JPH08207043A - Production of pellet composed of magnetic resin composition - Google Patents

Production of pellet composed of magnetic resin composition

Info

Publication number
JPH08207043A
JPH08207043A JP3605695A JP3605695A JPH08207043A JP H08207043 A JPH08207043 A JP H08207043A JP 3605695 A JP3605695 A JP 3605695A JP 3605695 A JP3605695 A JP 3605695A JP H08207043 A JPH08207043 A JP H08207043A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
temperature
carbon dioxide
powder
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3605695A
Other languages
Japanese (ja)
Inventor
Keiichiro Suzuki
啓一郎 鈴木
Saburo Takahashi
三郎 高橋
Masato Tada
正人 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP3605695A priority Critical patent/JPH08207043A/en
Publication of JPH08207043A publication Critical patent/JPH08207043A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE: To obtain pellets having a uniform shape by kneading a powder of an oxide magnetic material wherein water content is a predetermined value or less and the generation amt. of carbon dioxide at the time of heating in nitrogen at predetermined temp. for a predetermined time is a predetermined amt. or less with a thermoplastic resin and pelletizing the resulting kneaded matter. CONSTITUTION: Pellets of a magnetic resin composn. are formed by kneading a powder of an oxide magnetic material characterized by that moisture content is 1000ppm or less and the generation amt. of carbon dioxide at the time of heating in nitrogen at 400 deg.C for 2hr is 400ppm or less with a thermoplastic resin and pelletizing the molten kneaded compsn. by a known pelletizing method such as hot cutting method, a mist-cut method or a strand cutting method. Herein, water content is calculated by a Karl Fischer coulometric titration method and the generation amt. of carbon dioxide is calculated by a method wherein 20mg of a powder of a magnetic material is put in a 1000ml combustion tube to be heated at 400 deg.C for 2hr in nitrogen gas within an electric crucible oven and the generated gas is collected through a calcium chloride tube and the amt. thereof is calculated by a gas chromatograph.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂と酸化物
磁性体からなる磁性樹脂組成物ペレットの製造方法に関
する。
FIELD OF THE INVENTION The present invention relates to a method for producing pellets of a magnetic resin composition comprising a thermoplastic resin and an oxide magnetic material.

【0002】[0002]

【発明の背景】熱可塑性樹脂をバインダ−とし各種酸化
物磁性体粉末を含有した磁性体組成物は、電気電子部
品、自動車部品などへの応用が試みられている。これら
の分野に限らず効率よく製品を成形することは経済的に
極めて重要である。
BACKGROUND OF THE INVENTION Magnetic substance compositions containing various oxide magnetic substance powders using a thermoplastic resin as a binder have been attempted to be applied to electric and electronic parts, automobile parts and the like. Not only in these fields, it is economically very important to mold a product efficiently.

【0003】[0003]

【従来の技術】従来、熱可塑性樹脂をバインダ−とし酸
化物磁性体粉末を含有した組成物は、溶融混練の際、押
出量が変動する場合が多く、特に磁性体粉末の含有量が
多くなるに従い、この傾向は顕著であった。通常、溶融
混練された組成物はホットカット法、ミストカット法、
ストランドカット法などのペレット化法によってペレッ
ト形状に成形される。その後、射出成形機などの金型内
に供給されて使用する形状に成形され製品に組み込まれ
る。しかしながら、これら成形品ペレットを溶融混練法
により得る際、押出量が変動することによりペレット形
状が極端に不均一となる場合があった。組成物のペレッ
ト形状が不均一になった場合、例えば射出成形法によっ
て製品を成形する際、計量が不安定となり充填不良、成
型機の負荷増大などの問題が生じる。この為、得られる
成形品の各種特性に影響を与える場合も見られた。
2. Description of the Related Art Conventionally, a composition containing an oxide magnetic substance powder with a thermoplastic resin as a binder often has a variable extrusion amount at the time of melt-kneading, and particularly the content of the magnetic substance powder increases. Therefore, this tendency was remarkable. Usually, the melt-kneaded composition is hot cut method, mist cut method,
It is formed into a pellet shape by a pelletizing method such as a strand cut method. After that, it is supplied into a mold such as an injection molding machine, molded into a shape to be used, and incorporated into a product. However, when these molded product pellets are obtained by the melt-kneading method, there are cases where the pellet shape becomes extremely uneven due to a change in the extrusion amount. When the pellet shape of the composition becomes non-uniform, for example, when molding a product by an injection molding method, there are problems such as unstable metering, poor filling, and increased load on the molding machine. For this reason, there are cases where it affects various characteristics of the obtained molded product.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、熱可
塑性樹脂をバインダ−とし酸化物磁性体粉末を含有した
組成物に於いて、均一形状を持つペレットを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pellet having a uniform shape in a composition containing a binder made of a thermoplastic resin and an oxide magnetic powder.

【0005】[0005]

【課題を解決するための手段】本発明は上記のような押
出量の変動が何に起因するのかを探っているうちに得ら
れたものであり、その基本的考えは下記の通りである。
金属酸化物磁性体粉末は、水との親和性に富んでおり、
且つ、いったん磁性体粉末に結合した水は簡単には除去
することができない。また、金属酸化物磁性体粉末から
は、二酸化炭素が発生するという事実もある。これは磁
性体の製造過程で或いはそれを粉砕した後に表面に吸着
したものと推定される。その結果、熱可塑性樹脂と該磁
性体粉末との組成物を混練する場合、磁性体粉末から発
生すると考えられる水と二酸化炭素の両方が混練機内部
の圧力を急激に上昇させ、押出量の変動をもたらしてペ
レット形状に変動が生ずるものと考えられる。これに対
し、含水率と炭酸ガス含有量を所定量以下にすることに
より、本願発明の課題が解決できることがわかったので
ある。
The present invention was obtained while investigating what is causing the variation of the extrusion amount as described above, and its basic idea is as follows.
The metal oxide magnetic powder has a high affinity with water,
Moreover, the water once bound to the magnetic powder cannot be easily removed. There is also the fact that carbon dioxide is generated from the metal oxide magnetic powder. This is presumed to have been adsorbed on the surface during the manufacturing process of the magnetic substance or after crushing it. As a result, when the composition of the thermoplastic resin and the magnetic powder is kneaded, both water and carbon dioxide, which are considered to be generated from the magnetic powder, rapidly increase the pressure inside the kneader, and the fluctuation of the extrusion rate. It is considered that the pellet shape changes due to the above. On the other hand, it has been found that the problems of the present invention can be solved by setting the water content and the carbon dioxide content to be equal to or less than the predetermined amounts.

【0006】即ち、本発明の要旨とするところは含水率
が1000ppm以下であり、窒素中で400℃、2時
間加熱した際の二酸化炭素発生量が400ppm以下で
ある酸化物磁性体粉末と熱可塑性樹脂を混練してペレッ
ト状とすることを特徴とする磁性体組成物の製造方法で
ある。以下、本発明を詳細に説明する。
That is, the gist of the present invention is that the water content is 1000 ppm or less, and the amount of carbon dioxide generated when heated in nitrogen at 400 ° C. for 2 hours is 400 ppm or less and an oxide magnetic powder and thermoplasticity. A method for producing a magnetic material composition, which comprises kneading a resin to form a pellet. Hereinafter, the present invention will be described in detail.

【0007】本発明では、含水率が1000ppm以
下、好ましくは500ppm以下、より好ましくは30
0ppm以下であり、二酸化炭素発生量が400ppm
以下、より好ましくは300ppm以下、より好ましく
は250ppm以下である酸化物磁性体粉末を使用す
る。酸化物磁性体粉末の含水率が1000ppmを超え
ると、押出機中で熱可塑性樹脂と混練する際、水が発生
して押出量の変動が生じ、ペレット形状の不均一化が顕
著になり、好ましくないためである。また、酸化物磁性
体粉末の二酸化炭素発生量が400ppmを超えると、
押出機中で混練する際、二酸化炭素が発生して押出量の
変動が生じ、ペレット形状の不均一化が顕著になり、好
ましくないためである。
In the present invention, the water content is 1000 ppm or less, preferably 500 ppm or less, more preferably 30 ppm.
0ppm or less, carbon dioxide generation is 400ppm
Hereinafter, the oxide magnetic material powder having a content of 300 ppm or less, more preferably 300 ppm or less, more preferably 250 ppm or less is used. When the water content of the oxide magnetic powder exceeds 1000 ppm, when kneading with the thermoplastic resin in the extruder, water is generated, the amount of extrusion changes, and the pellet shape becomes nonuniform, which is preferable. Because there is no. When the amount of carbon dioxide generated in the oxide magnetic powder exceeds 400 ppm,
This is because when kneading in an extruder, carbon dioxide is generated, the amount of extrusion varies, and the pellet shape becomes significantly uneven, which is not preferable.

【0008】ここで、含水率はカールフィシャー電量滴
定法により求めたものである。また、二酸化炭素発生量
は100ml燃焼管中に磁性体粉末20mgを入れ電気
坩堝炉で窒素ガス中、400℃に2時間加熱し、さらに
塩化カルシウム管を通し、発生ガスを採取し、ガスクロ
マトグラフで求めたものである。
Here, the water content is obtained by the Karl Fischer coulometric titration method. In addition, the amount of carbon dioxide generated was such that 20 mg of magnetic powder was placed in a 100 ml combustion tube and heated in an electric crucible furnace at 400 ° C for 2 hours in nitrogen gas. It is what I asked for.

【0009】このような含水率が1000ppm以下で
あり、二酸化炭素発生量を400ppm以下とする酸化
物磁性体粉末にするには、次のような方法が好適に採用
される。焼成された酸化物磁性体を粉砕後、混練温度よ
り20℃以上高い温度であって、且つ磁性体の焼成温度
以下の温度で、1時間以上、できれば3時間以上加熱す
る方法である。加熱温度は好ましくは混練温度より50
℃以上高い温度であって、且つ磁性体の焼成温度以下の
温度でなされる。ここで混練温度というのは樹脂の温度
そのものを現実には明確に測定できるわけではないので
混練装置において通常測定されている温度計での表示で
ある。
In order to obtain an oxide magnetic powder having a water content of 1000 ppm or less and a carbon dioxide generation amount of 400 ppm or less, the following method is preferably adopted. This is a method in which the calcined oxide magnetic material is pulverized and then heated at a temperature higher than the kneading temperature by 20 ° C. or higher and at a temperature lower than the calcining temperature of the magnetic material for 1 hour or longer, preferably 3 hours or longer. The heating temperature is preferably 50 rather than the kneading temperature.
It is performed at a temperature higher than ℃ and lower than the firing temperature of the magnetic material. Here, the kneading temperature is a display with a thermometer which is usually measured in a kneading device, because the temperature of the resin itself cannot be clearly measured in reality.

【0010】かかる混練温度による表示の代わりに、次
の様に表現しても良い。即ち、熱可塑性樹脂が結晶性熱
可塑性樹脂である場合には、結晶性熱可塑性樹脂の結晶
融点の100℃以上高い温度であって、且つ磁性体の焼
成温度以下の温度で加熱した酸化物磁性体粉末であり、
熱可塑性樹脂が非晶性熱可塑性樹脂である場合には、非
晶性熱可塑性樹脂のガラス転移温度の150℃以上高い
温度であって、且つ磁性体の焼成温度以下の温度で加熱
した酸化物磁性体粉末である。結晶性熱可塑性樹脂の場
合、加熱温度は好ましくは結晶融点の120℃以上高い
温度であって、且つ磁性体の焼成温度以下の温度であ
り、より一層好ましくは結晶融点の150℃以上高い温
度であって、且つ磁性体の焼成温度以下の温度が採用さ
れる。また、非晶性熱可塑性樹脂の場合、加熱温度は好
ましくはガラス転移温度の170℃以上高い温度であっ
て磁性体の焼成温度以下の温度であり、より一層好まし
くはガラス転移温度の200℃以上高い温度であって、
且つ磁性体の焼成温度以下の温度が採用される。
Instead of the display by the kneading temperature, it may be expressed as follows. That is, when the thermoplastic resin is a crystalline thermoplastic resin, the oxide magnetic material is heated at a temperature 100 ° C. or higher higher than the crystalline melting point of the crystalline thermoplastic resin and not higher than the firing temperature of the magnetic material. Body powder,
When the thermoplastic resin is an amorphous thermoplastic resin, an oxide heated at a temperature higher than the glass transition temperature of the amorphous thermoplastic resin by 150 ° C. or more and at a temperature not higher than the firing temperature of the magnetic material. It is a magnetic powder. In the case of a crystalline thermoplastic resin, the heating temperature is preferably a temperature higher than the crystal melting point by 120 ° C. or higher and a temperature lower than the firing temperature of the magnetic material, and more preferably a temperature higher than the crystal melting point by 150 ° C. or higher. A temperature that is lower than or equal to the firing temperature of the magnetic material is used. In the case of an amorphous thermoplastic resin, the heating temperature is preferably 170 ° C. or higher higher than the glass transition temperature and lower than the firing temperature of the magnetic material, and more preferably 200 ° C. or higher glass transition temperature. High temperature,
Moreover, a temperature lower than the firing temperature of the magnetic material is adopted.

【0011】脱水工程での雰囲気は大気であってもよ
く、特に限定されるものではないが、好適には、窒素或
いは不活性ガスであるが、100℃以下の冷却過程に於
いては乾燥空気も比較的好適に用いられる。加熱した後
は、冷却し、容器内が水分と二酸化炭素を実質的に含ま
ない雰囲気とするガスバリヤー製容器に密封保存され、
適宜樹脂との混練に供与されるか、或いは必要により冷
却後、樹脂と混練される。後者の場合、樹脂の分解温度
以上で熱処理したときには混練温度以下に冷却した後
に、熱可塑性樹脂と混練されるが、熱処理温度が樹脂の
分解温度より低いときには冷却しても良いが、そのまま
熱可塑性樹脂と混練されてもよい。磁性樹脂組成物はこ
のような酸化物磁性体粉末と熱可塑性樹脂を公知の方法
で混練しペレット化することで得られる。
The atmosphere in the dehydration step may be atmospheric air, and although it is not particularly limited, nitrogen or an inert gas is preferable, but dry air is used in the cooling process at 100 ° C. or lower. Is also preferably used. After heating, it is cooled, and the container is hermetically stored in a gas barrier container that has an atmosphere containing substantially no water and carbon dioxide,
Appropriate for kneading with the resin, or if necessary, after cooling, kneading with the resin. In the latter case, when it is heat-treated at a temperature higher than the decomposition temperature of the resin, it is cooled to a temperature lower than the kneading temperature and then kneaded with a thermoplastic resin. It may be kneaded with a resin. The magnetic resin composition can be obtained by kneading such an oxide magnetic powder and a thermoplastic resin by a known method and pelletizing.

【0012】ガスバリヤー製容器内の雰囲気は水分と二
酸化炭素を実質的に含まない限り、随意であるが、通常
は窒素ガス或いは不活性ガスが用いられる。ここで「実
質的に」とは酸化物磁性体粉末の含水率が1000pp
m以下であり、窒素中で400℃、2時間加熱した際の
二酸化炭素発生量が400ppm以下であるように保持
される程度の水分、二酸化炭素を含有しても良いという
意味であり、その許容含有率は保存期間、磁性体粉末の
種類、粒度分布等に依存する。
The atmosphere in the gas barrier container is optional as long as it does not substantially contain water and carbon dioxide, but nitrogen gas or an inert gas is usually used. Here, "substantially" means that the water content of the oxide magnetic powder is 1000 pp.
m or less, and means that it may contain water and carbon dioxide to the extent that the amount of carbon dioxide generated when heated in nitrogen at 400 ° C. for 2 hours is 400 ppm or less, and its allowable value. The content rate depends on the storage period, the type of magnetic powder, the particle size distribution, and the like.

【0013】また、酸化物磁性体粉末としては、一般式
MO・Fe23(但し、Mは二価金属元素)で表される
スピネル型フェライト、一般式3M23・5Fe2
3(但し、Mはイットリウムまたは三価希土類元素)で
表されるガーネット型フェライト、一般式MO・6Fe
23(Mは二価金属元素)で表されるマグネトプランバ
イト型フェライト等のフェライト系磁性体粉末等が用い
られる。
Further, as the oxide magnetic powder, the general formula MO · Fe 2 O 3 (where, M is a divalent metal element) spinel ferrite represented by the general formula 3M 2 O 3 · 5Fe 2 O
Garnet type ferrite represented by 3 (however, M is yttrium or trivalent rare earth element), general formula MO ・ 6Fe
Ferrite-based magnetic powder such as magnetoplumbite ferrite represented by 2 O 3 (M is a divalent metal element) is used.

【0014】一般式MO・Fe23(但し、Mは二価金
属元素)で表されるスピネル型フェライトとしては、M
n−Zn系フェライト、Ni−Zn系フェライト、Mg
−Zn系フェライト、Cu−Zn系フェライト、Li−
Zn系フェライト、Ni−Cu−Co系フェライトなど
の複合フェライト、Mnフェライト、Coフェライト、
Niフェライトなどの単元系フェライトが挙げられる。
A spinel type ferrite represented by the general formula MO.Fe 2 O 3 (where M is a divalent metal element) is M
n-Zn ferrite, Ni-Zn ferrite, Mg
-Zn ferrite, Cu-Zn ferrite, Li-
Zn-based ferrite, composite ferrite such as Ni-Cu-Co-based ferrite, Mn ferrite, Co ferrite,
Examples include unitary ferrites such as Ni ferrite.

【0015】また、一般式3M23・5Fe23(但
し、Mはイットリウムまたは三価希土類元素)で表され
るガーネット型フェライトとしては、イットリウム鉄ガ
ーネット(YIG系材料)、Ho置換ガーネット系フェ
ライト、Gd置換ガーネット系フェライトなどが挙げら
れる。
The garnet-type ferrite represented by the general formula 3M 2 O 3 .5Fe 2 O 3 (where M is yttrium or a trivalent rare earth element) is yttrium iron garnet (YIG-based material) or Ho-substituted garnet. Examples thereof include a system ferrite and a Gd-substituted garnet system ferrite.

【0016】また、一般式MO・6Fe23で表される
マグネトプランバイト型フェライトとしては、ストロン
チウム・フェライト、バリウム・フェライトが挙げられ
る。
Examples of the magnetoplumbite type ferrite represented by the general formula MO.6Fe 2 O 3 include strontium ferrite and barium ferrite.

【0017】他方、熱可塑性樹脂としては特に制限され
るものではない。成形温度が低く、例えば150℃程度
のものであっても良いし、成形温度が高く、例えば35
0℃程度のものであっても差し支えない。成形温度に拘
わりなく、水や二酸化炭素の発生は生じるからである。
しかしながら、中でもガスバリヤー性が高く、酸化物磁
性体との接触によっても分解することがなく、耐熱性に
優れるポリフェニレンスルフィド樹脂は、酸化物磁性体
を粉砕後の未だ高い温度である間に、混合することが可
能であり、しかもペレット化後に磁性体粉末を水や二酸
化炭素から遮断するに優れており、好適である。
On the other hand, the thermoplastic resin is not particularly limited. The molding temperature may be low, for example, about 150 ° C., or the molding temperature is high, for example, 35 ° C.
It does not matter if it is about 0 ° C. This is because water and carbon dioxide are generated regardless of the molding temperature.
However, among them, the polyphenylene sulfide resin, which has a high gas barrier property, does not decompose even when contacted with the oxide magnetic material, and has excellent heat resistance, can be mixed while the oxide magnetic material is still at a high temperature after pulverization. And is excellent in shielding the magnetic powder from water and carbon dioxide after pelletization, which is preferable.

【0018】ポリアミドのような吸湿性樹脂は別として
通常の熱可塑性樹脂においてはその含水率は特に限定さ
れない。これは熱可塑性樹脂が、熱可塑性樹脂の融点以
下で充分に除去できるためである。これに対し、吸湿性
樹脂の場合は例えば熱風乾燥のような吸湿した水分を除
去する前処理が必要である。
Water content is not particularly limited in ordinary thermoplastic resins other than hygroscopic resins such as polyamide. This is because the thermoplastic resin can be sufficiently removed below the melting point of the thermoplastic resin. On the other hand, in the case of a hygroscopic resin, a pretreatment for removing the absorbed moisture, such as hot air drying, is required.

【0019】本発明組成物は熱可塑性樹脂と上記酸化物
磁性体粉末よりなり、その組成は特に限定されるもので
はないが、熱可塑性樹脂100部に対し、酸化物磁性体
粉末100〜1900部含有する組成物に於いて好適に
用いられる。
The composition of the present invention comprises a thermoplastic resin and the above oxide magnetic powder, and the composition is not particularly limited, but 100 to 1900 parts of the oxide magnetic powder per 100 parts of the thermoplastic resin. It is preferably used in the composition containing it.

【0020】本発明組成物は上記酸化物磁性体粉末と熱
可塑性樹脂の他に本発明の趣旨を損なわない限り、任意
のものを包含することができる。例えば、ガラス繊維、
炭素繊維、チタン酸カリウム、アスベスト、炭化珪素、
セラミックス繊維、金属繊維、窒化珪素などの繊維状強
化剤;硫酸バリウム、硫酸カルシウム、カオリン、クレ
ー、ベントナイト、セリナイト、ゼオライト、マイカ、
雲母、ネフェリンシナイト、タルク、アタルパルジャイ
ト、ウオラストナイト、珪酸カルシウム、炭酸カルシウ
ム、炭酸マグネシウム、ドロマイト、三酸化アンチモ
ン、酸化亜鉛、二硫化モリブデン、黒鉛、石膏、ガラス
ビーズ、ガラスバルーン、石英粉、溶融シリカ、結晶シ
リカなどの無機物;ポリアミド、ポリエーテルエーテル
ケトン、ポリエチレン、ポリエチレンテレフタレート、
ポリブチレンテレフタレート、全芳香族ポリエステル、
ポリオキシメチレン、ポリオキシエチレン、ポリスチレ
ン、ポリカーボネート、ポリエーテルスルフォン、ポリ
スルホン、ポリフェニレンエーテル、ポリアリレート、
ポリエーテルイミド、ポリアミドイミド、ポリメチルペ
ンテン等の熱可塑性樹脂及びその変成物;エポキシ樹
脂、ポリジアリル樹脂、シリコーン樹脂等の熱硬化性樹
脂;離型剤、酸化防止剤、紫外線吸収剤等の加工助剤が
例示される。
The composition of the present invention may include any one other than the oxide magnetic powder and the thermoplastic resin as long as the gist of the present invention is not impaired. For example, glass fiber,
Carbon fiber, potassium titanate, asbestos, silicon carbide,
Fibrous reinforcing agents such as ceramic fibers, metal fibers and silicon nitride; barium sulfate, calcium sulfate, kaolin, clay, bentonite, serinite, zeolite, mica,
Mica, nepheline sinite, talc, atalpulgite, wollastonite, calcium silicate, calcium carbonate, magnesium carbonate, dolomite, antimony trioxide, zinc oxide, molybdenum disulfide, graphite, gypsum, glass beads, glass balloons, quartz powder Inorganic substances such as fused silica and crystalline silica; polyamide, polyether ether ketone, polyethylene, polyethylene terephthalate,
Polybutylene terephthalate, wholly aromatic polyester,
Polyoxymethylene, polyoxyethylene, polystyrene, polycarbonate, polyether sulfone, polysulfone, polyphenylene ether, polyarylate,
Thermoplastic resins such as polyetherimide, polyamideimide, polymethylpentene and their modified products; thermosetting resins such as epoxy resins, polydiallyl resins, silicone resins; processing aids for mold release agents, antioxidants, UV absorbers, etc. An agent is illustrated.

【0021】溶融混練された組成物はホットカット法、
ミストカット法、ストランドカット法などの公知のペレ
ット化法によってペレット形状に成形される。
The melt-kneaded composition is hot cut,
It is formed into a pellet shape by a known pelletizing method such as a mist cut method or a strand cut method.

【0022】[0022]

【実施例】まず、実施例で示す物性の測定法を示す。 (含水率の測定法)測定装置は平沼微量水分測定装置A
Q−5型を使用し、試料量1gを秤量して測定した。
EXAMPLES First, methods for measuring physical properties shown in Examples will be described. (Measurement method of water content) The measuring device is Hiranuma Trace Moisture Measuring Device A
A Q-5 type was used, and a sample amount of 1 g was weighed and measured.

【0023】(二酸化炭素発生量の測定法)100ml
燃焼管中に磁性体粉末20mgを入れ電気坩堝炉で窒素
ガス中、400℃に2時間加熱し、さらに塩化カルシウ
ム管を通し、発生ガスを採取する。次いで発生ガスをガ
スクロマトグラフ(島津製作所製GC−7A)へ導入
し、Unibeas C 60/80meshのカラム
を使用しカラム温度120℃にて測定して求めたもので
ある。尚、使用ガスはヘリウムであり、流量は50ml
/minである。また、検出器はTCDであり、注入量
は0.5mlである。
(Method of measuring carbon dioxide generation amount) 100 ml
20 mg of magnetic substance powder is put into a combustion tube, heated in an electric crucible furnace at 400 ° C. for 2 hours in nitrogen gas, and further, a generated gas is collected through a calcium chloride tube. Then, the evolved gas was introduced into a gas chromatograph (GC-7A manufactured by Shimadzu Corporation), and measured at a column temperature of 120 ° C. using a Unibeas C 60/80 mesh column. The gas used is helium and the flow rate is 50 ml.
/ Min. The detector is TCD and the injection volume is 0.5 ml.

【0024】(最大長及び最小長の測定)ペレット状組
成物を5メッシュの篩によって篩上に残ったペレット状
組成物からランダムに128個のペレット状組成物を選
び出して最大径、最小径を求めた。
(Measurement of Maximum Length and Minimum Length) From the pelletized composition remaining on the sieve, the pelletized composition was randomly selected from 128 pelletized compositions by a 5 mesh sieve to determine the maximum diameter and the minimum diameter. I asked.

【0025】[実施例1]Ni−Zn−Cu系フェライ
トを500℃で6時間乾燥し冷却した。その含水率は2
10ppmであり、二酸化炭素発生量は70ppmであ
った。このフェライト17kgとポリフェニレンスルフ
ィド粉体(呉羽化学工業(株)「W203」を使用)3
kgを、20Lヘンシルミキサーで攪拌・混合して混合
物を得た。得られた混合物をシリンダー温度280℃〜
340℃に設定した二軸押出機へ速やかに供給し、ミス
トカット法によりペレット状組成物を得た。得られたペ
レット状組成物の最大径および最小径はそれぞれ4m
m、3mmであった。表1に他の実施例、比較例ととも
に、主な構成と効果をまとめて示した。
[Example 1] A Ni-Zn-Cu ferrite was dried at 500 ° C for 6 hours and cooled. Its water content is 2
It was 10 ppm and the amount of carbon dioxide generated was 70 ppm. 17 kg of this ferrite and polyphenylene sulfide powder (using "W203" from Kureha Chemical Industry Co., Ltd.) 3
kg was stirred and mixed with a 20 L Hensyl mixer to obtain a mixture. Cylinder temperature of 280 ℃ ~ obtained mixture
It was rapidly supplied to a twin-screw extruder set at 340 ° C., and a pelletized composition was obtained by the mist cut method. The maximum diameter and the minimum diameter of the obtained pelletized composition are each 4 m
m was 3 mm. Table 1 shows the main configurations and effects together with other examples and comparative examples.

【0026】[0026]

【表1】 [Table 1]

【0027】[実施例2]実施例1のフェライトの代わ
りに、Ni−Zn−Cu系フェライトを用い、500℃
で6時間乾燥し冷却した。含水率は210ppmであ
り、二酸化炭素発生量は210ppmであった。この他
は実施例1と同様にペレットを作成したところ、最大径
および最小径はそれぞれ4mm、3mmであった。
[Example 2] Ni-Zn-Cu type ferrite was used in place of the ferrite of Example 1, and the temperature was 500 ° C.
It was dried for 6 hours and cooled. The water content was 210 ppm and the amount of carbon dioxide generated was 210 ppm. Otherwise, when pellets were prepared in the same manner as in Example 1, the maximum diameter and the minimum diameter were 4 mm and 3 mm, respectively.

【0028】[実施例3]実施例1のフェライトの代わ
りに、Ni−Zn−Cu系フェライトを用い、600℃
で6時間乾燥し冷却した。その含水率は150ppm、
二酸化炭素発生量は160ppmであった。この他は実
施例1と同様にペレットを作成したところ、その最大径
および最小径はそれぞれ4mm、3mmであった。
[Example 3] Ni-Zn-Cu type ferrite was used in place of the ferrite of Example 1, and the temperature was 600 ° C.
It was dried for 6 hours and cooled. Its water content is 150ppm,
The amount of carbon dioxide generated was 160 ppm. Otherwise, when pellets were prepared in the same manner as in Example 1, the maximum diameter and the minimum diameter were 4 mm and 3 mm, respectively.

【0029】[実施例4]実施例1のフェライトの代わ
りに、含水率1300ppm、二酸化炭素発生量が45
0ppmであるNi−Zn−Cu系フェライトを、電気
炉中に於いて700℃の温度で6時間加熱した。熱処理
前のフェライトは後述の比較例1のフェライトと同じも
のである。その熱処理後のフェライトの冷却後の含水
率、二酸化炭素発生量はそれぞれ200ppm、20p
pmであった。この熱処理後のフェライトを冷却後、速
やかに実施例1と同様にペレットを作成した。この他は
実施例1と同様にペレットを作成したところ、その最大
径、最小系はそれぞれ4mm、3mmであった。
[Embodiment 4] Instead of the ferrite of Embodiment 1, the water content is 1300 ppm and the amount of carbon dioxide generated is 45.
Ni-Zn-Cu ferrite of 0 ppm was heated in an electric furnace at a temperature of 700 ° C for 6 hours. The ferrite before heat treatment is the same as the ferrite of Comparative Example 1 described later. The water content after cooling the ferrite and the amount of carbon dioxide generated after the heat treatment were 200 ppm and 20 p, respectively.
pm. After cooling the ferrite after the heat treatment, pellets were prepared immediately in the same manner as in Example 1. Other than that, when pellets were prepared in the same manner as in Example 1, the maximum diameter and the minimum system were 4 mm and 3 mm, respectively.

【0030】[比較例1]実施例1のフェライトの代わ
りに、焼成後、本発明の熱処理をすることなく放置して
おいた結果、含水率が1300ppmであり、二酸化炭
素発生量が450ppmであるNi−Zn−Cu系フェ
ライトを用いた他は実施例1と同様に行なったところ、
最大径および最小径はそれぞれ8mm、2mmであっ
た。尚、フェライトの焼成温度は1150℃であった。
[Comparative Example 1] As a result of leaving the ferrite of Example 1 after firing without performing the heat treatment of the present invention, the water content was 1300 ppm and the carbon dioxide generation amount was 450 ppm. Example 1 was repeated except that Ni-Zn-Cu based ferrite was used.
The maximum diameter and the minimum diameter were 8 mm and 2 mm, respectively. The firing temperature of ferrite was 1150 ° C.

【0031】[比較例2]実施例1のフェライトの代わ
りに、焼成後、本発明の熱処理をすることなく放置して
置いた結果、含水率が900ppmであり、二酸化炭素
発生量が500ppmであるNi−Zn−Cu系フェラ
イトを用いた他は実施例1と同様に行なったところ、最
大径および最小径はそれぞれ7mm、2mmであった。
COMPARATIVE EXAMPLE 2 Instead of the ferrite of Example 1, after firing, it was left without being subjected to the heat treatment of the present invention. As a result, the water content was 900 ppm and the amount of carbon dioxide generated was 500 ppm. When the same procedure as in Example 1 was carried out except that Ni—Zn—Cu ferrite was used, the maximum diameter and the minimum diameter were 7 mm and 2 mm, respectively.

【0032】[比較例3]実施例1のフェライトの代わ
りに、焼成後、本発明の熱処理をすることなく放置して
置いた結果、含水率が1200ppmであり、二酸化炭
素発生量が200ppmであるNi−Zn−Cu系フェ
ライトを用いた他は実施例1と同様に行なったところ、
最大径および最小径はそれぞれ6mm、2mmであっ
た。
COMPARATIVE EXAMPLE 3 Instead of the ferrite of Example 1, after firing, it was left without being subjected to the heat treatment of the present invention, and as a result, the water content was 1200 ppm, and the amount of carbon dioxide generated was 200 ppm. Example 1 was repeated except that Ni-Zn-Cu based ferrite was used.
The maximum diameter and the minimum diameter were 6 mm and 2 mm, respectively.

【0033】[比較例4]実施例1のフェライトの代わ
りに、本発明の熱処理をすることなく放置して置いた結
果、含水率が220ppmであり、二酸化炭素発生量が
600ppmであるNi−Zn−Cu系フェライトを用
いた他は実施例1と同様に行なったところ、最大径およ
び最小径はそれぞれ7mm、2mmであった。
[Comparative Example 4] As a result of leaving the ferrite of Example 1 without heat treatment according to the present invention, Ni-Zn having a water content of 220 ppm and a carbon dioxide generation amount of 600 ppm. When the same procedure as in Example 1 was carried out except that a Cu-based ferrite was used, the maximum diameter and the minimum diameter were 7 mm and 2 mm, respectively.

【0034】[0034]

【発明の効果】金属酸化物粉末から発生する水や二酸化
炭素は、熱可塑性樹脂の融点以上の温度でも発生がある
ため、これらは本発明のようなものを用いない限り、混
練機から吸引しても充分に除去出来ないが、本発明のよ
うなものであれば、ペレットの形状のばらつきは少な
く、混練機から吸引するというような操作を併用すれば
さらに好ましいものができる。本発明によれば、最大径
が最小径の2倍以内のほぼ均一形状を持つ磁性体組成物
ペレットが得られる。
The water and carbon dioxide generated from the metal oxide powder are generated even at a temperature above the melting point of the thermoplastic resin, so these are sucked from the kneader unless something like the present invention is used. However, it cannot be sufficiently removed, but in the case of the present invention, there is little variation in the shape of the pellet, and it is more preferable to use an operation such as suction from the kneader together. According to the present invention, a magnetic material composition pellet having a substantially uniform shape having a maximum diameter within twice the minimum diameter can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29K 105: 06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 含水率が1000ppm以下であり、窒
素中で400℃、2時間加熱した際の二酸化炭素発生量
が400ppm以下である酸化物磁性体粉末を熱可塑性
樹脂と混練してペレット状とすることを特徴とする磁性
樹脂組成物ペレットの製造方法。
1. An oxide magnetic powder having a water content of 1000 ppm or less and a carbon dioxide generation amount of 400 ppm or less when heated in nitrogen at 400 ° C. for 2 hours is kneaded with a thermoplastic resin to form pellets. A method for producing a pellet of a magnetic resin composition, comprising:
【請求項2】 熱可塑性樹脂100部に対し、酸化物磁
性体粉末100〜1900部含有する請求項1の磁性樹
脂組成物ペレットの製造方法。
2. The method for producing a magnetic resin composition pellet according to claim 1, wherein 100 to 1900 parts of the oxide magnetic powder is contained in 100 parts of the thermoplastic resin.
【請求項3】 酸化物磁性体粉末が、熱可塑性樹脂と混
練するに先立って、その混練温度より20℃以上高い温
度であって磁性体の焼成温度以下の温度で加熱されたも
のである請求項1又は請求項2の磁性樹脂組成物ペレッ
トの製造方法。
3. The oxide magnetic substance powder is heated at a temperature higher than the kneading temperature by 20 ° C. or more and lower than the firing temperature of the magnetic substance prior to the kneading with the thermoplastic resin. Item 1. A method for producing a pellet of a magnetic resin composition according to item 1 or 2.
【請求項4】 酸化物磁性体粉末が、結晶性熱可塑性樹
脂と混練するに先立って、結晶性熱可塑性樹脂の結晶融
点の100℃以上高い温度であって磁性体の焼成温度以
下の温度で加熱されたものである請求項1又は請求項2
の磁性樹脂組成物ペレットの製造方法。
4. Prior to kneading the oxide magnetic powder with the crystalline thermoplastic resin, at a temperature higher than the crystal melting point of the crystalline thermoplastic resin by 100 ° C. or more and lower than the firing temperature of the magnetic material. Claim 1 or claim 2 which has been heated
Of the magnetic resin composition pellets according to claim 1.
【請求項5】 酸化物磁性体粉末が、非晶性熱可塑性樹
脂と混練するに先立って、非晶性熱可塑性樹脂のガラス
転移温度の150℃以上高い温度であって磁性体の焼成
温度以下の温度で加熱されたものである請求項1又は請
求項2の磁性樹脂組成物ペレットの製造方法。
5. Prior to kneading the oxide magnetic powder with the amorphous thermoplastic resin, a temperature higher than the glass transition temperature of the amorphous thermoplastic resin by 150 ° C. or more and lower than the firing temperature of the magnetic material. The method for producing the magnetic resin composition pellet according to claim 1 or 2, which is heated at the temperature of.
JP3605695A 1995-02-01 1995-02-01 Production of pellet composed of magnetic resin composition Pending JPH08207043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3605695A JPH08207043A (en) 1995-02-01 1995-02-01 Production of pellet composed of magnetic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3605695A JPH08207043A (en) 1995-02-01 1995-02-01 Production of pellet composed of magnetic resin composition

Publications (1)

Publication Number Publication Date
JPH08207043A true JPH08207043A (en) 1996-08-13

Family

ID=12459067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3605695A Pending JPH08207043A (en) 1995-02-01 1995-02-01 Production of pellet composed of magnetic resin composition

Country Status (1)

Country Link
JP (1) JPH08207043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106559A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic/ceramic composite material
JPH11106516A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic/ceramic composite material
EP4324881A4 (en) * 2022-06-30 2024-02-28 Hengdian Group Dmegc Magnetics Co Ltd Injection molded magnetic material and preparation method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106559A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic/ceramic composite material
JPH11106516A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Plastic/ceramic composite material
EP4324881A4 (en) * 2022-06-30 2024-02-28 Hengdian Group Dmegc Magnetics Co Ltd Injection molded magnetic material and preparation method therefor

Similar Documents

Publication Publication Date Title
JPH10229007A (en) Soft magnetic composite material
US6342557B1 (en) Resin composition and molded or formed product
JPS58142916A (en) Production of friction material
JPH08207043A (en) Production of pellet composed of magnetic resin composition
US6419847B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
KR101122464B1 (en) Artificial ore and coating material or refractory block containing the artificial ore
JP3838749B2 (en) Soft magnetic resin composition
JPH08208234A (en) Oxide magnet powder and its treatment
CA1116392A (en) Method of manufacturing magnetic plastics-bonded moulded bodies
JPH03193616A (en) Activated carbon by high strength molding
JPH01272101A (en) Surface-modified magnetic powder and bond magnet composition containing same
JPS6044551A (en) Resin composition
KR20160058865A (en) Thermally conductive filler and thermally conductive resin composition containing same
JPS60113403A (en) Manufacture of rare earth resin magnet
JPS5690505A (en) Manufacture of magnetic powder for high density magnetic recording
WO2023048003A1 (en) Smfen-based anisotropic magnetic powder and bonded magnet, and method for producing said powder and magnet
JP3900737B2 (en) Ferrite and manufacturing method thereof
JPS63261899A (en) Thermoplastic resin compound
JPH01198002A (en) Heat-resistant plastic magnet and manufacture thereof
JPH02155724A (en) Manufacture of molded electromagnetic shield product
JPH0774009A (en) Manufacture of ferrite molding
JPS6354701A (en) Manufacture of composite magnet
JPH0959057A (en) Production of treatment jig for baking zinc oxide-alumina composite material
JPH05258933A (en) Magnetic characteristic improving method of resin magnet molded product
JPS58147008A (en) Preparation of soft magnetic ferrite material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A02