and then input to the sunshine amount predicting means 76. The sunshine amount predicting means 76 is stored in the knowledge processing means 74 and has been learned. Predict the amount of sunshine on the next day using a neural network.

【0028】そして、制御目標決定手段22では、空調
熱負荷予測手段50で21時に予測された空調熱負荷積
算値をベースとし、第1補正手段で予測された翌日の空
調熱負荷積算値と、第2補正手段で予測された翌日の予
測日照量とから、前記ベースの空調熱負荷積算値を補正
して熱源機器26の制御目標を決定する。そして、この
制御目標決定手段22で決定された制御目標に基づい
て、制御手段24が熱源機器26に動作信号を送り、熱
源機器26の運転を制御する。
In the control target determining means 22, the air conditioning heat load integrated value predicted by the air conditioning heat load predicting means 50 at 21:00 is used as a base, and the air conditioning heat load integrated value of the next day predicted by the first correcting means, The control target of the heat source device 26 is determined by correcting the air-conditioning heat load integrated value of the base from the predicted sunshine amount of the next day predicted by the second correction means. Then, based on the control target determined by the control target determining unit 22, the control unit 24 sends an operation signal to the heat source device 26 to control the operation of the heat source device 26.

【0029】このように、空調熱負荷予測に必要な室内
環境、外気環境、時間情報及び翌日予想天気と、被空調
室の翌日の空調熱負荷の関係を学習し、且つ各検出手段
の最新情報を加味して更新したニューラルネットワーク
を用いることにより、入手が容易で少ないデータで精度
の高い空調熱負荷予測を行うことのできる。また、ニュ
ーラルネットワークが各検出手段からの情報を基に学習
を行うことにより、過去にデータのない新しい被空調室
に対しても被空調室に応じた空調熱負荷シミュレーショ
ンを行うことができる。この結果、新しい被空調室に対
しても本発明の空調熱負荷予測システムを容易に導入す
ることができる。
In this way, the relationship between the indoor environment, the outdoor air environment, the time information and the expected next day weather required for the air conditioning heat load prediction, and the air conditioning heat load of the next day in the air-conditioned room is learned, and the latest information of each detection means is learned. By using the neural network updated by taking into account, it is possible to easily predict the air conditioning heat load with a small amount of data. Further, since the neural network performs learning based on the information from each detecting means, it is possible to perform an air conditioning heat load simulation according to the air-conditioned room even for a new air-conditioned room that has no data in the past. As a result, the air conditioning heat load prediction system of the present invention can be easily introduced into a new air-conditioned room.

【0030】また、第1補正手段18では、22時から
8時迄の間の1時間毎に翌日の空調負荷の積算値を予測
し、21時に空調負荷予測手段16で予測した翌日の空
調熱負荷積算値を補正するので、精度の高い予測値を得
ることができると共に、21時以降の外気温度等の急激
な変化に対応できる。また、第2補正手段20では、翌
日の日照量を予測して、空調熱負荷予測手段50で予測
した翌日の空調熱負荷積算値を、予測日照量に応じて補
正するようにしたので、更に精度の高い予測を行うこと
ができると共に、空の様子を観察することにより天候の
急激な変化による翌日の空調熱負荷積算値の予測値の変
化にも対応できる。
The first correction means 18 predicts the integrated value of the air conditioning load of the next day every hour from 22:00 to 8:00, and the air conditioning heat of the next day predicted by the air conditioning load predicting means 16 at 21:00. Since the integrated load value is corrected, a highly accurate predicted value can be obtained, and a sudden change in the outside air temperature after 21:00 can be dealt with. Further, the second correction means 20 predicts the sunshine amount on the next day, and corrects the air conditioning heat load integrated value predicted by the air conditioning heat load prediction means 50 on the next day according to the predicted sunshine amount. It is possible to make highly accurate predictions, and by observing the appearance of the sky, it is possible to respond to changes in the predicted value of the air conditioning heat load integrated value on the next day due to a sudden change in the weather.

【0031】従って、本実施例の空調システム10によ
れば、入手の容易な少ないデータで精度の高い空調熱負
荷の予測が可能になると共に、天候の急激な変化にも対
応できる。尚、本実施例ではシミュレーション用いたニ
ューラルネットワークへの入力データとして室温を用い
ているが、室温の代わりに翌日の内部負荷レベルの予測
値を入力してもよい。ニューラルネットワークの入力デ
ータとして、外気温度を用いているが、外気温度の代わ
りに外気温度の偏差を入力してもよい。
Therefore, according to the air-conditioning system 10 of this embodiment, it is possible to predict the air-conditioning heat load with high accuracy and to cope with a sudden change in the weather with a small amount of data that is easily available. In this embodiment, the room temperature is used as input data to the simulated neural network, but a predicted value of the internal load level of the next day may be input instead of the room temperature. Although the outside air temperature is used as the input data of the neural network, the deviation of the outside air temperature may be input instead of the outside air temperature.

【0032】[0032]

【発明の効果】以上説明したように、本発明の空調熱負
荷予測システムによれば、入手が容易で少ないデータで
翌日の空調熱負荷積算値を精度良く予測することができ
ると共に、天候の急激な変化により翌日の空調熱負荷積
算値の予測値の変化にも容易に対応できる。また、本発
明の空調熱負荷予測システムは、検出データにより学習
手段のニューラルネットワークを学習できるようにした
ので、データのない新しい被空調室に対しても容易に導
入することができる。
As described above, according to the air conditioning heat load predicting system of the present invention, the air conditioning heat load integrated value of the next day can be accurately predicted with a small amount of data that is easily available, and the weather condition can be calculated rapidly. With such changes, it is possible to easily cope with changes in the predicted value of the air conditioning heat load integrated value of the next day. Further, since the air conditioning heat load prediction system of the present invention can learn the neural network of the learning means by the detected data, it can be easily introduced into a new air-conditioned room having no data.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空調熱負荷予測システムの実施例
の概略構成図
FIG. 1 is a schematic configuration diagram of an embodiment of an air conditioning heat load prediction system according to the present invention.

【図2】本発明に係る空調熱負荷予測システムの実施例
の詳細構成図
FIG. 2 is a detailed configuration diagram of an embodiment of an air conditioning heat load prediction system according to the present invention.

【図3】ニューラルネットワークの機能説明図FIG. 3 is a functional explanatory diagram of a neural network.

【図4】本実施例で用いるニューラルネットワークの構
成図
FIG. 4 is a configuration diagram of a neural network used in this embodiment.

【図5】シミュレーションを用いてニューラルネットワ
ークを学習する場合のニューラルネットワークの構成図
FIG. 5 is a configuration diagram of a neural network when learning the neural network using simulation.

【符号の説明】[Explanation of symbols]

10…空調システム 12…検出手段 14…検出データ記憶手段 16…予測手段 18…第1補正手段 20…第2補正手段 22…制御目標決定手段 24…制御手段 26…熱源機器 28…室内環境検出手段 30…外気環境検出手段 32…時間情報検出手段 34…熱負荷検出手段 36…翌日予想天気検出手段 50…空調熱負荷予測手段 52…学習手段 68…撮影手段 70…画像記憶手段 72…画像処理手段 74…知識処理手段 76…日照量予測手段 DESCRIPTION OF SYMBOLS 10 ... Air-conditioning system 12 ... Detection means 14 ... Detection data storage means 16 ... Prediction means 18 ... 1st correction means 20 ... 2nd correction means 22 ... Control target determination means 24 ... Control means 26 ... Heat source equipment 28 ... Indoor environment detection means 30 ... Outside air environment detecting means 32 ... Time information detecting means 34 ... Heat load detecting means 36 ... Next day expected weather detecting means 50 ... Air conditioning heat load predicting means 52 ... Learning means 68 ... Imaging means 70 ... Image storing means 72 ... Image processing means 74 ... Knowledge processing means 76 ... Sunlight amount prediction means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 翌日の被空調室の空調熱負荷積算値を予
測して予め蓄熱を行う蓄熱式空調設備に於いて、 前記被空調室内の室内環境情報を検出する室内環境検出
手段と、 前記被空調室外の外気環境情報を検出する外気環境検出
手段と、 時刻及び曜日等の時間情報を検出する時間情報検出手段
と、 翌日の予想天気情報を収集又は検出する翌日予想天気検
出手段と、 前記被空調室の空調熱負荷積算値の実績値を検出する熱
負荷検出手段と、 前記各検出手段で検出されたデータを蓄積する検出デー
タ記憶手段と、 前記検出データ記憶手段に記憶された各情報を入力する
と、翌日の被空調室の空調熱負荷積算値の予測値を出力
するようにニューラルネットワークを予め学習すると共
に、前記各検出手段からの最新情報を加味して前記ニュ
ーラルネットワークを更新する学習手段と、 前記学習手段から取り出したニューラルネットワークに
前記室内環境検出手段、前記外気環境検出手段、前記時
間情報検出手段及び翌日予想天気検出手段からの各情報
を逐次入力してネットワーク演算を行うことにより被空
調室の翌日の空調熱負荷積算値の予測値を出力する空調
熱負荷予測手段と、から成ることを特徴とする空調熱負
荷予測システム。
1. A heat storage type air conditioner for predicting an air conditioning heat load integrated value of an air-conditioned room on the next day to store heat in advance, and an indoor environment detecting means for detecting indoor environment information of the air-conditioned room, An outside air environment detecting means for detecting outside air environment information outside the air-conditioned room, a time information detecting means for detecting time information such as time and day of the week, a next day forecast weather detecting means for collecting or detecting forecast weather information for the next day, and Thermal load detection means for detecting the actual value of the integrated air-conditioning heat load value of the air-conditioned room, detection data storage means for accumulating the data detected by the detection means, and information stored in the detection data storage means Input, the neural network is learned in advance so as to output the predicted value of the air-conditioning heat load integrated value of the room to be air-conditioned the next day, and the neural network is added taking into account the latest information from the detection means. A learning means for updating the network, and the neural network extracted from the learning means, sequentially inputting each information from the indoor environment detecting means, the outside air environment detecting means, the time information detecting means, and the next-day forecast weather detecting means to the network. An air conditioning heat load prediction system comprising: an air conditioning heat load predicting unit that outputs a predicted value of an air conditioning heat load integrated value of the room to be air-conditioned the next day by performing calculation.
【請求項2】 翌日の日照量を左右する日照量要素とし
て空の様子を撮影する撮影手段と、 前記撮影手段で撮影された画像を記憶する画像記憶手段
と、 前記画像記憶手段から画像を取り出して日照量に関係の
ある画像のみを残すように画像処理する画像処理手段
と、 学習機能を有するニューラルネットワークを用いて前記
画像処理手段で処理された画像パターンと翌日の日照量
との関係を予め学習した知識処理手段と、 前記知識処理手段から取り出したニューラルネットワー
クに前記画像処理手段からの画像を逐次入力してネット
ワーク演算を行うことにより翌日の予測日照量を出力す
る日照量予測手段と、を備え、 前記空調熱負荷予測手段で予測した翌日の空調熱負荷積
算値の予測値を、前記日照量予測手段で予測した予測日
照量に応じて補正することを特徴とする請求項1の空調
熱負荷予測システム。
2. A photographing means for photographing the state of the sky as a sunshine amount element that influences the sunshine amount of the next day, an image storing means for storing the image photographed by the photographing means, and an image taken out from the image storing means. Image processing means for performing image processing so as to leave only an image related to the amount of sunshine, and a relationship between the image pattern processed by the image processing means using a neural network having a learning function and the amount of sunshine on the next day in advance. The learned knowledge processing means, and the sunshine amount predicting means for outputting the predicted sunshine amount for the next day by sequentially inputting the images from the image processing means to the neural network extracted from the knowledge processing means and performing the network operation, According to the predicted sunshine amount predicted by the sunshine amount prediction means, the predicted value of the air conditioning heat load integrated value for the next day predicted by the air conditioning heat load prediction means Air conditioning heat load prediction system of claim 1, wherein the correcting.
【請求項3】 前記日照量要素は、日中は空の青さと雲
の量であり、夕方は夕焼けの光と太陽光の光度であり、
夜間は星の光量であることを特徴とする請求項2の空調
熱負荷予測システム。
3. The sunshine intensity factor is the amount of blue and clouds in the sky during the day, the light of sunset and the intensity of sunlight in the evening,
The air conditioning heat load prediction system according to claim 2, wherein the amount of light of a star is at night.
JP7019309A 1995-02-07 1995-02-07 System for estimating air-conditioning thermal load Pending JPH08210689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7019309A JPH08210689A (en) 1995-02-07 1995-02-07 System for estimating air-conditioning thermal load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7019309A JPH08210689A (en) 1995-02-07 1995-02-07 System for estimating air-conditioning thermal load

Publications (1)

Publication Number Publication Date
JPH08210689A true JPH08210689A (en) 1996-08-20

Family

ID=11995826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7019309A Pending JPH08210689A (en) 1995-02-07 1995-02-07 System for estimating air-conditioning thermal load

Country Status (1)

Country Link
JP (1) JPH08210689A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134508A3 (en) * 2000-03-17 2002-07-24 Markus Werner Air-conditioning control method for a weather dependent building or installation area
EP1292130A1 (en) * 2000-05-10 2003-03-12 Matsushita Electric Industrial Co., Ltd. Digital broadcast recording/viewing supporting apparatus
CN100357670C (en) * 2005-07-25 2007-12-26 珠海格力电器股份有限公司 Intelligent air supply air-conditioner and intelligent air supply method
JP2009210237A (en) * 2008-03-06 2009-09-17 Yamatake Corp Energy calculating device, method, and program
JP2014514585A (en) * 2011-05-11 2014-06-19 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to predict building energy consumption
CN105509230A (en) * 2015-12-15 2016-04-20 天脉聚源(北京)传媒科技有限公司 Control method and device of intelligent equipment
CN105910225A (en) * 2016-04-18 2016-08-31 浙江大学 Air conditioner load control system and method based on personnel information detection
CN107906687A (en) * 2017-11-27 2018-04-13 中山路得斯空调有限公司 A kind of central air-conditioning demand response control system based on local end's temperature adjustment
CN112460750A (en) * 2019-09-09 2021-03-09 夏普株式会社 Server, air conditioner control system, control method and storage medium
CN113028610A (en) * 2021-04-12 2021-06-25 北京信息科技大学 Method and device for global optimization and energy-saving control of dynamic load of central air conditioner
WO2021249461A1 (en) * 2020-06-10 2021-12-16 中兴通讯股份有限公司 Method and apparatus for controlling refrigeration device, computer device, and computer readable medium
US11525595B2 (en) 2019-03-18 2022-12-13 Daikin Industries, Ltd. System for determining operation condition of precooling operation/preheating operation of air conditioner
US11885520B2 (en) 2019-03-18 2024-01-30 Daikin Industries, Ltd. Machine learning apparatus for determining operation condition of precooling operation or preheating operation of air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134508A3 (en) * 2000-03-17 2002-07-24 Markus Werner Air-conditioning control method for a weather dependent building or installation area
EP1292130A1 (en) * 2000-05-10 2003-03-12 Matsushita Electric Industrial Co., Ltd. Digital broadcast recording/viewing supporting apparatus
EP1292130A4 (en) * 2000-05-10 2007-12-19 Matsushita Electric Ind Co Ltd Digital broadcast recording/viewing supporting apparatus
CN100357670C (en) * 2005-07-25 2007-12-26 珠海格力电器股份有限公司 Intelligent air supply air-conditioner and intelligent air supply method
JP2009210237A (en) * 2008-03-06 2009-09-17 Yamatake Corp Energy calculating device, method, and program
JP2014514585A (en) * 2011-05-11 2014-06-19 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス How to predict building energy consumption
CN105509230A (en) * 2015-12-15 2016-04-20 天脉聚源(北京)传媒科技有限公司 Control method and device of intelligent equipment
CN105910225A (en) * 2016-04-18 2016-08-31 浙江大学 Air conditioner load control system and method based on personnel information detection
CN107906687A (en) * 2017-11-27 2018-04-13 中山路得斯空调有限公司 A kind of central air-conditioning demand response control system based on local end's temperature adjustment
US11525595B2 (en) 2019-03-18 2022-12-13 Daikin Industries, Ltd. System for determining operation condition of precooling operation/preheating operation of air conditioner
US11885520B2 (en) 2019-03-18 2024-01-30 Daikin Industries, Ltd. Machine learning apparatus for determining operation condition of precooling operation or preheating operation of air conditioner
CN112460750A (en) * 2019-09-09 2021-03-09 夏普株式会社 Server, air conditioner control system, control method and storage medium
CN112460750B (en) * 2019-09-09 2023-09-19 夏普株式会社 Server, air conditioner control system, control method and storage medium
WO2021249461A1 (en) * 2020-06-10 2021-12-16 中兴通讯股份有限公司 Method and apparatus for controlling refrigeration device, computer device, and computer readable medium
CN113028610A (en) * 2021-04-12 2021-06-25 北京信息科技大学 Method and device for global optimization and energy-saving control of dynamic load of central air conditioner

Similar Documents

Publication Publication Date Title
JPH08210689A (en) System for estimating air-conditioning thermal load
US9633320B2 (en) Energy demand prediction apparatus and method
US6098893A (en) Comfort control system incorporating weather forecast data and a method for operating such a system
EP2891904A1 (en) Solar irradiance forecasting
CN101877753B (en) Image processing apparatus, and image processing method
EP2688036A1 (en) Energy demand prediction device and method
KR101926544B1 (en) Method, apparatus and computer program for meteorological observation using weather research forecasting model
WO2017193153A1 (en) Solar power forecasting
AU2018426277B2 (en) Solar irradiation prediction using deep learning with end-to- end training
KR20130031732A (en) Method for calculating amount of cloud from whole sky image and apparatus thereof
US11393261B2 (en) Systems and methods for automatically adjusting a cabin climate condition
JP2953317B2 (en) Air conditioning heat load prediction system
CN111572412A (en) System and method for acquiring low-temperature starting energy requirement of hydrogen fuel cell vehicle
JPH09273795A (en) Thermal load estimating device
US20220236704A1 (en) Control system, server, apparatus and control method
JPH07151369A (en) Heat load predicting apparatus and plant heat load predicting apparatus
KR102455531B1 (en) Optimal control system for heating and cooling facilities based on data model for improving building energy efficiency and its control method
JP2791926B2 (en) Light receiving amount measuring method, sunshine condition measuring method, solar cell installation method and solar cell system
JP7316050B2 (en) air conditioning control system
CN107816973B (en) Automatic planning system and method for photographic tasks of visible light remote sensing spacecraft
CN111598802A (en) Foundation all-sky cloud parameter inversion system and method
JP2006233566A (en) System for evaluating acquired solar radiation energy amount
JP3094590B2 (en) Control device for air conditioner
JPH08210686A (en) Air-conditioning system
JP2000333367A (en) Thermoelectric consumption predicting system