JPH08209284A - Cemented carbide and its production - Google Patents

Cemented carbide and its production

Info

Publication number
JPH08209284A
JPH08209284A JP7305089A JP30508995A JPH08209284A JP H08209284 A JPH08209284 A JP H08209284A JP 7305089 A JP7305089 A JP 7305089A JP 30508995 A JP30508995 A JP 30508995A JP H08209284 A JPH08209284 A JP H08209284A
Authority
JP
Japan
Prior art keywords
phase
cemented carbide
hard
soft
hard phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7305089A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Nobuhiko Shima
順彦 島
Hiroaki Inoue
洋明 井上
Tatsuya Sakamoto
達也 坂本
Shigenobu Adachi
重信 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Tool Engineering Ltd filed Critical Hitachi Metals Ltd
Priority to JP7305089A priority Critical patent/JPH08209284A/en
Publication of JPH08209284A publication Critical patent/JPH08209284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To produce a cemented carbide improved in chipping resistance with hardly deteriorating its wear resistance and furthermore uniform in characteristics by forming its structure into the composite one in which either circumference of a hard phase and a soft phase is coated with the other. CONSTITUTION: The structure of a cemented carbide constituted of primary components of one or more kinds among the carbides, nitrides and carbon- nitrides of the group 4a, 5a and 6a in a periodic table and secondary components of one or more kinds among the Fe group and Cr group is constituted of a primary phase and a secondary phase with different hardness in combination, and the structure in which the circumference of the primary phase is coated with the secondary phase is formed. At this time, the diameter of the primary phase is preferably regulated to 20 to 300μm, the thickness of the secondary phase is preferably regulated to 5 to 50μm, and, with either as a hard phase and the other as a soft phases, the ratio of the hard phase is preferably regulated to 30 to 90vol.%. This hard alloy can be produced by granulating the primary phase material individually, coating the surface of the grains with the secondary phase material and thereafter compacting and baking.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗性を損なうこ
となく耐欠損性を向上させた超硬合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide having improved fracture resistance without impairing wear resistance.

【0002】[0002]

【従来の技術】従来例えば圧延用部材などには鋳鋼や工
具鋼等の材料が使用されているが、これら材料は靱性が
高く耐衝撃性には優れているが、耐摩耗性が低く、その
使用寿命が短いという問題がある。一方、現在、切削加
工工具分野で重要な位置を占めている超硬合金は、WC
やTiの炭化物、窒化物、または炭窒化物を主成分とし
ているために、耐摩耗性、耐衝撃性、耐欠損性に優れた
材料として知られている。
2. Description of the Related Art Conventionally, materials such as cast steel and tool steel have been used for, for example, rolling members. These materials have high toughness and excellent impact resistance, but low wear resistance. There is a problem that the service life is short. On the other hand, cemented carbide, which currently occupies an important position in the field of cutting tools, is WC
It is known as a material excellent in wear resistance, impact resistance, and fracture resistance because it contains carbides, nitrides, or carbonitrides of Ti and Ti as the main components.

【0003】このため、最近、従来は鋳鋼や工具鋼を用
いていた分野において、より耐摩耗性等が求められるよ
うな場合には、より耐摩耗性に優れた超硬合金、例えば
WC−Co系超硬合金等が使用され始めている。しか
し、WCの硬度は約Hv2400であり、更に耐摩耗性
を高めるために、より高硬度の材料が要望されている。
Therefore, recently, in the field where cast steel and tool steel have been conventionally used, when more wear resistance is required, a cemented carbide having higher wear resistance, for example, WC-Co. Cemented carbides are beginning to be used. However, the hardness of WC is about Hv2400, and a material with higher hardness is required to further improve wear resistance.

【0004】他の超硬合金としてWC−TiC−Co系
焼結合金(サーメット)が知られている。TiCはそれ
自体の硬度がHv2930と優れているため、これを用
いたサ−メットはWC基焼結合金にくらべて耐摩耗性が
優れている。しかしながら、一般にWC−TiC−Co
系基焼結合金は耐摩耗性は優れるものの、耐欠損性に劣
る欠点がある。このため、WC−TiC−Co系焼結合
金を例えば圧延ロ−ルに適用した場合、ロ−ル表面にク
ラックが発生し易く、しかも、容易に内部にまで進展す
るという問題点があった。
As another cemented carbide, a WC-TiC-Co type sintered alloy (cermet) is known. Since TiC itself has an excellent hardness of Hv2930, the cermet using it has better wear resistance than the WC-based sintered alloy. However, in general, WC-TiC-Co
Although the base-based sintered alloy has excellent wear resistance, it has a defect of poor fracture resistance. Therefore, when the WC-TiC-Co based sintered alloy is applied to, for example, a rolling roll, there is a problem that cracks are easily generated on the surface of the roll and the crack easily propagates to the inside.

【0005】また近年工具寿命を増大するために超硬合
金の表面に4a,5a,6a族金属の炭化物等の硬質皮膜を形成
する技術が提案され、実施されている。しかしながら、
この種の被覆超硬合金においては、硬質被覆層は超硬合
金よりもろく、また特に硬質被覆層を化学蒸着法により
形成すると、被覆超硬合金の靱性が母材よりも低いもの
となり、被覆超硬合金が欠損しやすくなると云う問題点
がある。
Further, in recent years, in order to increase the tool life, a technique of forming a hard coating film of a carbide of a 4a, 5a or 6a group metal on the surface of a cemented carbide has been proposed and implemented. However,
In this type of coated cemented carbide, the hard coating layer is more brittle than the cemented carbide, and especially when the hard coating layer is formed by the chemical vapor deposition method, the toughness of the coated cemented carbide is lower than that of the base metal. There is a problem that the hard alloy is easily damaged.

【0006】この問題点を解決するために周期律表4a、
5a及び6a属の金属の炭化物、窒化物及び炭窒化物の1種
または2種以上とCo等の金属とを含有する硬質合金の基
体表面に、基体より靱性に富むとともに軟質でかつ硬さ
が内部に向けて連続的に増加する中間層を設け、その上
に4a、5a及び6a属の金属の炭化物、窒化物、炭窒化物、
酸化物、酸炭化物、酸炭窒化物、並びにアルミニウム酸
化物の1種または2種以上の単層または複層の硬質層を
被覆した超硬合金工具の開示がある(特開昭53-131909
号参照)。しかし、上記中間層により硬質層に生じたク
ラックの伝搬は食い止められ、耐欠損性は改善される
が、耐摩耗性が低下するといった問題点があった。
In order to solve this problem, the periodic table 4a,
On the surface of a hard alloy substrate containing one or more of carbides, nitrides, and carbonitrides of 5a and 6a metals and a metal such as Co, it is more tougher than the substrate and soft and hard. A continuously increasing intermediate layer is provided toward the inside, on which carbides, nitrides, carbonitrides of 4a, 5a and 6a metals are provided.
There is disclosed a cemented carbide tool coated with one or more single-layer or multiple-layer hard layers of oxides, oxycarbides, oxycarbonitrides, and aluminum oxides (JP-A-53-131909).
No.). However, there is a problem in that the propagation of cracks generated in the hard layer is stopped by the intermediate layer and the fracture resistance is improved, but the wear resistance is reduced.

【0007】この問題点の解決のため、本出願人の一人
は、超硬合金母材を硬質相と軟質相の2相組織とし、そ
れに硬質被覆層を形成することにより耐摩耗性をほとん
ど低下させることなく耐欠損性を向上した被覆超硬合金
を提供した(特公平5-55598号参照)。
In order to solve this problem, one of the applicants of the present invention made the cemented carbide base material a two-phase structure of a hard phase and a soft phase, and formed a hard coating layer on it to reduce wear resistance. We have provided a coated cemented carbide with improved fracture resistance without any damage (see Japanese Patent Publication No. 5-55598).

【0008】[0008]

【発明が解決しようとする課題】前記の硬質相と軟質相
とを含む合金の場合でも、基本的に二相は均一に分散し
ているが部分的に硬質相が集まっていると耐欠損性に問
題があり、部分的に軟質相が集まっている場合には耐摩
耗性に問題があるという場合もあった。本発明の目的
は、耐摩耗性をほとんど低下させることなく耐欠損性を
向上し、しかも特性の均一な超硬合金を提供する事であ
る。
Even in the case of the alloy containing the hard phase and the soft phase described above, basically the two phases are uniformly dispersed, but if the hard phases are partially gathered, the fracture resistance is high. There is also a problem in that the abrasion resistance may be a problem when the soft phase is partially gathered. An object of the present invention is to provide a cemented carbide having improved fracture resistance with almost no deterioration in wear resistance and having uniform properties.

【0009】[0009]

【課題を解決するための手段】本発明者は、超硬合金を
硬さの異なる第一相と第二相の二相組織にし、第一相の
周辺部を第二相により覆った組織構造とすることによ
り、耐摩耗性がほとんど低下することなく耐欠損性を著
しく向上させ、しかも超硬材のいずれの場所においても
特性をより均一化させることができることを発見し、本
発明に至った。
DISCLOSURE OF THE INVENTION The present inventor has found that the cemented carbide has a two-phase structure of a first phase and a second phase having different hardness, and the peripheral portion of the first phase is covered with the second phase. It has been discovered that, by setting the above, it is possible to significantly improve the fracture resistance without substantially lowering the wear resistance, and further to make the characteristics more uniform in any place of the cemented carbide material, and have arrived at the present invention. .

【0010】すなわち、本発明は超硬合金において、硬
度の異なる2種類の相を複合させ、前記2相は第一成分
として周期律表の4a,5a,6a族の炭化物、窒化物、炭窒化
物の1種または2種以上、および第二成分として、Fe
族、Cr族の1種または2種以上より構成されるととも
に、第一相の周辺部を第二相が覆っていることを特徴と
するものである。
That is, in the present invention, in a cemented carbide, two kinds of phases having different hardnesses are compounded, and the two phases are the first components of carbides, nitrides and carbonitrides of the 4a, 5a and 6a groups of the periodic table. One or more of the products, and Fe as the second component
It is characterized in that it is composed of one or two or more members of the group Cr and the group Cr, and that the second phase covers the peripheral portion of the first phase.

【0011】上記構成の超硬合金は著しく高い耐欠損性
を有する。その理由は必ずしも明らかではないが、使用
時に発生した微細クラックが第一相及びその周辺部の硬
度の異なる第二相よりなる本発明の超硬合金の複雑な内
部構造のために伝搬し難く、また複雑な経路を通って伝
搬をするためにクラックの進展エネルギーが消費される
ためと考えられる。
The cemented carbide having the above structure has extremely high fracture resistance. The reason for this is not necessarily clear, but it is difficult for microcracks generated during use to propagate due to the complicated internal structure of the cemented carbide of the present invention consisting of the first phase and the second phase having different hardness in the peripheral portion thereof, It is also considered that the propagation energy of cracks is consumed due to propagation through a complicated route.

【0012】さらに第一相の周囲を硬度の異なる第二相
で覆うことにより、高硬度部(硬質相部)と高靱性部
(軟質相部)とが対になり細かく、均一に分布すること
になり、場所による特性のバラツキが小さくなる。例え
ば、本発明の超硬合金を切削工具として用い、切り込み
2.0mm、送り0.4mm/rev.で切削した時に被切削材と接触
する刃先の箇所は大略2mm幅×0.4mmとなるが、この領域
内に存在する高硬度部と高靱性部との対はおよそ5対か
ら500対になる。第一相部の直径が小さく、第二相部の
幅が狭いほど被切削材に当たる高硬度部/高靱性材部の
対数は大きくなり、硬度や靱性の特性のバラツキが実効
上小さくなる。
Further, by covering the periphery of the first phase with the second phase having different hardness, the high hardness portion (hard phase portion) and the high toughness portion (soft phase portion) are paired and finely and uniformly distributed. As a result, the variation in characteristics depending on the location is reduced. For example, using the cemented carbide of the present invention as a cutting tool,
When cutting at 2.0 mm and feed rate of 0.4 mm / rev., The location of the cutting edge that comes into contact with the work material is approximately 2 mm width × 0.4 mm, but the pair of high hardness part and high toughness part existing in this area is About 5 to 500 pairs. The smaller the diameter of the first phase portion and the narrower the width of the second phase portion, the larger the logarithm of the high hardness portion / high toughness material portion that hits the material to be cut, and the variation in the characteristics of hardness and toughness is effectively reduced.

【0013】超硬合金の組織が第一相を核とし、そのま
わりを前記第二相が覆った粒状複合構造であるときに
は、上記の効果がさらに顕著となる。第一相部の大きさ
は直径が20〜300μm、好ましくは20〜200μmである。
直径が300μmを越えると切削時に有効な高硬度部と高
靱性部との対数が極端に小さくなり、特性のバラツキが
大きくなり不適当である。逆に、第一相部の大きさが直
径20μm以下ではプレス加工等による成形が難しくな
り、工業的に不適当である。
When the structure of the cemented carbide has a granular composite structure in which the first phase serves as the nucleus and the second phase covers the periphery thereof, the above effect becomes more remarkable. The size of the first phase portion is 20 to 300 μm in diameter, preferably 20 to 200 μm.
If the diameter exceeds 300 μm, the logarithm of the high hardness portion and the high toughness portion effective during cutting becomes extremely small, resulting in large variation in characteristics, which is not suitable. On the other hand, if the size of the first phase portion is 20 μm or less in diameter, molding by pressing or the like becomes difficult, which is industrially inappropriate.

【0014】第一相部の周辺部を第二相部で厚さ5〜50
μm、好ましくは5〜30μmの厚さで均一に覆うことが
できる。第二相部の厚さは、先に述べたクラックの伝搬
を防止するためには5μm以上必要であり、50μmを越
えると第二相部が厚くなりすぎて、第一相とのバランス
を考えると不適当である。実際の切削条件を考えた場
合、更に特性の均一性を高める為に、第一相の大きさは
直径20〜200μmが好ましく、第二相部の幅は5から30μ
mが好ましい。
The peripheral portion of the first phase portion has a thickness of 5 to 50 in the second phase portion.
It can be evenly coated with a thickness of μm, preferably 5-30 μm. The thickness of the second phase part needs to be 5 μm or more to prevent the propagation of cracks described above. If it exceeds 50 μm, the second phase part becomes too thick, and the balance with the first phase should be considered. Is inappropriate. Considering the actual cutting conditions, the diameter of the first phase is preferably 20-200 μm and the width of the second phase is 5-30 μm in order to further improve the uniformity of the characteristics.
m is preferred.

【0015】前記第一相が硬質相であり、前記第二相が
前記硬質相よりも軟らかい軟質相である場合には、靱性
に優れておりクラックの発生も少なく、その伝搬もし難
いため、耐欠損性が特に優れる。前記第二相が硬質相で
あり、前記第一相が前記硬質相よりも軟らかい軟質相で
ある場合には、全体の剛性が高く高強度及び高耐摩耗性
が必要とされる用途に好適である。この場合表面部等に
微細クラックは発生するが、複雑に形成された硬質相を
クラックは伝搬し難いため、耐欠損性は優れている。
When the first phase is a hard phase and the second phase is a softer phase that is softer than the hard phase, it has excellent toughness, few cracks are generated, and it is difficult for the cracks to propagate. Especially excellent in defects. When the second phase is a hard phase and the first phase is a softer phase that is softer than the hard phase, it is suitable for applications in which the overall rigidity is high and high strength and high wear resistance are required. is there. In this case, fine cracks are generated on the surface portion and the like, but the cracks are difficult to propagate through the hard phase formed in a complicated manner, and therefore the fracture resistance is excellent.

【0016】超硬合金の第一相、第二相を形成する硬質
相及び軟質相はいずれも第一成分及び第二成分を含有す
るが、第一成分の種類、割合及び粒径により分けられ
る。硬質相及び軟質相は例えば次のような組合せであ
る。 (A)硬質相:第一成分のうち、より硬質の成分を多量に
含有する。 軟質相:第一成分のうち、より硬質の成分の割合が少な
い。 (B)硬質相:第一成分を相対的に多量含有する。 軟質相:第一成分を相対的に少量含有する。 (C)硬質相:第一成分の平均粒径が相対的に小さい。 軟質相:第一成分の平均粒径が相対的に大きい。
The hard phase and the soft phase forming the first phase and the second phase of the cemented carbide each contain the first component and the second component, and are classified according to the type, ratio and particle size of the first component. . The hard phase and the soft phase are, for example, the following combinations. (A) Hard phase: Contains a large amount of harder components among the first components. Soft phase: The proportion of harder components in the first component is small. (B) Hard phase: Contains a relatively large amount of the first component. Soft phase: Contains a relatively small amount of the first component. (C) Hard phase: The average particle size of the first component is relatively small. Soft phase: The average particle size of the first component is relatively large.

【0017】(A)の場合:硬質相及び軟質相とも第一成
分及び第二成分を含有するが、第一成分のうちより硬質
な成分の割合が異なる。両相とも主成分はWC,TiC,TiN,T
aC,NbC,TiCN,ZrC,VCなどである。WCなどの主成分に対し
て、TiC,TiN,NbC,VCは硬度が高い。これらのより硬質の
成分を多量に含有する相が硬質相であり、少量含有する
相が軟質相である。
In the case of (A): The hard phase and the soft phase both contain the first component and the second component, but the proportion of the harder component in the first component is different. The main components of both phases are WC, TiC, TiN, T
Examples are aC, NbC, TiCN, ZrC and VC. The hardness of TiC, TiN, NbC, and VC is higher than that of the main components such as WC. A phase containing a large amount of these harder components is a hard phase, and a phase containing a small amount is a soft phase.

【0018】(B)の場合:(A)の場合と異なり、第一成分
の種類が同じでも量が異なる。例えば、両相ともWCから
なる第一成分とCo等の第二成分をそれぞれ含有するが、
硬質相の方が軟質相よりも多量の第一成分を含む。また
両相ともWCやTaCのような比較的軟質の成分の他にTiC,Z
rC,HfC,VC,NbCのような比較的硬質の成分を含有しても
良い。両相中の第一成分の比は、超硬合金母材が明確に
2相となるようなものでなくてはならない。
In the case of (B): Unlike the case of (A), the amount of the first component is different even if it is the same. For example, both phases each contain a first component consisting of WC and a second component such as Co,
The hard phase contains a larger amount of the first component than the soft phase. In addition to both relatively soft components such as WC and TaC, TiC and Z
It may contain relatively hard components such as rC, HfC, VC, and NbC. The ratio of the first component in both phases must be such that the cemented carbide matrix is clearly two-phase.

【0019】(C)の場合:母材が第一成分と第二成分と
からなっていても、第一成分の粒径が異なると2相に分
かれる。粒径の小さい第一成分を含有する相は硬質相で
あり、粒径の大きな第一成分を含有する相は軟質相であ
る。粒径の差は相対的なものであるが一般的には硬質相
中の第一成分の平均粒径は0.4〜6μm、好ましくは0.6
〜5μmであり、軟質相中の第一成分の平均粒径は0.6〜
10μm、好ましくは0.8〜6μmである。
In the case of (C): Even if the base material is composed of the first component and the second component, if the particle size of the first component is different, it is divided into two phases. The phase containing the first component having a small particle size is a hard phase, and the phase containing the first component having a large particle size is a soft phase. Although the difference in particle size is relative, generally the average particle size of the first component in the hard phase is 0.4 to 6 μm, preferably 0.6.
~ 5 μm, the average particle size of the first component in the soft phase is 0.6 ~
It is 10 μm, preferably 0.8 to 6 μm.

【0020】本発明の場合、上記(A)乃至(C)の場合が同
時に生じる事もある。例えば、一方の相は比較的硬質の
成分を多く含有するが第一成分の粒径は大きく、他方の
相は比較的硬質の成分を少なく含有するが第一成分の粒
径は小さいというような場合がある。かかる場合いずれ
の相が硬質となるかが問題となる。このような場合の全
てについて硬軟の関係を完全に導き出すのは容易ではな
いが、一般に効果の大きい方から(B),(C),(A)の順序で
あるということができる。硬質相部は30〜90vol%とす
る。硬質相部が30vol%未満では耐摩耗性が低くなり、硬
質相部が90vol%を越えると軟質相部の量が少なく、十分
な靱性が得られない。
In the case of the present invention, the above cases (A) to (C) may occur simultaneously. For example, one phase contains a relatively large amount of relatively hard components, but the first component has a large particle size, and the other phase contains a relatively small amount of relatively hard components, but the first component has a small particle size. There are cases. In such a case, it becomes a problem which phase is hard. Although it is not easy to completely derive the hard-soft relationship in all such cases, it can be said that the order of (B), (C), and (A) is generally the highest in order of effectiveness. The hard phase portion is 30 to 90 vol%. If the hard phase portion is less than 30 vol%, the wear resistance becomes low, and if the hard phase portion exceeds 90 vol%, the amount of the soft phase portion is small and sufficient toughness cannot be obtained.

【0021】硬質相と軟質相の第二成分にCoを用いた場
合に両相のCo量の差を±3%以内と小さくすると、超硬母
材合金全体にCoが分布することにより母材全体の靱性と
均一性とが高まる。先に記したように、硬質相の第一成
分がTiC,TaC,WC,TiN,TiCN,NbC,ZrC,VCの1種または2種
以上から構成されていることにより、より硬度の高い相
を形成する事ができる。また、軟質相をWCを基とする合
金で構成する事により、より靱性の高い軟質相を形成す
る事ができる。
When Co is used as the second component of the hard phase and the soft phase, if the difference in Co content between the two phases is reduced to within ± 3%, the Co is distributed throughout the cemented carbide base alloy and The overall toughness and uniformity are increased. As described above, since the first component of the hard phase is composed of one or more of TiC, TaC, WC, TiN, TiCN, NbC, ZrC and VC, a phase with higher hardness can be obtained. Can be formed. Further, by forming the soft phase with an alloy based on WC, it is possible to form a soft phase having higher toughness.

【0022】また、本発明の超硬合金はその表面に周期
律表の4a,5a,6a族金属の炭化物、窒化物、炭窒化物、酸
炭化物、酸窒化物、酸炭窒化物および酸化物とAlの酸化
物、窒化物および酸炭化物から選ばれた単層又は2種以
上の多層皮膜を被覆する事により、さらに耐摩耗性の向
上がみられる。かかる超硬合金に被覆する材料は周期律
表の4a,5a及び6a族の炭化物、窒化物、炭窒化物、酸炭
窒化物及び酸化物とAlの酸化物、窒化物及び酸炭化物と
からなる群から選ばれる。好ましくはTiC,TiN,TiCN,Al2
O3等である。被覆層の形成は種々の方法により行うこと
ができるが、強度の観点から化学蒸着法(CVD)により行
うのが望ましい。この他にはイオンプレ−ティング法も
有効である。被覆層にはTiC,TiN,TiCN,Al2O3等の膜を単
層又は複層で用いる。単層の場合、厚さは0.5〜20μ
m、好ましくは1〜15μmである。複層の場合、全体の
厚さは0.8〜20μm、好ましくは1〜15μmである。
The surface of the cemented carbide of the present invention is a carbide, a nitride, a carbonitride, an oxycarbide, an oxynitride, an oxycarbonitride and an oxide of a metal of group 4a, 5a, 6a of the periodic table. Further, the wear resistance can be further improved by coating a single layer or a multi-layered film of two or more selected from oxides, nitrides and oxycarbides of Al and Al. The material for coating such cemented carbide consists of carbides, nitrides, carbonitrides, oxycarbonitrides and oxides of groups 4a, 5a and 6a of the Periodic Table and oxides of Al and oxides, nitrides and oxycarbides. Selected from the group. Preferably TiC, TiN, TiCN, Al 2
O 3 etc. The coating layer can be formed by various methods, but from the viewpoint of strength, the chemical vapor deposition (CVD) method is preferable. In addition to this, the ion plating method is also effective. As the coating layer, a film of TiC, TiN, TiCN, Al2O3 or the like is used in a single layer or multiple layers. For single layer, the thickness is 0.5-20μ
m, preferably 1 to 15 μm. In the case of multiple layers, the total thickness is 0.8 to 20 μm, preferably 1 to 15 μm.

【0023】本発明の超硬合金の製造方法としては、上
記した成分の硬質相材を単独で造粒した後、個々の前記
硬質相粒のまわりを上記した成分の軟質相材により覆っ
た後、成形、焼成する。このような製造方法を用いるこ
とにより、硬質相のまわりを軟質相が覆った構造の本発
明の超硬合金が製造できる。
The method for producing the cemented carbide of the present invention is as follows: the hard phase material having the above-mentioned components is granulated alone, and the individual hard phase particles are covered with the soft phase material having the above-mentioned component. , Molding and firing. By using such a manufacturing method, the cemented carbide of the present invention having a structure in which the hard phase is covered with the soft phase can be manufactured.

【0024】[0024]

【発明の実施の形態】以下実施例をあげて本発明を具体
的に説明する。 (実施例1)(TiC+TaC+NbC)=9.0 wt%, Co=6.0 wt%,残部
WC(WC粒度4.0μm)の組成(硬質相組成)を有する粉
末から、ボ−ルミル混合、乾燥及び造粒工程により平均
粒径150μmの造粒粉を作製した。次に、この造粒粉の
表面を、パンコ−ティング法により、Co=20 wt%、残部W
C(WC粒度5.5μm)の組成(軟質相組成)を有する粉末
で被覆し、芯材(硬質相組成)と被覆材(軟質相組成)
とよりなる表1に示す混合割合で芯材/被覆材の造粒粉
を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described with reference to the following examples. (Example 1) (TiC + TaC + NbC) = 9.0 wt%, Co = 6.0 wt%, balance
Granulated powder having an average particle size of 150 μm was produced from a powder having a composition of WC (WC particle size 4.0 μm) (hard phase composition) by a ball mill mixing, drying and granulation process. Next, the surface of the granulated powder was Co = 20 wt% and the balance W by the pan coating method.
Coated with powder having a composition of C (WC grain size 5.5 μm) (soft phase composition), core material (hard phase composition) and coating material (soft phase composition)
Granulated powder of the core material / coating material was produced at a mixing ratio shown in Table 1 consisting of

【0025】[0025]

【表1】 注 1)耐欠損性 〇:欠損なし、×:欠損あり 2)切削寿命 (平均フランク摩耗量0.3mm)[Table 1] Note 1) Fracture resistance ◯: No fracture, ×: There is a fracture 2) Cutting life (average flank wear amount 0.3 mm)

【0026】作製した芯材/被覆材の造粒粉を金型成形
し、1350〜1400℃で真空焼結し、硬質相/軟質相よりな
る超硬合金母材を作製した。母材形状はTNMN432のスロ
−アウェイチップである。上記超硬合金を母材とし、CV
D法により表面にTiC5μmを被覆後、Al2O3を2μm被覆
した被覆超硬合金を作製した。
The produced granulated powder of the core material / coating material was die-molded and vacuum-sintered at 1350 to 1400 ° C. to produce a cemented carbide base material composed of a hard phase / soft phase. The base material is a TNMN432 slow-away tip. With the above cemented carbide as the base material, CV
After coating the surface with TiC 5 μm by D method, a coated cemented carbide with Al 2 O 3 coated 2 μm was prepared.

【0027】このようにして作製した超硬合金硬質相50
%、軟質相50%の光学顕微鏡写真(倍率50倍)を図1に
示す。表2は図1中に示した各点におけるビッカ−ス硬
度と組成の測定結果を示したものである。ビッカ−ス硬
度は1Kg荷重で測定し、組成はEDXにより分析した。
Cemented carbide hard phase 50 produced in this way
%, A soft phase of 50% is shown in FIG. Table 2 shows the measurement results of the Vickers hardness and the composition at each point shown in FIG. The Vickers hardness was measured under a load of 1 kg, and the composition was analyzed by EDX.

【0028】[0028]

【表2】 [Table 2]

【0029】図1から、多数の黒色粒子が集まっている
直径80〜200μmの領域(硬質相)の周りを白色状の軟
質相が覆っている事がわかる。表2から硬質相部のビッ
カ−ス硬度は1650であり、軟質相部の硬度は1450である
こと、硬質相の組成はTiとTa量が多く、軟質相はWとCo
とから形成されていることがわかる。Coの量は硬質相で
9.5wt%,軟質相で12.0wt%であった。軟質相の幅は硬質相
と軟質相との体積比に依存するが大略5〜50μmであっ
た。
From FIG. 1, it can be seen that a white soft phase covers the area (hard phase) having a diameter of 80 to 200 μm where many black particles are gathered. From Table 2, the Vickers hardness of the hard phase part is 1650, the hardness of the soft phase part is 1450, the composition of the hard phase has a large amount of Ti and Ta, and the soft phase has W and Co.
It can be seen that it is formed from and. The amount of Co is a hard phase
It was 9.5 wt% and 12.0 wt% in soft phase. The width of the soft phase depends on the volume ratio of the hard phase and the soft phase, but is approximately 5 to 50 μm.

【0030】本発明の被覆超硬合金の耐欠損性を以下の
条件の切削テストにより評価した。 被削材:SCM440(Hs38),四つ溝入り断続切削 切削速度:100m/分 切り込み:2.0mm 切削時間:3分 耐摩耗性は以下の切削条件で評価した。 被削材:SCM440(Hs38)、連続切削 切削速度:180m/分 切り込み:2.0mm 送り:0.4mm/分 湿式切削(W−1種−2号)
The fracture resistance of the coated cemented carbide of the present invention was evaluated by a cutting test under the following conditions. Work material: SCM440 (Hs38), intermittent cutting with four grooves Cutting speed: 100 m / min Cutting depth: 2.0 mm Cutting time: 3 minutes Wear resistance was evaluated under the following cutting conditions. Work material: SCM440 (Hs38), continuous cutting Cutting speed: 180 m / min Depth of cut: 2.0 mm Feed: 0.4 mm / min Wet cutting (W-1 type-2)

【0031】また、比較のために、上記の硬質相及び軟
質相のみからなる超硬合金に同一条件のTiC/Al2O3膜を
被覆したものの耐欠損性及び耐摩耗性を本発明品と同一
条件で評価した結果を表1に示す。本発明品は比較品に
比べて耐欠損性および耐摩耗性のバランスが優れ、特に
硬質相と軟質相との割合が30〜90vol%の範囲で複合相の
効果が著しく、軟質相の耐欠損性を保持しながら硬質相
の耐摩耗性を確保できることがわかる。
For comparison, the fracture resistance and wear resistance of a cemented carbide consisting of the above hard phase and soft phase coated with a TiC / Al 2 O 3 film under the same conditions are compared with those of the present invention. The results of evaluation under the same conditions are shown in Table 1. The product of the present invention has an excellent balance of fracture resistance and wear resistance as compared with the comparative product, and in particular, the effect of the composite phase is remarkable in the range of 30 to 90 vol% of the hard phase and the soft phase, and the fracture resistance of the soft phase is remarkable. It can be seen that the wear resistance of the hard phase can be secured while maintaining the properties.

【0032】(実施例2)(TiC+TaC+TiN+TiCN+ZrC)=11.
0 wt%, Co=7.0 wt%,残部WC(WC粒度4.1μm)の組成
(硬質相組成)を有する粉末から、ホ゛-ルミル混合、乾燥、
造粒及び1400℃に1時間保持した焼成により焼成体を作
製した後、これを再び粉砕し、平均の直径が40μmの粉
体にした。次に、この焼結済み粉体を、気中懸濁法によ
るコ−ティング装置のコ−ティング室内に於いて、垂直
方向の乱気流によって流動化し懸濁させ、その表面に被
覆用の軟質組成の粉体を分散させたアルコ−ル溶液を噴
霧し、直ちに乾燥する事により焼結済み粉体(硬質相組
成)を芯材としてその周りに軟質組成の被覆材を平均6
μm厚さだけコ−ティングした。軟質相用粉体の組成は
Co=9.0 wt%、残部WC(WC粒度3.5μm)である。
(Example 2) (TiC + TaC + TiN + TiCN + ZrC) = 11.
From a powder having a composition (hard phase composition) of 0 wt%, Co = 7.0 wt% and the balance WC (WC grain size 4.1 μm), ball mill mixing, drying,
After producing a fired body by granulating and firing at 1400 ° C. for 1 hour, the fired body was pulverized again to obtain a powder having an average diameter of 40 μm. Next, this sintered powder is fluidized and suspended by a vertical turbulent air flow in a coating chamber of a coating device by an air suspension method, and its surface is coated with a soft composition for coating. By spraying the alcohol solution in which the powder is dispersed and immediately drying, the sintered powder (hard phase composition) is used as the core material, and the coating material of the soft composition is averaged around it.
It was coated by a thickness of μm. The composition of the soft phase powder is
Co = 9.0 wt%, balance WC (WC grain size 3.5 μm).

【0033】作製した芯材/被覆材の造粒粉を金型成形
し、1350℃で1時間真空焼結した後、1000℃、1500気圧
でHIP焼成して、硬質相/軟質相よりなる本発明の超硬
合金母材を作製した。母材形状はSPK42TRのスロ−アウ
ェイチップである。上記超硬合金を母材とし、CVD法に
よりTiC2μmを被覆後、TiCNを5μm、TiNを2μm被覆
した被覆超硬合金を作製した。このようにして作製した
超硬合金母材を実施例1と同様に評価した。硬質相部の
直径は平均40μm、その周りの軟質相の平均厚さは5μ
mであり、硬質相中央部のビッカ−ス硬度は1600、軟質
相部の硬度は1250であった。硬質相の組成はEDXによる
評価の結果、TiとTa量が多く、軟質相はWとCoとから形
成されていた。Coの量は硬質相で7.0wt%,軟質相部で9.0
wt%であった。
The prepared core / covering material granulated powder is molded into a mold, vacuum-sintered at 1350 ° C. for 1 hour, and then HIP-baked at 1000 ° C. and 1500 atm to form a hard phase / soft phase book. A cemented carbide base material of the invention was produced. The base material shape is a SPK42TR slow-away tip. Using the above cemented carbide as a base material, TiC of 2 μm was coated by the CVD method, and then a coated cemented carbide was prepared in which TiCN of 5 μm and TiN of 2 μm were coated. The cemented carbide base material thus produced was evaluated in the same manner as in Example 1. The average diameter of the hard phase is 40 μm, and the average thickness of the soft phase around it is 5 μm.
The Vickers hardness of the central part of the hard phase was 1600 and the hardness of the soft phase part was 1250. As a result of evaluation by EDX, the composition of the hard phase was found to have a large amount of Ti and Ta, and the soft phase was formed of W and Co. The amount of Co is 7.0 wt% in the hard phase and 9.0 in the soft phase.
It was wt%.

【0034】本発明の被覆超硬合金の硬質相部50vol%の
ものについて耐欠損性を以下の条件のフライス切削によ
り評価した。 被削材:SKD11(Hs55) 切削速度:150m/分 切り込み:3.0mm 切削長さ:最大で700mm また、比較のために、本発明品と同一の条件で作製した
硬質相及び軟質相のみからなる比較用超硬合金に同一条
件のTiC/TiCN/TiN膜を被覆したものを、本発明品と同一
条件で耐欠損性及び耐摩耗性を評価した。本発明品と比
較品の硬質相用原料と軟質相用原料の混合割合及びその
切削テストによる評価結果を表3に示す。
The fracture resistance of the coated cemented carbide of the present invention having a hard phase portion of 50 vol% was evaluated by milling under the following conditions. Work material: SKD11 (Hs55) Cutting speed: 150m / min Depth of cut: 3.0mm Cutting length: 700mm max. Also, for comparison, it consists of hard and soft phases produced under the same conditions as the product of the present invention. A comparative cemented carbide coated with a TiC / TiCN / TiN film under the same conditions was evaluated for fracture resistance and wear resistance under the same conditions as the product of the present invention. Table 3 shows the mixing ratios of the hard phase raw material and the soft phase raw material of the product of the present invention and the comparative product and the evaluation results by the cutting test.

【0035】[0035]

【表3】 注 1)耐欠損性 〇:欠損なし、×:欠損あり 2)切削寿命 (平均フランク摩耗量0.3mm)[Table 3] Note 1) Fracture resistance ◯: No fracture, ×: There is a fracture 2) Cutting life (average flank wear amount 0.3 mm)

【0036】本発明品は比較品に比べて耐欠損性および
耐摩耗性のバランスが優れ、軟質相の耐欠損性を保持し
ながら硬質相の耐摩耗性を確保できることがわかる。
It can be seen that the product of the present invention has a better balance of fracture resistance and wear resistance than the comparative product, and the wear resistance of the hard phase can be secured while maintaining the fracture resistance of the soft phase.

【0037】(実施例3)(TiC+TaC+NbC)=9.0 wt%, Co=
3.0 wt%,残部WC(WC粒度4.0μm)の組成(硬質相組
成)を有する粉末から、ボ−ルミル混合、乾燥及び造粒
工程により平均粒径150μmの造粒粉を作製した。次
に、この造粒粉の表面を、パンコ−ティング法により、
Co=20 wt%、残部WC(WC粒度5.5μm)の組成(軟質相組
成)を有する粉末で被覆し、芯材(硬質相組成)と被覆
材(軟質相組成)が50対50となる混合割合で芯材/
被覆材の造粒粉を作製した。
(Example 3) (TiC + TaC + NbC) = 9.0 wt%, Co =
Granulated powder having an average particle size of 150 μm was produced from a powder having a composition (hard phase composition) of 3.0 wt% and the balance WC (WC particle size 4.0 μm) by a ball mill mixing, drying and granulating process. Next, the surface of this granulated powder was subjected to a pan coating method.
Co = 20 wt% and the balance WC (WC particle size 5.5 μm) is coated with a powder having a composition (soft phase composition), and the core material (hard phase composition) and the coating material (soft phase composition) are mixed 50:50. Core material in proportion
A granulated powder of the covering material was prepared.

【0038】作製した芯材/被覆材の造粒粉を金型成形
し、1350〜1400℃で真空焼結し、硬質相/軟質相よりな
る直径80mm、長さ70mmの超硬合金ロールを作製
した。このようにして作製した超硬合金ロ−ルの硬質相
の組成はEDXによる評価の結果、TiとTa量が多く、軟質
相はWとCoとから形成されていた。Coの量は硬質相で7.5
wt%,軟質相部で13.5wt%であった。また、比較のため
に、上記の硬質相及び軟質相のみからなる比較超硬合金
ロールを作成した。
The granulated powder of the prepared core material / coating material is die-molded and vacuum-sintered at 1350 to 1400 ° C. to produce a cemented carbide roll having a hard phase / soft phase with a diameter of 80 mm and a length of 70 mm. did. As a result of evaluation by EDX, the composition of the hard phase of the cemented carbide roll thus produced was found to have a large amount of Ti and Ta, and the soft phase was formed of W and Co. The amount of Co is 7.5 in the hard phase
wt% and 13.5 wt% in the soft phase. Further, for comparison, a comparative cemented carbide roll composed of only the above hard phase and soft phase was prepared.

【0039】本発明の超硬合金及び比較ロールの耐欠損
性を以下の条件の圧延テストにより評価した。 被圧延材:SUS304 被圧延材寸法:1.0mm厚さ×15.0mm幅×25
0m長さ 圧延温度:900℃ 圧延速度:150m/min 圧下率:30% 本発明品は上記圧延終了後も、圧延部の摩耗もなく。良
好な肌を示していた。これに対し、比較ロールのうち硬
質相のみからなる超硬ロールは被圧延材の噛み込み時と
圧延終了時の衝撃にために圧延部の表面に多数のクラッ
クが発生していた。また比較ロールのうち軟質相のみか
らなる超硬ロールは圧延部に被圧延材による摩耗が発生
し、改削の必要性があった。
The fracture resistance of the cemented carbide of the present invention and the comparative roll was evaluated by a rolling test under the following conditions. Rolled material: SUS304 Rolled material dimensions: 1.0 mm thickness x 15.0 mm width x 25
Length of 0 m Rolling temperature: 900 ° C. Rolling speed: 150 m / min Rolling reduction ratio: 30% The product of the present invention has no wear in the rolled portion even after the above rolling. It showed good skin. On the other hand, among the comparison rolls, the cemented carbide roll consisting of only the hard phase had a large number of cracks on the surface of the rolled part due to the impacts when the material to be rolled was caught and at the end of rolling. Further, among the comparative rolls, the cemented carbide roll consisting only of the soft phase had abrasion due to the material to be rolled in the rolling part, and it was necessary to carry out cutting.

【0040】(実施例4)Co=20 wt%、残部WC(WC粒度
5.5μm)の組成(軟質相組成)を有する粉末から、ボ−
ルミル混合、乾燥及び造粒工程により平均粒径150μm
の造粒粉を作製した。次に、この造粒粉の表面を、パン
コ−ティング法により、(TiC+TaC+NbC)=9.0wt%, Co=3.0
wt%,残部WC(WC粒度4.0μm)の組成(硬質相組成)を
有する粉末で被覆し、実施例3と逆に芯材(軟質相組
成)と被覆材(硬質相組成)が50対50となる混合割
合で芯材/被覆材の造粒粉を作製した。
(Example 4) Co = 20 wt%, balance WC (WC grain size)
Powder having a composition (soft phase composition) of 5.5 μm)
Average particle size of 150 μm due to the mixing, drying and granulating process
Granulated powder of was produced. Next, the surface of this granulated powder was subjected to a pan coating method to obtain (TiC + TaC + NbC) = 9.0 wt%, Co = 3.0
Coating with powder having a composition (hard phase composition) of wt% and the balance WC (WC particle size 4.0 μm), the core material (soft phase composition) and the coating material (hard phase composition) were 50:50, contrary to Example 3. Granulated powder of the core material / coating material was prepared at a mixing ratio of

【0041】作製した芯材/被覆材の造粒粉を金型成形
し、1350〜1400℃で真空焼結し、硬質相/軟質相よりな
る直径80mm、長さ70mmの超硬合金ロールを作製
した。このようにして作製した超硬合金ロ−ルの硬質相
の組成はEDXによる評価の結果、TiとTa量が多く、軟質
相はWとCoとから形成されていた。Coの量は硬質相で7.5
wt%,軟質相部で13.5wt%であった。
The granulated powder of the prepared core material / coating material is die-molded and vacuum-sintered at 1350 to 1400 ° C. to produce a cemented carbide roll having a hard phase / soft phase and having a diameter of 80 mm and a length of 70 mm. did. As a result of evaluation by EDX, the composition of the hard phase of the cemented carbide roll thus produced was found to have a large amount of Ti and Ta, and the soft phase was formed of W and Co. The amount of Co is 7.5 in the hard phase
wt% and 13.5 wt% in the soft phase.

【0042】本発明の超硬合金の耐欠損性を以下の条件
の圧延テストにより評価した。 被圧延材:SUS304 被圧延材寸法:1.0mm厚さ×15.0mm幅×25
0m長さ 圧延回数:2回 圧延温度:900℃ 圧延速度:150m/min 圧下率:30% 本発明品は上記圧延終了後も、圧延部の摩耗はなかった
が、表面に微細なクラックが発生していたが改削を必要
とするほどではなかった。
The fracture resistance of the cemented carbide of the present invention was evaluated by a rolling test under the following conditions. Rolled material: SUS304 Rolled material dimensions: 1.0 mm thickness x 15.0 mm width x 25
0 m length Rolling frequency: 2 times Rolling temperature: 900 ° C. Rolling speed: 150 m / min Rolling reduction ratio: 30% In the product of the present invention, even after the above rolling, the rolling part was not worn, but fine cracks were generated on the surface. I was doing it, but it wasn't enough to require refurbishment.

【0043】[0043]

【発明の効果】本発明によれば、現在の超硬合金の課題
である耐欠損性の改善に関し、耐摩耗性をほとんど損な
うことなく耐欠損性の大幅な向上に有効であり、かつ、
場所による特性のバラツキが小さく、品質の安定した超
硬合金を作製することが出来る。
According to the present invention, regarding the improvement of fracture resistance, which is a problem of the present cemented carbide, it is effective in significantly improving fracture resistance with almost no loss in wear resistance, and
It is possible to produce cemented carbide with stable quality with little variation in characteristics due to location.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる超硬合金の組織の光学顕微鏡写
真である。
FIG. 1 is an optical micrograph of the structure of a cemented carbide according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C23C 16/30 (72)発明者 井上 洋明 千葉県成田市新泉13番地の2日立ツール株 式会社成田工場内 (72)発明者 坂本 達也 千葉県成田市新泉13番地の2日立ツール株 式会社成田工場内 (72)発明者 足立 重信 千葉県成田市新泉13番地の2日立ツール株 式会社成田工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location // C23C 16/30 (72) Inventor Hiroaki Inoue 13 Hitachi, Ltd. Narita, Chiba Prefecture 2 Hitachi Tool Co., Ltd. Ceremony Company Narita Factory (72) Inventor Tatsuya Sakamoto 2 Hitachi Tool Co., Ltd., 13 Narai, Narita, Chiba Prefecture Formula Company Narita Factory (72) Inventor Shigenobu Adachi 2 Hitachi Tool Co., Ltd. Narita, Chiba Prefecture Narita Factory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 硬度の異なる第一相、第二相の2種類の
相を複合させ、前記2相は第一成分として周期律表の4
a,5a,6a族の炭化物、窒化物、炭窒化物の1種または2
種以上、および第二成分として、Fe族、Cr族の1種また
は2種以上より構成されるとともに、前記第一相の周辺
部を前記第二相が覆っていることを特徴とする超硬合
金。
1. A composite of two kinds of phases, a first phase and a second phase having different hardnesses, said two phases being the first component of the periodic table 4
One or two of a, 5a, 6a carbides, nitrides, carbonitrides
One or more kinds, and as a second component, one or more kinds of Fe group and Cr group, and the second phase covers the peripheral portion of the first phase. alloy.
【請求項2】 前記超硬合金の組織が前記第一相を核と
し、そのまわりを前記第二相が覆った粒状の複合構造か
らなることを特徴とする請求項1に記載の超硬合金。
2. The cemented carbide according to claim 1, wherein the structure of the cemented carbide has a granular composite structure in which the first phase serves as a nucleus and the second phase covers the periphery thereof. .
【請求項3】 前記第一相の直径が20〜300μmである
ことを特徴とする請求項1または請求項2に記載の超硬
合金。
3. The cemented carbide according to claim 1, wherein the first phase has a diameter of 20 to 300 μm.
【請求項4】 前記第二相の厚さが5〜50μmであるこ
とを特徴とする請求項1乃至請求項3のいずれかに記載
の超硬合金。
4. The cemented carbide according to claim 1, wherein the second phase has a thickness of 5 to 50 μm.
【請求項5】 前記第一相が硬質相であり、前記第二相
が前記硬質相よりも軟らかい軟質相であることを特徴と
する請求項1乃至請求項4のいずれかに記載の超硬合
金。
5. The cemented carbide according to claim 1, wherein the first phase is a hard phase and the second phase is a soft phase softer than the hard phase. alloy.
【請求項6】 前記第二相が硬質相であり、前記第一相
が前記硬質相よりも軟らかい軟質相であることを特徴と
する請求項1乃至請求項4のいずれかに記載の超硬合
金。
6. The cemented carbide according to claim 1, wherein the second phase is a hard phase and the first phase is a soft phase softer than the hard phase. alloy.
【請求項7】 前記硬質相が全体の30〜90vol%を占める
ことを特徴とする請求項5又は請求項6に記載の超硬合
金。
7. The cemented carbide according to claim 5 or 6, wherein the hard phase occupies 30 to 90 vol% of the whole.
【請求項8】 前記硬質相中と前記軟質相中のCo量の差
が±3%以内であることを特徴とする請求項5乃至請求項
7のいずれかに記載の超硬合金。
8. The cemented carbide according to claim 5, wherein the difference in the amount of Co between the hard phase and the soft phase is within ± 3%.
【請求項9】 前記硬質相の第一成分がTiC,TaC,WC,Ti
N,TiCN,NbC,ZrC,VCの1種または2種以上から構成され
ていることを特徴とする請求項5乃至請求項8のいずれ
かに記載の超硬合金。
9. The first component of the hard phase is TiC, TaC, WC, Ti.
The cemented carbide according to any one of claims 5 to 8, which is composed of one or more of N, TiCN, NbC, ZrC, and VC.
【請求項10】 前記軟質相がWCを基とする合金からな
ることを特徴とする請求項5乃至請求項9のいずれかに
記載の超硬合金。
10. The cemented carbide according to claim 5, wherein the soft phase is composed of an alloy based on WC.
【請求項11】 前記超硬合金の表面に周期律表の4a,5
a,6a族金属の炭化物、窒化物、炭窒化物、酸炭化物、酸
窒化物、酸炭窒化物および酸化物とAlの酸化物および酸
炭化物から選ばれた単層又は2種以上の多層皮膜を被覆
したことを特徴とする請求項1乃至請求項10のいずれ
かに記載の超硬合金。
11. The surface of the cemented carbide is coated with 4a, 5 of the periodic table.
Single or two or more multi-layer coatings selected from carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, oxycarbonitrides and oxides of Al and oxides of group a and 6a metals. The cemented carbide according to any one of claims 1 to 10, characterized by being coated with.
【請求項12】 第一相材を単独で造粒した後、個々の
前記第一相粒のまわりを第二相材により覆った後、成
形、焼成することを特徴とする請求項1乃至請求項11
のいずれかに記載の超硬合金の製造方法。
12. The method according to claim 1, wherein the first phase material is independently granulated, and then the individual first phase particles are covered with the second phase material, and then molded and fired. Item 11
The method for producing a cemented carbide according to any one of 1.
JP7305089A 1994-10-31 1995-10-30 Cemented carbide and its production Pending JPH08209284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305089A JPH08209284A (en) 1994-10-31 1995-10-30 Cemented carbide and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-290449 1994-10-31
JP29044994 1994-10-31
JP7305089A JPH08209284A (en) 1994-10-31 1995-10-30 Cemented carbide and its production

Publications (1)

Publication Number Publication Date
JPH08209284A true JPH08209284A (en) 1996-08-13

Family

ID=26558060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305089A Pending JPH08209284A (en) 1994-10-31 1995-10-30 Cemented carbide and its production

Country Status (1)

Country Link
JP (1) JPH08209284A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515555A (en) * 2003-12-12 2007-06-14 ティーディーワイ・インダストリーズ・インコーポレーテッド Hybrid sintered carbide alloy composite material
JP2012526664A (en) * 2009-05-12 2012-11-01 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite cemented carbide rotary cutting tool and rotary cutting tool blank material
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
US9266171B2 (en) 2009-07-14 2016-02-23 Kennametal Inc. Grinding roll including wear resistant working surface
WO2017020444A1 (en) * 2015-07-31 2017-02-09 株洲硬质合金集团有限公司 Wolfram carbide based hard alloy and preparation method thereof
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US20190194077A1 (en) * 2017-12-27 2019-06-27 Tungaloy Corporation Cemented carbide and coated cemented carbide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007120A (en) * 2003-12-12 2013-01-10 Tdy Industries Inc Hybrid cemented carbide composite
KR101407762B1 (en) * 2003-12-12 2014-06-16 티디와이 인더스트리스, 엘엘씨 Hybrid cemented carbide composites
JP2007515555A (en) * 2003-12-12 2007-06-14 ティーディーワイ・インダストリーズ・インコーポレーテッド Hybrid sintered carbide alloy composite material
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
US8858870B2 (en) 2008-08-22 2014-10-14 Kennametal Inc. Earth-boring bits and other parts including cemented carbide
JP2012526664A (en) * 2009-05-12 2012-11-01 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite cemented carbide rotary cutting tool and rotary cutting tool blank material
US9435010B2 (en) 2009-05-12 2016-09-06 Kennametal Inc. Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US9266171B2 (en) 2009-07-14 2016-02-23 Kennametal Inc. Grinding roll including wear resistant working surface
US9643236B2 (en) 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
WO2017020444A1 (en) * 2015-07-31 2017-02-09 株洲硬质合金集团有限公司 Wolfram carbide based hard alloy and preparation method thereof
US11208708B2 (en) 2015-07-31 2021-12-28 Zhuzhou Cemented Carbide Group Corp. Ltd. Wolfram carbide based hard alloy and its preparation method
US20190194077A1 (en) * 2017-12-27 2019-06-27 Tungaloy Corporation Cemented carbide and coated cemented carbide
US10919810B2 (en) * 2017-12-27 2021-02-16 Tungaloy Corporation Cemented carbide and coated cemented carbide

Similar Documents

Publication Publication Date Title
USRE39987E1 (en) Coated turning insert
CN100478498C (en) Insertion piece with hard metal coating
EP1218557B1 (en) Coated grooving or parting insert
EP0870073B1 (en) Coated cutting insert and method of making it
KR100430361B1 (en) Coated cutting insert and method of making it
US8043729B2 (en) Coated cutting tool insert
US6200671B1 (en) Coated turning insert and method of making it
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
EP1103635B1 (en) Coated cutting insert for milling and turning applications
KR20110100621A (en) Improved coated cutting insert for rough turning
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
CN108778584A (en) Surface-coated cutting tool
JPH08209284A (en) Cemented carbide and its production
JP3526392B2 (en) Hard film coated tool, hard film coated roll, and hard film coated mold
EP1043414B1 (en) Cermet cutting insert
JP2005153098A (en) Surface coated cutting tool
JPH08209334A (en) Coated hard alloy
EP1222316B1 (en) Coated cemented carbide insert
JP3460571B2 (en) Milling tool with excellent wear resistance
JPH06246513A (en) Cutting tool made of surface coating silicon-nitride group ceramics with excellent adhesion of hard coating layer
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JPH09248703A (en) Surface coating tungsten carbide radical cemented carbide cutting tool having excellent chipping resistance in hard coating layer
JP3707195B2 (en) Surface coated cemented carbide end mill with excellent adhesion of hard coating layer
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance