JPH0820814A - Furnace wall structure of refining furnace - Google Patents

Furnace wall structure of refining furnace

Info

Publication number
JPH0820814A
JPH0820814A JP15468094A JP15468094A JPH0820814A JP H0820814 A JPH0820814 A JP H0820814A JP 15468094 A JP15468094 A JP 15468094A JP 15468094 A JP15468094 A JP 15468094A JP H0820814 A JPH0820814 A JP H0820814A
Authority
JP
Japan
Prior art keywords
brick
water
bricks
furnace
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15468094A
Other languages
Japanese (ja)
Inventor
Hironori Fukushima
裕法 福島
Teruyuki Hasegawa
輝之 長谷川
Kenji Takahashi
謙治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15468094A priority Critical patent/JPH0820814A/en
Publication of JPH0820814A publication Critical patent/JPH0820814A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To provide a furnace wall structure of a refining furnace, in which the erosion of a water-cooling panel is not developed and the heat loss from the water cooling panel can be reduced. CONSTITUTION:Graphitic bricks 8 and non-graphitic bricks 9 are complexly arranged on the surface of the watercooling panel 5 so as to stably form a slag-solidified layer 6 on the working surface of the refractories with the slag at the time of operating the refining furnace. By this constitution, the service lives of the refractory and the water-cooling panel can remarkably be improved and the unit consumption of fuel can be reduced by the reduction of the refractory cost and the restraint of the heat conducting quantity with the water- cooling panel 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は精錬炉の炉壁構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace wall structure of a refining furnace.

【0002】[0002]

【従来の技術】従来、溶融還元等の精錬炉においては、
炉体の高温部位は内張り耐火物に対する熱負荷が高いの
で通常の耐火物では溶損してしまい、そのため精錬炉の
寿命は極めて短いものであった。この熱付加を軽減さ
せ、精錬炉の寿命を延長をさせる手段として、例えば特
開平4−316982号公報に示される技術が開示され
ている。この先行技術では、炉体の高温部には耐火物の
代わりに高伝導性材料からなる水冷パネルを設け、この
水冷パネルの表面に操業中に溶融スラグを強制的に固着
生成させ保護層を形成させるか、又は水冷パネルの表面
に予め耐火物の保護層を配置して、水冷パネルの耐用性
を向上させ精錬炉の寿命を延長させている。
2. Description of the Related Art Conventionally, in refining furnaces such as smelting reduction,
Since the high temperature portion of the furnace body has a high heat load on the refractory lining, it is melted by the ordinary refractory, so that the life of the refining furnace is extremely short. As a means for reducing this heat addition and extending the life of the refining furnace, for example, the technique disclosed in Japanese Patent Laid-Open No. 4-316982 is disclosed. In this prior art, a water cooling panel made of a highly conductive material is provided in the high temperature part of the furnace body instead of a refractory, and molten slag is forcibly adhered to the surface of the water cooling panel during operation to form a protective layer. Alternatively, a protective layer of a refractory material is previously arranged on the surface of the water-cooled panel to improve the durability of the water-cooled panel and extend the life of the refining furnace.

【0003】[0003]

【発明が解決しようとする課題】この先行技術におい
て、水冷パネルの前面に直接スラグ固着層を形成させる
方法の場合、精錬炉内の温度変化に伴い、スラグ層は溶
融(剥離)・凝固を繰り返し水冷パネルへの抜熱量が一
定せず、また、水冷パネルからの熱損失が大きいという
問題がある。又、溶融物が直接水冷パネルに接している
ため、水冷パネルの金属表面の組織の劣化等による水冷
パネルの寿命低下、あるいは水冷パネルの溶損が発生す
る。
In this prior art, in the case of the method of directly forming the slag fixing layer on the front surface of the water-cooled panel, the slag layer is repeatedly melted (peeled) and solidified with the temperature change in the refining furnace. There is a problem that the amount of heat removed to the water-cooled panel is not constant, and the heat loss from the water-cooled panel is large. Further, since the melt directly contacts the water-cooled panel, the life of the water-cooled panel is shortened or the water-cooled panel is melted due to deterioration of the structure of the metal surface of the water-cooled panel.

【0004】水冷パネルの炉内側に耐火物として約30
0mmのアルミナ・カーボン煉瓦を使用した例では、アル
ミナ・カーボン煉瓦の冷却が十分に行われないので、こ
のアルミナ・カーボン煉瓦の溶損、脱落を抑制できず、
最終的には上記例の水冷パネルの前面に直接スラグ固着
層を形成させる方法と同様の状態となる。
Approximately 30 refractories are used inside the water-cooled panel furnace.
In the case of using 0 mm alumina / carbon brick, the alumina / carbon brick is not sufficiently cooled, so it is not possible to suppress the melting loss and the falling of the alumina / carbon brick.
Finally, the state is the same as the method of directly forming the slag fixing layer on the front surface of the water-cooled panel of the above example.

【0005】水冷パネルによる効果を最大限に享受でき
るようにするためには、耐火物ライニングと水冷パネル
との併用により炉壁構造の機能が低下しないような炉壁
構造の開発が必要である。
In order to maximize the effect of the water-cooled panel, it is necessary to develop a furnace wall structure that does not deteriorate the function of the furnace wall structure due to the combined use of the refractory lining and the water-cooled panel.

【0006】この発明は、上記課題を解決し、水冷パネ
ルの溶損を生ぜす、又、水冷パネルからの熱損失を低減
できる精錬炉の炉壁構造を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a furnace wall structure of a refining furnace that can cause melting loss of a water cooling panel and reduce heat loss from the water cooling panel.

【0007】[0007]

【課題を解決するための手段及び作用】本発明の精錬炉
の炉壁構造は、水冷パネルの表面に耐火物ライニングを
配してなり、耐火物ライニングはグラファイト質煉瓦と
非グラファイト質煉瓦とを複合配列してなることを特徴
とするものである。
The furnace wall structure of the refining furnace of the present invention comprises a refractory lining on the surface of the water-cooled panel, and the refractory lining is made of graphite bricks and non-graphite bricks. It is characterized by having a composite arrangement.

【0008】発明者等はこの課題を解決するために、水
冷パネル部前面の耐火物ライニングが非グラファイト
質煉瓦のアルミナ・カーボン煉瓦のみ、グラファイト
質煉瓦のグラファイト(黒鉛)煉瓦のみ、アルミナ・
カーボン煉瓦とグラファイト煉瓦を千鳥配置した3種類
について、煉瓦残存厚さと煉瓦稼働表面温度(煉瓦稼働
表面温度とは炉内の溶融物と接している煉瓦面の温度の
ことである)との関係、及び煉瓦残存厚さと水冷パネル
の抜熱量との関係を調査した。尚、耐火物煉瓦の寸法は
断面が150mm×150mmで長さが300mmである。
In order to solve this problem, the inventors of the present invention have found that the refractory lining on the front surface of the water-cooled panel is made of only non-graphite bricks made of alumina / carbon bricks, only graphite bricks made of graphite (graphite) bricks, and made of alumina
The relationship between the remaining brick thickness and the brick operating surface temperature (brick operating surface temperature is the temperature of the brick surface in contact with the melt in the furnace) for three types of staggered arrangement of carbon bricks and graphite bricks, The relationship between the remaining brick thickness and the amount of heat removed from the water-cooled panel was investigated. The refractory brick has a cross section of 150 mm × 150 mm and a length of 300 mm.

【0009】図5は煉瓦残存厚さと煉瓦稼働表面温度と
の関係を示すグラフ図である。はアルミナ・カーボン
煉瓦、はグラファイト煉瓦、は千鳥配置したアルミ
ナ・カーボン煉瓦とグラファイト煉瓦の例である。
FIG. 5 is a graph showing the relationship between the remaining brick thickness and the brick operating surface temperature. Is an alumina / carbon brick, is a graphite brick, and is an example of staggered alumina / carbon bricks and graphite bricks.

【0010】精錬炉内の溶融スラグは、接触する耐火物
(煉瓦)の表面温度が1270℃以下になると耐火物に
付着して保護層を形成する。よって、煉瓦稼働表面温度
が1270℃以下となる煉瓦の厚みに注目する。
The molten slag in the refining furnace adheres to the refractory to form a protective layer when the surface temperature of the refractory (brick) coming into contact with the refractory falls below 1270 ° C. Therefore, pay attention to the thickness of the brick whose working surface temperature is 1270 ° C or lower.

【0011】図5から明らかなようにアルミナ・カーボ
ン煉瓦では、煉瓦稼働表面温度が1270℃になる煉瓦
残存厚みは60mmである。実際には、煉瓦稼働表面温度
が1270℃になる操業条件のよるバラツキで40〜7
0mmとなる。煉瓦残存厚みは50mm以下になるとその周
辺煉瓦との拘束力が低下して、煉瓦は脱落する危険性が
大きくなる。よって、実炉において、アルミナ・カーボ
ン煉瓦を使用して煉瓦稼働表面温度を1270℃以下に
保つことは困難である。
As is clear from FIG. 5, in the alumina / carbon brick, the brick remaining thickness at which the brick working surface temperature becomes 1270 ° C. is 60 mm. Actually, the brick working surface temperature is 1270 ° C, and the fluctuation is 40 to 7 depending on the operating conditions.
0 mm. When the remaining brick thickness is 50 mm or less, the binding force with the surrounding bricks decreases, and the risk of the brick falling off increases. Therefore, in an actual furnace, it is difficult to maintain the working surface temperature of bricks at 1270 ° C. or lower by using alumina / carbon bricks.

【0012】グラファイト煉瓦を使用した場合、煉瓦稼
働表面温度が1270℃になるには煉瓦残存厚みは22
0mmである。但しグラファイト煉瓦は純カーボン質のた
め、溶融スラグが煉瓦稼働表面に付着しにくく、煉瓦稼
働表面温度が凝固点(1270℃)以下まで低下しても
グラファイト煉瓦の表面に溶融スラグが凝固・付着がし
ない。
When graphite bricks are used, the remaining brick thickness is 22 before the working surface temperature of the brick reaches 1270 ° C.
It is 0 mm. However, since the graphite brick is made of pure carbon, the molten slag does not easily adhere to the working surface of the brick, and the molten slag does not solidify or adhere to the surface of the graphite brick even when the operating surface temperature of the brick falls below the freezing point (1270 ° C). .

【0013】グラファイト質煉瓦と非グラファイト質煉
瓦とを千鳥配置した場合、接触面を通してアルミナ・カ
ーボン煉瓦からグラファイト煉瓦への熱の移動があるの
で、アルミナ・カーボン煉瓦の煉瓦稼働表面温度が12
70℃になる煉瓦残存厚みは180〜200mmとなる。
よって、脱落の危険のない十分な厚みの煉瓦を使用し
て、煉瓦稼働表面温度を1270℃以下にすることがで
きる。
When the graphite bricks and the non-graphite bricks are arranged in a staggered manner, heat is transferred from the alumina / carbon bricks to the graphite bricks through the contact surfaces, so that the brick working surface temperature of the alumina / carbon bricks is 12
The remaining brick thickness at 70 ° C is 180 to 200 mm.
Therefore, the brick working surface temperature can be set to 1270 ° C. or lower by using a brick having a sufficient thickness without risk of falling.

【0014】本発明により煉瓦の表面温度が1270℃
になれば、先ず非グラファイト質耐火煉瓦の表面にスラ
グ固着層が形成され、その後グラファイト質耐火煉瓦に
スラグ固着層が成長して、耐火煉瓦の全面にスラグ固着
層が形成されて、耐火煉瓦の損耗が停止しするので、半
永久的に使用することができる。更に炉内温度が上昇・
下降しても耐火煉瓦が残存しているため抜熱量は低位に
安定する。又、水冷パネル表面は溶融物(溶融スラグ及
び溶湯)と接触しないので、水冷パネルの劣化する危険
性がない。
According to the present invention, the surface temperature of the brick is 1270 ° C.
If so, first a slag fixing layer is formed on the surface of the non-graphitic refractory brick, then a slag fixing layer grows on the graphite refractory brick, and a slag fixing layer is formed on the entire surface of the refractory brick, Since the wear is stopped, it can be used semipermanently. Furthermore, the temperature inside the furnace rises
Even if it descends, the refractory brick remains and the heat removal amount stabilizes at a low level. Further, since the surface of the water-cooled panel does not come into contact with the melt (molten slag and molten metal), there is no risk of deterioration of the water-cooled panel.

【0015】尚、グラファイト質煉瓦とはグラファイト
煉瓦、グラファイト−SiC煉瓦、グラファイト−Si
C−AI2 3 煉瓦等で、非グラファイト質煉瓦とはA
23 −C煉瓦、MgO−C煉瓦、AI2 3 質煉
瓦、MgO質煉瓦、MgO−Cr2 3 煉瓦、SiO2
質煉瓦等である。
The graphite bricks are graphite bricks, graphite-SiC bricks and graphite-Si.
A non-graphitic brick such as C-AI 2 O 3 brick is A
I 2 O 3 -C bricks, MgO-C brick, AI 2 O 3 quality bricks, MgO bricks, MgO-Cr 2 O 3 bricks, SiO 2
Such as brick.

【0016】又、熱伝導率で区分すると、グラファイト
質煉瓦とは500℃の熱伝導率で80W/(m・K)以
上、非グラファイト質煉瓦では500℃の熱伝導率で1
0〜30W/(m・K)である。ちなみに、グラファイ
ト煉瓦の熱伝導率は500℃で120W/(m・K)、
アルミナ・カーボン煉瓦では500℃で15W/(m・
K)である。
In terms of thermal conductivity, graphite bricks have a thermal conductivity of 80 W / (m · K) or more at 500 ° C., and non-graphite bricks have a thermal conductivity of 500 ° C. of 1 or more.
It is 0 to 30 W / (m · K). By the way, the thermal conductivity of graphite bricks is 120W / (mK) at 500 ℃.
15 W / (m ・ at 500 ℃ for alumina / carbon bricks)
K).

【0017】[0017]

【実施例】本発明について転炉の操業に適用した例を示
す。図1で1は転炉、2は炉口、3は炉口2から挿入さ
れた酸素ランスで、転炉1内には溶湯7及びスラグ6が
ある。4は耐火煉瓦で、5は水冷パネルである。
EXAMPLE An example of applying the present invention to the operation of a converter will be shown. In FIG. 1, 1 is a converter, 2 is a furnace port, 3 is an oxygen lance inserted from the furnace port 2, and there is a molten metal 7 and a slag 6 in the converter 1. 4 is a refractory brick, and 5 is a water-cooled panel.

【0018】水冷パネル5は転炉1の最大熱負荷部であ
る、スラグ6との接触部及びその直上のガス空間部に配
置される。
The water-cooled panel 5 is arranged at the contact portion with the slag 6, which is the maximum heat load portion of the converter 1, and at the gas space portion immediately above it.

【0019】炉体容量120tonの転炉1に酸素ラン
ス3から送酸量50,000m3 /hr,溶湯温度は1
400〜1700℃の条件で操業した。
In a converter 1 having a furnace body capacity of 120 tons, an oxygen lance 3 supplies an acid of 50,000 m 3 / hr, and a molten metal temperature is 1
It operated under the condition of 400 to 1700 ° C.

【0020】(実施例1)図2は本発明の実施例の水冷
パネル部の拡大断面図である。図3は本発明の実施例の
水冷パネル部を精錬炉から見た平面図である。
(Embodiment 1) FIG. 2 is an enlarged sectional view of a water-cooled panel portion according to an embodiment of the present invention. FIG. 3 is a plan view of the water-cooled panel section of the embodiment of the present invention viewed from the refining furnace.

【0021】本発明ではアルミナ・カーボン煉瓦8とグ
ラファイト煉瓦9とを図2に示すように千鳥状(4面の
接触)に水冷パネルの前面に配置した。
In the present invention, the alumina / carbon bricks 8 and the graphite bricks 9 are arranged in a zigzag pattern (contact on four sides) in front of the water-cooled panel as shown in FIG.

【0022】水冷パネル前面の耐火物(アルミナ・カー
ボン煉瓦及びグラファイト煉瓦)の断面が150mm×1
50mmで長さを300mmとし操業を開始したところ、煉
瓦の残存厚みが約200mmの時点から煉瓦前面部にスラ
グの凝固・付着が開始され、アルミナ・カーボン煉瓦及
びグラファイト煉瓦の稼働表面も完全にスラグの固着層
で覆われ、それ以降の操業温度の上昇、下降にもかかわ
らず水冷パネルの抜熱量はほぼ一定となり、その抜熱量
はグラファイト煉瓦単独で施工した場合の約1/3程度
に低減することができた。
The cross section of the refractory (alumina / carbon brick and graphite brick) on the front of the water-cooled panel is 150 mm × 1.
When the operation was started with a length of 50 mm and a length of 300 mm, the slag solidified and adhered to the front of the brick when the remaining brick thickness was about 200 mm, and the working surface of the alumina / carbon brick and graphite brick was completely slag. The heat removal amount of the water-cooled panel becomes almost constant despite the rise and fall of the operating temperature after that, and the heat removal amount is reduced to about 1/3 of that when the graphite brick is used alone. I was able to.

【0023】又、水冷パネル前面の千鳥状に配置した耐
火物の損耗はスラグの固着層により停止し、精錬炉の補
修まで耐用し、半永久的に使用できることが確認され
た。
Further, it was confirmed that the wear of the refractory material arranged in a staggered pattern on the front surface of the water-cooled panel was stopped by the fixed layer of the slag, and the smelting furnace could be repaired and used semipermanently.

【0024】(実施例2)図4は本発明の実施例2の水
冷パネル部を精錬炉から見た平面図である。図4はアル
ミナ・カーボン煉瓦とグラファイト煉瓦とが一段置き
(2面接触)配置したものである。
(Embodiment 2) FIG. 4 is a plan view of a water-cooled panel portion according to Embodiment 2 of the present invention as viewed from a refining furnace. In FIG. 4, an alumina / carbon brick and a graphite brick are arranged one by one (two-side contact).

【0025】この実施例2でも、実施例1と同じ効果が
確認された。煉瓦の配置については、縦に一列置き(2
面接触)配置でもよい。
The same effect as in Example 1 was confirmed in Example 2 as well. Place bricks vertically in a row (2
It may be a surface contact) arrangement.

【0026】尚、水冷パネルの耐火煉瓦側の形状は冷却
効率を上げるために突起をつけてもよい。なぜならグラ
ファイト煉瓦は加工性が良いため、水冷パネルの前面の
形状に合わせて加工しやすい。アルミナ・カーボン煉瓦
の場合は水冷パネルと煉瓦の間にスタンプ材を施工して
行うことが築炉の作業上好ましいが、直接配置しても本
発明の効果を害するものではない。
The shape of the water-cooled panel on the refractory brick side may be provided with protrusions in order to improve cooling efficiency. Because graphite brick has good workability, it is easy to process it according to the shape of the front surface of the water-cooled panel. In the case of alumina-carbon bricks, it is preferable to apply a stamp material between the water-cooled panel and the bricks for the work of the furnace for construction, but the direct arrangement does not impair the effects of the present invention.

【0027】本実施例では、グラファイト質煉瓦と非グ
ラファイト質煉瓦とを複合配列する例として、千鳥状に
配列する例と一段置きに配列する例とを述べたが、複合
配列の例はこれに限られるものではなく、二段置き、三
段置き等、接触面を通してアルミナ・カーボン煉瓦から
グラファイト煉瓦への熱の移動があり、かつ非グラファ
イト質耐火煉瓦の表面形成されたスラグ固着層がグラフ
ァイト質耐火煉瓦に成長するような作用を生じる範囲
で、任意の複合配列が許される。
In the present embodiment, as an example of the composite arrangement of the graphite bricks and the non-graphite bricks, an example of staggered arrangement and an example of arrangement at every other stage are described. It is not limited, but there is heat transfer from the alumina / carbon brick to the graphite brick through the contact surface, such as two-step or three-step setting, and the slag fixing layer formed on the surface of the non-graphite refractory brick is graphite. Any composite array is permitted, as long as it produces the effect of growing into a refractory brick.

【0028】また、以上の実施例において精錬炉として
転炉型の精錬炉に適用した場合について述べたが、高熱
負荷をを伴う鉄浴式溶融還元炉、電気炉、AOD,VO
D等の精錬炉にも同様に適用できることはいうまでもな
い。
In the above embodiments, the case where the present invention is applied to a converter type refining furnace as a refining furnace has been described, but an iron bath type smelting reduction furnace with a high heat load, an electric furnace, AOD, VO.
It goes without saying that the same applies to refining furnaces such as D.

【0029】[0029]

【発明の効果】この発明によれば、水冷パネルの表面
に、グラファイト質煉瓦と非グラファイト質煉瓦とを複
合配列することにより、精錬炉の操業時スラグによっ
て、耐火物の稼働表面にスラグ凝固層を安定して形成す
るようにしたので、耐火物の寿命及び水冷パネルの寿命
を飛躍的に向上することができ、耐火物コストの低減及
び水冷パネルによる抜熱量の抑制による燃料原単位の低
減を図ることができる。
According to the present invention, by arranging a composite of graphite bricks and non-graphite bricks on the surface of the water-cooled panel, the slag solidified layer on the working surface of the refractory by the slag during operation of the refining furnace. The stable life of the refractory and the life of the water-cooled panel can be dramatically improved, and the cost of the refractory can be reduced and the unit fuel consumption can be reduced by suppressing the amount of heat removed by the water-cooled panel. Can be planned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の精錬炉の炉壁構造を示す断面
図である。
FIG. 1 is a sectional view showing a furnace wall structure of a refining furnace according to an embodiment of the present invention.

【図2】本発明の実施例1の水冷パネル部の拡大断面図
である。
FIG. 2 is an enlarged cross-sectional view of the water-cooled panel portion according to the first embodiment of the present invention.

【図3】本発明の実施例1の水冷パネル部を精錬炉から
見た平面図である。
FIG. 3 is a plan view of the water-cooled panel unit according to the first embodiment of the present invention viewed from a refining furnace.

【図4】本発明の実施例2の水冷パネル部を精錬炉から
見た平面図である。
FIG. 4 is a plan view of a water-cooled panel unit according to a second embodiment of the present invention as viewed from a refining furnace.

【図5】煉瓦残存厚さと煉瓦稼働表面温度との関係を示
すグラフである。
FIG. 5 is a graph showing the relationship between the remaining brick thickness and the brick operating surface temperature.

【符号の説明】[Explanation of symbols]

1 転炉 2 炉口 3 酸素ランス 4 耐火煉瓦 5 水冷パネル 6 溶融スラグ 7 溶湯 8 グラファイト質煉瓦 9 アルミナ・カーボン煉瓦 1 Converter 2 Furnace mouth 3 Oxygen lance 4 Refractory brick 5 Water-cooled panel 6 Molten slag 7 Molten metal 8 Graphite brick 9 Alumina / carbon brick

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水冷パネルの表面に耐火物ライニングを
配してなり、耐火物ライニングはグラファイト質煉瓦と
非グラファイト質煉瓦とを複合配列してなることを特徴
とする精錬炉の炉壁構造。
1. A furnace wall structure of a refining furnace, wherein a refractory lining is arranged on the surface of a water-cooled panel, and the refractory lining is a composite array of graphite bricks and non-graphite bricks.
JP15468094A 1994-07-06 1994-07-06 Furnace wall structure of refining furnace Withdrawn JPH0820814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15468094A JPH0820814A (en) 1994-07-06 1994-07-06 Furnace wall structure of refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15468094A JPH0820814A (en) 1994-07-06 1994-07-06 Furnace wall structure of refining furnace

Publications (1)

Publication Number Publication Date
JPH0820814A true JPH0820814A (en) 1996-01-23

Family

ID=15589573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15468094A Withdrawn JPH0820814A (en) 1994-07-06 1994-07-06 Furnace wall structure of refining furnace

Country Status (1)

Country Link
JP (1) JPH0820814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118375A (en) * 2014-12-22 2016-06-30 ポスコ Cooling device of furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118375A (en) * 2014-12-22 2016-06-30 ポスコ Cooling device of furnace

Similar Documents

Publication Publication Date Title
CN100408956C (en) Cooling element
CA1315327C (en) Metallurgical vessel
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
JPH0820814A (en) Furnace wall structure of refining furnace
JP2000119713A (en) Stave
JP3448339B2 (en) Refractory lining of molten metal container
CN101784859B (en) iron bath type smelting reduction furnace
JPH07292403A (en) Brick structure of iron tapping hole of blast furnace
JPH04316983A (en) Furnace wall structure for metallurgic furnace
JPH09263819A (en) Method for lining refractory of converter bottom
JP2878438B2 (en) Lining structure of vacuum degassing device intermediate tank
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
US7306763B2 (en) Metallurgical vessel for melting device for liquid metals
JPH0995709A (en) Water-cooling molten slag trough
Biswas et al. Refractory Practice in Electric Arc Furnace
JPH11217261A (en) Molten metal-holding vessel
JP2001049316A (en) Stave for shaft furnace type metallurgical furnace and disposing structure thereof
JP2000345222A (en) Complex type cooling stave
KR100229909B1 (en) Ladle structure
JPH04316982A (en) Operating method of metallurgic furnace and metallurgic furnace
JPH01155189A (en) Method of cooling furnace wall refractory of industrial kiln
JPH11294964A (en) Method for prolonging lifetime of refractory for molten metal ceramic furnace
JPH0532511Y2 (en)
JPS6293047A (en) Ladle structure
JPH02165863A (en) Lining structure for bottom of ladle of false bottom type

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002