JPH01272101A - Surface-modified magnetic powder and bond magnet composition containing same - Google Patents

Surface-modified magnetic powder and bond magnet composition containing same

Info

Publication number
JPH01272101A
JPH01272101A JP62202302A JP20230287A JPH01272101A JP H01272101 A JPH01272101 A JP H01272101A JP 62202302 A JP62202302 A JP 62202302A JP 20230287 A JP20230287 A JP 20230287A JP H01272101 A JPH01272101 A JP H01272101A
Authority
JP
Japan
Prior art keywords
magnetic powder
iron
magnetic
modified magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62202302A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamanaka
山中 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Priority to JP62202302A priority Critical patent/JPH01272101A/en
Publication of JPH01272101A publication Critical patent/JPH01272101A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form a bond magnet whose magnetic force is high, whose maximum energy product is large and whose performance is not lowered with the passage of time by a method wherein the surface of a magnetic powder composed of an alloy containing a rare-earth metal and iron is treated with a treating agent which is composed mainly of an alkali silicate. CONSTITUTION:An alloy which can give a high magnetic force and contains a rare-earth element and iron is used as a raw material for a magnetic powder. An alloy expressed by a composition formula of RxTyBz is particularly suitable; in this formula, R represents at least one kind selected from neodymium, praseodymium and a rare-earth metal composed of a misch metal, T represents iron or an iron group element and B represents boron; x, y and z represent individual atomic percentages of R, T and B; a relationship among x, y and z is as follows: 8<=x<=30, 2<=z<=20 and y=10. Water glass (composed mainly of Na2O and SiO2), potassium silicate, lithium silicate or the like can be enumerated as an alkali silicate as a main component of a treating agent which is used to treat the surface of the magnetic powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐酸化性および耐湿性に優れた表面改質磁性
粉末およびそれを含有するボンド磁石組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface-modified magnetic powder with excellent oxidation resistance and moisture resistance, and a bonded magnet composition containing the same.

(従来の技術) エレクトロニクスの分野における急速な技術革新により
、最近では家電機器をはじめとして、電子機器、オフィ
スオートメーション機器などの小型化、軽量化、薄型化
が、省エネルギー、省資源を背景に進められている。こ
れら家電機器や電子機器の小型化のためには、それに用
いられる各種部品の小型化が必要である。例えば、テー
プレコーダーのモーターなどに必要とされる小型で高性
能の永久磁石が求められている。
(Conventional technology) Due to rapid technological innovation in the field of electronics, home appliances, electronic devices, office automation equipment, etc. are becoming smaller, lighter, and thinner in order to save energy and resources. ing. In order to miniaturize these home appliances and electronic devices, it is necessary to miniaturize the various components used therein. For example, there is a demand for small, high-performance permanent magnets that are needed in tape recorder motors and the like.

永久磁石として従来から使用されている焼結磁石や鋳造
磁石は、耐衝撃性、引張り強度などの機械的特性に劣り
、しかも加工が非常に難しいため。
Sintered magnets and cast magnets, which have traditionally been used as permanent magnets, have poor mechanical properties such as impact resistance and tensile strength, and are extremely difficult to process.

複雑な形状でかつ高精度の寸法を必要とする上記用途の
磁石としては不充分である。これに対して1磁性粉末を
樹脂バインダーで接着成型して得られるボンド磁石(プ
ラスチック磁石ともいう)が開発されている。ボンド磁
石は成型が容易であり。
This is insufficient as a magnet for the above-mentioned applications, which require complex shapes and highly accurate dimensions. In contrast, a bonded magnet (also called a plastic magnet) obtained by adhesively molding magnetic powder with a resin binder has been developed. Bonded magnets are easy to mold.

かつ磁性粉末の種類を選択することにより小型で高磁力
を有する永久磁石を得ることができる。ボンド磁石を調
製するための充填技術1分散技術。
Moreover, by selecting the type of magnetic powder, a small permanent magnet having high magnetic force can be obtained. Filling Technique 1 Dispersion Technique for Preparing Bonded Magnets.

成型機、成型材料などの進歩により、ボンド磁石の利用
範囲と使用量は拡大しつつある。
Due to advances in molding machines and molding materials, the scope and amount of use of bonded magnets is expanding.

ボンド磁石用の磁性材料としてはフェライト系またはア
ルニコ系の磁性材料が用いられてきた。
Ferrite-based or alnico-based magnetic materials have been used as magnetic materials for bonded magnets.

しかし、最近では、上記小型で高性能のボンド磁石を得
るために、最大エネルギー積の非常に大きな磁性材料(
例えば、サマリウム−コバルト系合金)が開発され、実
用化されている。
However, recently, in order to obtain the above-mentioned compact and high-performance bonded magnets, magnetic materials with a very large maximum energy product (
For example, samarium-cobalt alloys) have been developed and put into practical use.

しかし、上記サマリウム−コバルト系磁性材料は、非常
に酸化されやすいため、成形時に適当な処理を行わない
と爆発する危険がある。さらに。
However, the samarium-cobalt-based magnetic material is highly susceptible to oxidation, and there is a risk of explosion unless proper treatment is performed during molding. moreover.

その構成成分の一つであるサマリ、ラムは鉱石中の希土
類金属の中にわずかしか含有されていない。
Sumari, one of its constituents, is contained in only a small amount among the rare earth metals in the ore.

そのため、サマリウムの供給量は、鉱石中に大量に含有
される他の軽希土類金属の需要に左右される。さらに、
サマリウムの精製分離には多大の費用を必要とすること
から極めて高価なものとなる。
Therefore, the supply of samarium depends on the demand for other light rare earth metals, which are contained in large quantities in ores. moreover,
Purification and separation of samarium requires a large amount of money, making it extremely expensive.

他方、コバルトも高価であるのみならず2戦略物質であ
るため安定供給に問題がある。
On the other hand, cobalt is not only expensive, but also has problems with stable supply because it is a dual strategic material.

このような状況から、最近ではサマリウム−コバルト系
磁性材料に代わる高性能で安価な磁性材料の開発が進め
られている。例えば特開昭59−211549号公報゛
には、ネオジム−鉄−ホウ素系磁性材料が開示されてい
る。この磁性材料は非常に高磁力であり、かつ汎用され
る鉄を主成分とするため安価にそして安定して供給され
得る。
Under these circumstances, efforts have recently been made to develop high-performance and inexpensive magnetic materials to replace samarium-cobalt magnetic materials. For example, JP-A-59-211549 discloses a neodymium-iron-boron based magnetic material. This magnetic material has extremely high magnetic force and is mainly composed of commonly used iron, so it can be supplied stably at low cost.

しかし、この磁性材料も、前記サマリウム−コバルト系
磁性材料はどではないが酸化され易い。
However, this magnetic material is also easily oxidized, unlike the samarium-cobalt based magnetic material.

さらに、鉄を主成分としているため、水分が存在すると
錆が発生する。例えば、この磁性材料を粉末としバイン
ダーを用いて成形しボンド磁石を調製するとバインダー
に含有される。もしくは成形時に混入する水分および酸
素により、鉄が酸化され錆が生じる。つまり磁性材料の
組成が変化することになり、その結果、ボンド磁石の磁
力は経時的に大きく低下する。この磁性粉末の表面をリ
ン酸、クロム酸など(鉄の防錆剤として知られる)で処
理することも可能ではある。しかし、粉末の表面からあ
る程度の厚みにわたり鉄がリン酸もしくはクロム酸と反
応するため、つまり磁性粉末の組成が変化するため、高
性能のボンド磁石は得られない。
Furthermore, since it is mainly composed of iron, it will rust if moisture is present. For example, when a bonded magnet is prepared by molding this magnetic material into powder and using a binder, the magnetic material is contained in the binder. Alternatively, moisture and oxygen mixed in during molding may oxidize the iron and cause rust. In other words, the composition of the magnetic material changes, and as a result, the magnetic force of the bonded magnet decreases significantly over time. It is also possible to treat the surface of this magnetic powder with phosphoric acid, chromic acid, etc. (known as rust preventive agents for iron). However, since iron reacts with phosphoric acid or chromic acid over a certain thickness from the surface of the powder, in other words, the composition of the magnetic powder changes, so a high-performance bonded magnet cannot be obtained.

(発明が解決しようとする問題点) 本発明は、上記従来の欠点を解決するものであり、その
目的とするところは、高磁力で最大エネルギー積が大き
く、かつ、経時的に性能の低下しないボンド磁石を形成
しうる磁性粉末を提供することにある。本発明の他の目
的は、ネオジム−鉄−ホウ素系磁性粉末の表面を適当な
手段により処理することにより、耐酸化性および耐湿性
が付与され、ボンド磁石成形時および成形後においても
安定であり劣化することのない、ボンド磁石用の表面改
質磁性粉末を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, and its purpose is to achieve a high magnetic force, a large maximum energy product, and a device that does not deteriorate in performance over time. An object of the present invention is to provide magnetic powder that can form a bonded magnet. Another object of the present invention is to provide oxidation resistance and moisture resistance by treating the surface of neodymium-iron-boron based magnetic powder by appropriate means, and to make it stable during and after molding into a bonded magnet. An object of the present invention is to provide surface-modified magnetic powder for bonded magnets that does not deteriorate.

本発明のさらに他の目的は、上記磁性粉末を含有し耐酸
化性、耐湿性および経時安定性に優れ。
Still another object of the present invention is to provide a magnetic powder containing the above-mentioned magnetic powder, which has excellent oxidation resistance, moisture resistance, and stability over time.

高性能で安価なボンド磁石を調製しうるボンド磁石組成
物を提供することにある。
An object of the present invention is to provide a bonded magnet composition from which a high-performance and inexpensive bonded magnet can be prepared.

(問題点を解決するための手段) 本発明の表面改質磁性粉末は、希土類金属と鉄とを含有
する磁性粉末をアルカリケイ酸塩を主成分とする処理剤
で表面処理して得られ、そのことにより上記目的が達成
される。
(Means for Solving the Problems) The surface-modified magnetic powder of the present invention is obtained by surface-treating magnetic powder containing a rare earth metal and iron with a treatment agent containing an alkali silicate as a main component, This achieves the above objective.

本発明のボンド磁石組成物は、上記表面改質磁性粉末お
よびバインダーを含有し、そのことにより上記目的が達
成される。
The bonded magnet composition of the present invention contains the above surface-modified magnetic powder and a binder, thereby achieving the above object.

本発明の表面改質磁性粉末の素材としては、高磁力を付
与しうる希土類と鉄とを含有する合金が用いられる。な
かでも組成式RxTyBzで示される合金が好適である
。上記式中のRはネオジム、プチセオジムおよびミツシ
ュメタルでなる希土類金属の群から選ばれる少なくとも
一種、Tは鉄、または鉄および鉄族元素、そしてBはホ
ウ素であり。
As the material for the surface-modified magnetic powder of the present invention, an alloy containing rare earth and iron that can impart high magnetic force is used. Among these, an alloy represented by the compositional formula RxTyBz is suitable. In the above formula, R is at least one selected from the group of rare earth metals consisting of neodymium, petittheodymium, and mitsch metal, T is iron, or iron and an iron group element, and B is boron.

X+ Vおよび2はそれぞれR,TおよびBの原子百分
率を示し、X+ Vおよび20間には次式が成立する:
8≦x≦30,2≦2≦20.  y=100−X−)
’a上記式のうち「ミツシュメタル」とは、製錬工程で
得られる主としてセリウム族希土類元素の混合物をいう
。Tとしては鉄だけを用いること、もしくは、鉄を主成
分として鉄族金属であるコバルト、ニッケルなどを併用
することができる。特にコバルトもしくはニッケルを少
量添加すると、磁性粉末のキュリー点を向上させること
ができる。
X+V and 2 represent the atomic percentages of R, T and B, respectively, and the following formula holds between X+V and 20:
8≦x≦30, 2≦2≦20. y=100-X-)
'a In the above formula, "Mitsuhmetal" refers to a mixture mainly of cerium group rare earth elements obtained in a smelting process. As T, iron alone can be used, or iron can be used as the main component, and cobalt, nickel, etc., which are iron group metals, can be used in combination. In particular, adding a small amount of cobalt or nickel can improve the Curie point of the magnetic powder.

さらに、磁性粉末の保磁力を高めるために、ジスプロシ
ウム(Dy) 、テルビウム(Tb) 、 ジルコニウ
ム(Zr) 、ハフニウム(Hf)などの一種または二
種以上を添加することも可能である。X+ Vおよび2
が上記範囲を外れる場合には、磁力がやや低下する傾向
にある。
Furthermore, in order to increase the coercive force of the magnetic powder, it is also possible to add one or more of dysprosium (Dy), terbium (Tb), zirconium (Zr), hafnium (Hf), and the like. X+V and 2
If it is out of the above range, the magnetic force tends to decrease somewhat.

上記磁性粉末を表面処理する処理剤の主成分であるアル
カリケイ酸塩としては、水ガラス(Na、0およびSi
O□を主成分とする)、ケイ酸カリウム。
The alkali silicate which is the main component of the treatment agent for surface treating the magnetic powder is water glass (Na, 0 and Si).
O□ is the main component), potassium silicate.

ケイ酸リチウムなどが挙げられる。このような。Examples include lithium silicate. like this.

アルカリケイ酸塩は、磁性粉末表面に耐酸化、耐熱、耐
紫外線、耐放射線、耐摩耗、耐油、耐有機溶剤などの機
能を備えた皮膜を形成する性質を有する。処理剤中には
、さらに好ましくは硬化剤が含まれる。この硬化剤は、
上記アルカリケイ酸塩皮膜の耐水性を高め、かつ該皮膜
を磁性粉末表面に強固に密着させる働きを有する。この
ような硬化剤としては1例えば、シリカ;塩酸、リン酸
Alkali silicates have the property of forming a film on the surface of magnetic powder that has functions such as oxidation resistance, heat resistance, ultraviolet resistance, radiation resistance, abrasion resistance, oil resistance, and organic solvent resistance. The processing agent further preferably contains a curing agent. This curing agent is
It has the function of increasing the water resistance of the alkali silicate film and firmly adhering the film to the surface of the magnetic powder. Examples of such curing agents include silica, hydrochloric acid, and phosphoric acid.

硫酸、硝酸、ホウ酸などの無機酸;酸化亜鉛、酸化マグ
ネシウム、酸化カルシウムなどの金属酸化物;水酸化カ
ルシウム、水酸化マグネシウム、水酸化亜鉛などの金属
水酸化物;ケイフッ化ソーダ。
Inorganic acids such as sulfuric acid, nitric acid, and boric acid; Metal oxides such as zinc oxide, magnesium oxide, and calcium oxide; Metal hydroxides such as calcium hydroxide, magnesium hydroxide, and zinc hydroxide; Sodium fluorosilicide.

ケイフッ化カリウム、ケイ酸カルシウムなどのケイ素化
物;アルミン酸ソーダ、重硫酸ソーダ、硫酸マグネシウ
ム、重炭酸ソーダなどの無機塩類。
Silicides such as potassium fluorosilicate and calcium silicate; inorganic salts such as sodium aluminate, sodium bisulfate, magnesium sulfate, and sodium bicarbonate.

ホウ酸カリウム、ホウ酸カルシウムなどのホウ酸塩;炭
酸エチレン;ガンマ−ブチロラクトン、グリオキザール
;エチレングリコールジアセテートが挙げられる。上記
処理剤としては2例えば、アルカリケイ酸水溶液に超微
粒子状シリカまたはコロイド状シリカを添加して加熱溶
解させたものが好適に用いられる。
Examples include borates such as potassium borate and calcium borate; ethylene carbonate; gamma-butyrolactone, glyoxal; and ethylene glycol diacetate. As the above-mentioned treatment agent, for example, ultrafine particulate silica or colloidal silica is added to an aqueous alkali silicic acid solution and dissolved by heating.

使用されるアルカリケイ酸塩の量は、磁性粉末に対して
固形分として0.01〜10重量%、好ましくは0.0
5〜1重景%ナトる。0.01重量%を下まわると酸化
防止効果および錆発生防止効果が得られない。10重量
%を越えても含有量に比例した上記効果が得られない。
The amount of alkali silicate used is 0.01 to 10% by weight as a solid content based on the magnetic powder, preferably 0.0%.
5 to 1 % natoru. If it is less than 0.01% by weight, no oxidation prevention effect or rust generation prevention effect can be obtained. Even if it exceeds 10% by weight, the above effects proportional to the content cannot be obtained.

磁性粉末にアルカリケイ酸塩が厚くコーティングされる
ため2得られた表面改質磁性粉末を用いてボンド磁石を
調製すると該ボンド磁石中の磁気材料の相対含有量が低
くなり、その結果、高磁力が得られない。上記アルカリ
ケイ酸塩は単独で使用しても、2種以上を併用してもよ
い。
Due to the thick coating of alkali silicate on the magnetic powder, the preparation of bonded magnets using the obtained surface-modified magnetic powder results in a low relative content of magnetic material in the bonded magnet, resulting in high magnetic force. is not obtained. The above alkali silicates may be used alone or in combination of two or more.

本発明のボンド磁石組成物に含有されるバインダーは2
例えば、熱硬化性もしくは熱可塑性の樹脂である。熱硬
化性樹脂としては、フェノール樹脂、エポキシ樹脂、ケ
イ素樹脂などがある。熱可塑性樹脂としては、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル
、ポリアミド。
The binder contained in the bonded magnet composition of the present invention is 2
For example, it is a thermosetting or thermoplastic resin. Examples of thermosetting resins include phenol resins, epoxy resins, and silicone resins. Thermoplastic resins include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyamide.

ポリアセクール、ポリフェニレンサルファイド。Polyacecool, polyphenylene sulfide.

ポリスルホン、ポリエーテルスルホン、ポリエチレンテ
レフタレートポリブチレンテレフタレート、ポリカーボ
ネートなどがある。液晶ポリマーなども使用され得る。
Examples include polysulfone, polyether sulfone, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate. Liquid crystal polymers and the like may also be used.

これらの樹脂は2組成物中に1例えば、熱硬化性樹脂の
場合は2〜10重量%。
The amount of these resins is 1% in 2 compositions, for example, 2 to 10% by weight in the case of thermosetting resins.

好ましくは3重量%前後、熱可塑性樹脂の場合は5〜2
0重量%、好ましくは10重量%前後含有される。過少
であると成形性に劣り、過剰であると得られるボンド磁
石が磁力に劣る。
Preferably around 3% by weight, in the case of thermoplastic resins 5-2%
It is contained in an amount of 0% by weight, preferably around 10% by weight. If it is too small, the moldability will be poor, and if it is too large, the resulting bonded magnet will have poor magnetic force.

本発明の磁性粉末は、所望の金属を用いて通常の方法に
より調製され得る。例えばまず、ネオジム、鉄、ホウ素
および必要に応じてコバルトニッケルなどの金属を所望
の割合で含む組成物を溶融したインゴットを作る。次に
、これを石英管中で再溶融し、溶融スピニング法により
リボン状に成形する。つまり、上記石英管中の溶融金属
を回転している急冷用のドラムの表面上にアルゴンガス
の圧力で噴射し、該金属を急速に冷却してリボン状に成
形する。このリボンをアルゴン雰囲気中で粉砕して磁性
粉末とする。磁性粉末の粒径は。
The magnetic powder of the present invention can be prepared by a conventional method using a desired metal. For example, first, an ingot is prepared by melting a composition containing metals such as neodymium, iron, boron, and optionally cobalt nickel in desired proportions. Next, this is remelted in a quartz tube and formed into a ribbon shape by melt spinning. That is, the molten metal in the quartz tube is injected onto the surface of a rotating quenching drum under the pressure of argon gas, and the metal is rapidly cooled and formed into a ribbon shape. This ribbon is ground into magnetic powder in an argon atmosphere. What is the particle size of magnetic powder?

通常20〜200μmである。粒径が小さすぎると磁力
が保持されず、大きすぎると成形が困難となる。
It is usually 20 to 200 μm. If the particle size is too small, magnetic force will not be maintained, and if the particle size is too large, molding will be difficult.

本発明の表面改質磁性粉末は、前記磁性粉末を上記アル
カリケイ酸塩を主成分とする処理剤溶液と混合し1次い
で室温〜250°C程度の温度で乾燥することにより得
られる。混合方法に何ら制限はなく、場合によっては、
前記磁性粉末用リボンを該アルカリケイ酸塩水溶液中で
微粉砕し、その後乾燥させるという方法であっても良い
。得られた磁性粉末には、後述の成型時に樹脂バインダ
ーとの接触性を高めるために、さらにシランカップリン
グ剤やチタンカップリング剤での処理が行われ得る。
The surface-modified magnetic powder of the present invention can be obtained by mixing the magnetic powder with a processing agent solution containing the alkali silicate as a main component, and then drying the mixture at a temperature of about room temperature to 250°C. There are no restrictions on the mixing method, and in some cases,
The magnetic powder ribbon may be pulverized in the aqueous alkali silicate solution and then dried. The obtained magnetic powder may be further treated with a silane coupling agent or a titanium coupling agent in order to improve contact with a resin binder during molding as described below.

このようにして得られる磁性粉末および上記バインダー
を含む本発明の組成物を用いてボンド磁石が調製される
。この組成物は2通常の圧縮成型。
A bonded magnet is prepared using the composition of the present invention containing the magnetic powder thus obtained and the binder described above. This composition is prepared by two conventional compression molding methods.

トランスファ成型、押出成型、射出成型などにより所望
の形状に成型される。
It is molded into a desired shape by transfer molding, extrusion molding, injection molding, etc.

(作用) 本発明によれば、このように、磁性粉末の表面がアルカ
リケイ酸塩を主成分とする処理剤で処理・改質された表
面改質磁性粉末が得られる。この粉末においては、磁性
粉末表面が、リン酸やクロム酸で処理された場合と異な
り、その組成の大きな変化がない。従って磁性材料本来
の性質が変化することな(高磁力が保持される。磁性粉
末に含有される鉄が、成形時もしくは成形後に結露など
により水分と接して水酸化第一鉄が形成された場合に、
皮膜を構成するアルカリケイ酸塩は、これを水に溶解さ
せず不動態化する働きがある。そのため、水酸化第一鉄
がさらに酸化されて水酸化第二鉄(錆の本体であり腐食
の原因となる)となるのが阻止される。つまり、アルカ
リケイ酸塩の皮膜は、磁性粉末が酸素と水分とにより酸
化されて錆を生じるのを阻止する。さらにこの皮膜は、
耐熱。
(Function) According to the present invention, a surface-modified magnetic powder is obtained in which the surface of the magnetic powder is treated and modified with a treatment agent containing an alkali silicate as a main component. In this powder, unlike when the magnetic powder surface is treated with phosphoric acid or chromic acid, there is no major change in its composition. Therefore, the original properties of the magnetic material do not change (high magnetic force is maintained).If the iron contained in the magnetic powder comes into contact with moisture due to condensation during or after molding, ferrous hydroxide is formed. To,
The alkali silicate that makes up the film has the function of passivating it without dissolving it in water. Therefore, ferrous hydroxide is prevented from being further oxidized to become ferric hydroxide (which is the main body of rust and causes corrosion). In other words, the alkali silicate film prevents the magnetic powder from being oxidized by oxygen and moisture and causing rust. Furthermore, this film
Heat resistant.

耐紫外線、耐放射線、耐摩耗、耐油、耐有機溶剤などの
種々の性質を磁性粉末に付与する。このような表面改質
磁性粉末は2通常、保存時に酸化防止のために用いられ
る高価な不活性ガスを必要としない。この粉末を用いて
ボンド磁石を成形・加工するときには、高温で空気と接
触しても酸化による発火が起こらず、取り扱いの危険が
ない。さらに、射出成型などで、スプル部やランナ部に
残った材料は酸化により劣化することがないため再使用
され得る。得られるボンド磁石は経時安定性に優れ、製
品の寿命が長い。
It imparts various properties to magnetic powder, such as resistance to ultraviolet rays, radiation, abrasion, oil, and organic solvents. Such surface-modified magnetic powders do not require expensive inert gases, which are normally used to prevent oxidation during storage. When molding and processing bonded magnets using this powder, even if it comes into contact with air at high temperatures, ignition due to oxidation does not occur, and there is no danger in handling it. Furthermore, the material remaining in the sprue portion and runner portion during injection molding etc. does not deteriorate due to oxidation and can be reused. The resulting bonded magnet has excellent stability over time and has a long product life.

(実施例) 以下に本発明を実施例につき説明する。(Example) The invention will be explained below with reference to examples.

災旅±土 (A)表面改質磁性粉末の調製:  100mj!のビ
ーカー5個にマグネクエンチ(ゼネラルモーターズ社製
; NdzFe+ 7B) 50 gずつを採取した。
Preparation of surface-modified magnetic powder: 100 mj! 50 g of Magnequench (manufactured by General Motors; NdzFe+ 7B) was collected into five beakers.

別に表1に示す成分を含有する処理剤(A−E)の10
重量%水溶液を調製した。但し、処理剤B−Eについて
は、各成分を水に加え、90〜too’cに1時間加熱
して溶解させたものを使用した。表1において。
10 of processing agents (A-E) containing the components separately shown in Table 1
A wt% aqueous solution was prepared. However, for processing agent B-E, each component was added to water, and the mixture was heated to 90 to 100°C for 1 hour to dissolve. In Table 1.

コロイダルシリカとしては、スノーテックス0(日産化
学社製)、そして超微粉末シリカとしては。
As colloidal silica, Snowtex 0 (manufactured by Nissan Chemical Co., Ltd.) is used, and as ultrafine powder silica.

ニップルシールE−200(日本シリ、カニ業社製)を
使用した上記5個のビーカーに処理剤溶液1.5gずつ
をそれぞれ加えて全体が均一となるように撹拌した。こ
れを熱風形オーブンに入れ、120°Cで10分間加熱
した。
1.5 g of the processing agent solution was added to each of the five beakers using Nipple Seal E-200 (Nihon Shiri, manufactured by Kanigyo Co., Ltd.) and stirred so that the whole was uniform. This was placed in a hot air oven and heated at 120°C for 10 minutes.

表1 (B)表面改質磁性粉末の評価(1):  (A)項で
使用したマグネクエンチ(試料1−1) 、および(A
)項で得られた表面改質磁性粉末(試料1−2〜1−6
;それぞれ処理剤A−Hに対応)を用いて9次の■〜■
の試験を行った:■空気中5°C/分で昇温し。
Table 1 (B) Evaluation of surface-modified magnetic powder (1): Magnequench (sample 1-1) used in section (A), and (A
Surface-modified magnetic powder obtained in section ) (Samples 1-2 to 1-6)
; Corresponding to processing agents A to H, respectively)
The following tests were conducted: ■ Raising the temperature in air at a rate of 5°C/min.

400°Cにおける重量増加率(%)を測定する(熱重
量分析);■熱風形オーブンにて、 250’C,30
0°Cおよび350“Cの各温度で30分間加熱したと
きの試料の重量増加率を調べる;および■試料を20倍
量の水道水に浸漬し、室温で2時間および24時間放置
して錆の発生状況を調べる。それぞれの試験結果を表2
に示す。表2において、処理剤の量は。
Measure the weight increase rate (%) at 400°C (thermogravimetric analysis); ■ In a hot air oven, 250'C, 30
Examine the weight increase rate of the sample when heated for 30 minutes at each temperature of 0°C and 350"C; and ■ immerse the sample in 20 times the volume of tap water and leave it at room temperature for 2 and 24 hours to prevent rust. Examine the occurrence situation. Table 2 shows the results of each test.
Shown below. In Table 2, the amount of treatment agent is.

磁性粉末に対する固形分重量%を示す。表3〜6におい
ても同様である。
It shows the solid content weight % based on the magnetic powder. The same applies to Tables 3 to 6.

(以下余白) 表2に示すように、未処理の試料(1−1)の場合には
高温での酸化による重量増加率が大きく、また錆の発生
が顕著である。これに対して、アルカリケイ酸塩を含む
処理剤で処理したものは高温での重量増加率がきわめて
小さい。さらに、水に浸漬しても錆が全く発生しない。
(The following is a blank space) As shown in Table 2, in the case of the untreated sample (1-1), the weight increase rate due to oxidation at high temperatures was large, and the occurrence of rust was significant. On the other hand, those treated with a treatment agent containing an alkali silicate have a very small weight increase rate at high temperatures. Furthermore, it does not rust at all even when immersed in water.

このようにアルカリケイ酸塩の皮膜は耐酸化性および錆
防止性能を付与することがわかる。
It can thus be seen that the alkali silicate film provides oxidation resistance and rust prevention performance.

(C)表面改質磁性粉末の評価(2):  (A)項で
使用したマグネクエンチ(試料1−1)および(A)項
で得られた表面改質磁性粉末(試料1−2〜1−6)を
それぞれ60°C1相対湿度90%の雰囲気下に7日間
放置した。放置前および放置後の最大エネルギー積(B
H)maxをそれぞれ測定し比較した。その結果を表3
に示す。
(C) Evaluation of surface-modified magnetic powder (2): Magnequench used in section (A) (sample 1-1) and surface-modified magnetic powder obtained in section (A) (sample 1-2 to 1) -6) were left in an atmosphere of 60° C. and 90% relative humidity for 7 days. Maximum energy product before and after leaving (B
H) max was measured and compared. Table 3 shows the results.
Shown below.

(以下余白) 表3に示すように、未処理の試料(1−1)の場合には
、高湿度下においては磁力の低下が激しいのに対し、処
理品(試料1−2〜1−6)の場合はほとんど変化がな
く安定であることがわかる。
(Margins below) As shown in Table 3, in the case of the untreated sample (1-1), the magnetic force decreased sharply under high humidity, whereas the treated samples (samples 1-2 to 1-6) ), it can be seen that there is almost no change and it is stable.

災胤桝l 希土類磁性粉末マグネクエンチNd2Fe+J(ゼネラ
ルモーターズ社製)をヘンシェルミキサー内で低速撹拌
した。これに実施例1(A)項で調製したのと同様の処
理剤を該磁性粉末に対し固形分として0.3重量%にな
るように加えた。10分間撹拌を続けた後、120°C
にて60分間乾燥させた。得られた表面改質磁性粉末を
温度60°C2湿度90%の恒温恒湿槽に7日間放置し
た。これにビスフェノールA型エポキシ樹脂に硬化剤と
して2−エチル−4−メチル−イミダゾールを5重量%
の割合で配合したものを、磁性粉末に対して2重量%の
割合で加え、混練した。これを圧縮成型し、80°Cで
2時間。
Rare earth magnetic powder Magnequench Nd2Fe+J (manufactured by General Motors) was stirred at low speed in a Henschel mixer. A processing agent similar to that prepared in Example 1 (A) was added to the magnetic powder so that the solid content was 0.3% by weight. After stirring for 10 minutes, the temperature was 120°C.
It was dried for 60 minutes. The obtained surface-modified magnetic powder was left in a constant temperature and humidity chamber at a temperature of 60° C. and a humidity of 90% for 7 days. Add 5% by weight of 2-ethyl-4-methyl-imidazole as a curing agent to bisphenol A epoxy resin.
The mixture was added at a ratio of 2% by weight to the magnetic powder and kneaded. This was compression molded and heated to 80°C for 2 hours.

さちに150°Cで1時間硬化させ40KOeの磁界で
磁化させた。これらの磁石の残留磁束密度、保磁力およ
び最大エネルギー積を測定した。処理剤で処理を行わな
かった粉末についても同様に試験を行った。その結果を
表4に示す。
First, it was cured at 150°C for 1 hour and magnetized in a magnetic field of 40KOe. The residual magnetic flux density, coercive force and maximum energy product of these magnets were measured. A similar test was also conducted on powder that was not treated with the treatment agent. The results are shown in Table 4.

(以下余白) 表4に示すように、未処理の試料の場合には高湿度下に
おける磁性粉末の劣化が大きく、ボンド磁石にした時の
磁気特性が悪い。これに対して。
(The following is a blank space) As shown in Table 4, in the case of untreated samples, the magnetic powder deteriorated significantly under high humidity, and the magnetic properties when made into bonded magnets were poor. On the contrary.

表面処理したものは劣化がなく、ボンド磁石の磁気特性
が良好であることがわかる。
It can be seen that there is no deterioration in the surface-treated bonded magnets, and the magnetic properties of the bonded magnets are good.

尖施貫主 実施例2と同様の方法でボンド磁石を作成し。The head of the custodian A bonded magnet was created in the same manner as in Example 2.

得られたボンド磁石を温度60°C9湿度90%の恒温
恒湿槽に500時間放置した後、その性能を同様に比較
した。その結果を表5に示す。
The obtained bonded magnets were left in a constant temperature and humidity chamber at a temperature of 60° C. and a humidity of 90% for 500 hours, and then their performances were similarly compared. The results are shown in Table 5.

(以下余白) 表5に示すように、未処理の磁性粉末を用いたボンド磁
石の場合には高湿度下、長時間保存時での劣化が大きい
のに対し1表面改質磁性粉末を用いたボンド磁石ではほ
とんど劣化が見られない。
(Left below) As shown in Table 5, in the case of bonded magnets using untreated magnetic powder, the deterioration is large when stored for long periods of time under high humidity, whereas the bonded magnets using surface-modified magnetic powder 1. Bonded magnets show almost no deterioration.

尖施炭土 希土類磁性粉末マグネクエンチNdzFe+J(ゼネラ
ルモーターズ社製)をヘンシェルミキサー内で低速撹拌
した。これに実施例1(A)項で調製した処理剤B(1
0重量%水溶液)を、磁性粉末に対して固形分として0
.3重量%になるように添加した。
Magnequench NdzFe+J (manufactured by General Motors), a rare earth magnetic powder, was stirred at low speed in a Henschel mixer. This was added to the treatment agent B (1) prepared in Example 1 (A).
0% by weight aqueous solution) as a solid content of the magnetic powder.
.. It was added at a concentration of 3% by weight.

均一に撹拌した後、120″Cにて5分間1次いで20
0°Cで5分間加熱した。得られた表面改質磁性粉末9
0部とナイロン1210部とを270’Cで加熱混練し
After stirring uniformly, heat at 120"C for 5 minutes and then 20 minutes.
Heated at 0°C for 5 minutes. Obtained surface modified magnetic powder 9
0 parts and 1210 parts of nylon were heated and kneaded at 270'C.

ペレット化した。これを射出成型法で成型し、40KO
eの磁界をかけてボンド磁石とした。さらに。
Pelleted. This was molded using the injection molding method, and 40KO
A magnetic field of e was applied to form a bonded magnet. moreover.

金型に残った材料を集めて、同様の方法で成型を行いボ
ンド磁石を調製した。このようにして金型に残った材料
を集めて10回リサイクルを行い、得られた磁石の性能
を比較した。その結果を表6に示す。
The material remaining in the mold was collected and molded in the same manner to prepare a bonded magnet. The materials remaining in the mold were collected and recycled 10 times, and the performance of the resulting magnets was compared. The results are shown in Table 6.

表6に示すように、未処理の磁性粉末を用いたボンド磁
石の場合には、成型材料を再使用すると。
As shown in Table 6, in the case of bonded magnets using untreated magnetic powder, the molding material is reused.

高温での酸化劣化が激しく磁気特性が顕著に低下する。At high temperatures, oxidation deterioration is severe and magnetic properties are significantly degraded.

これに対して1表面改質磁性粉末を用いたボンド磁石で
は、その劣化の度合がきわめて低い。
On the other hand, bonded magnets using surface-modified magnetic powder have an extremely low degree of deterioration.

(発明の効果) 本発明によれば、このように、高磁力で最大エネルギー
積が太き(、かつ経時的に性能の低下しないボンド磁石
を形成しうる表面改質磁性粉末。
(Effects of the Invention) According to the present invention, there is provided a surface-modified magnetic powder that can form a bonded magnet with high magnetic force and a large maximum energy product (and whose performance does not deteriorate over time).

およびそれを用いたボンド磁石組成物が得られる。And a bonded magnet composition using the same is obtained.

この磁性粉末は、希土類および鉄を主成分とする合金を
主成分とするため、従来のサマリウム−コバルト系磁性
粉末に比べ安価に提供され得る。
Since this magnetic powder is mainly composed of an alloy mainly composed of rare earth elements and iron, it can be provided at a lower cost than conventional samarium-cobalt magnetic powders.

以上that's all

Claims (7)

【特許請求の範囲】[Claims] 1.希土類金属と鉄とを含有する合金でなる磁性粉末を
アルカリケイ酸塩を主成分とする処理剤で表面処理して
得られる表面改質磁性粉末。
1. A surface-modified magnetic powder obtained by surface-treating magnetic powder made of an alloy containing rare earth metals and iron with a treatment agent containing an alkali silicate as a main component.
2.前記磁性粉末が,組成式R_xT_yB_zで示さ
れる合金を主成分とする特許請求の範囲第1項に記載の
表面改質磁性粉末: ここでRはネオジム,プラセオジムおよ びミッシュメタルでなる希土類金属の群か ら選ばれる少なくとも一種,Tは鉄,また は鉄および鉄族元素,そしてBはホウ素で あり,x,yおよびzはそれぞれR,TおよびBの原子
百分率を示し,x,yおよびzの間には次式が成立する
:8≦x≦30,2≦z≦20,y=100−x−y。
2. The surface-modified magnetic powder according to claim 1, wherein the magnetic powder is mainly composed of an alloy represented by the composition formula R_xT_yB_z: where R is from the group of rare earth metals consisting of neodymium, praseodymium, and misch metal. at least one selected from the group, T is iron or iron and an iron group element, and B is boron; x, y, and z each represent the atomic percentage of R, T, and B; The following formula holds: 8≦x≦30, 2≦z≦20, y=100−x−y.
3.前記処理剤が,水ガラスとシリカとを含有する特許
請求の範囲第1項または第2項に記載の表面改質磁性粉
末。
3. The surface-modified magnetic powder according to claim 1 or 2, wherein the treatment agent contains water glass and silica.
4.希土類金属と鉄とを含有する合金でなる磁性粉末を
アルカリケイ酸塩を主成分とする処理剤で表面処理して
得られる表面改質磁性粉末,およびバインダーを含有す
るボンド磁石組成物。
4. A bonded magnet composition containing a surface-modified magnetic powder obtained by surface-treating a magnetic powder made of an alloy containing a rare earth metal and iron with a treatment agent containing an alkali silicate as a main component, and a binder.
5.前記磁性粉末が,組成式R_xT_yB_zで示さ
れる合金を主成分とする特許請求の範囲第4項に記載の
組成物: ここでRはネオジム,プラセオジムおよ びミッシュメタルでなる希土類金属の群か ら選ばれる少なくとも一種,Tは鉄,また は鉄および鉄族元素,そしてBはホウ素で あり,x,yおよびzはそれぞれR,TおよびBの原子
百分率を示し,x,yおよびzの間には次式が成立する
:8≦x≦30,2≦z≦20,y=100−x−y。
5. The composition according to claim 4, wherein the magnetic powder is mainly composed of an alloy represented by the composition formula R_xT_yB_z: where R is at least one selected from the group of rare earth metals consisting of neodymium, praseodymium, and misch metal. 1, T is iron or iron and iron group elements, and B is boron, x, y, and z represent the atomic percentages of R, T, and B, respectively, and the following formula is between x, y, and z: Holds: 8≦x≦30, 2≦z≦20, y=100−x−y.
6.前記処理剤が,水ガラスとシリカとを含有する特許
請求の範囲第4項または第5項に記載の組成物。
6. The composition according to claim 4 or 5, wherein the treatment agent contains water glass and silica.
7.前記バインダーが樹脂である特許請求の範囲第4項
,第5項または第6項に記載の組成物。
7. 7. The composition according to claim 4, 5 or 6, wherein the binder is a resin.
JP62202302A 1987-08-13 1987-08-13 Surface-modified magnetic powder and bond magnet composition containing same Pending JPH01272101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62202302A JPH01272101A (en) 1987-08-13 1987-08-13 Surface-modified magnetic powder and bond magnet composition containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62202302A JPH01272101A (en) 1987-08-13 1987-08-13 Surface-modified magnetic powder and bond magnet composition containing same

Publications (1)

Publication Number Publication Date
JPH01272101A true JPH01272101A (en) 1989-10-31

Family

ID=16455297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62202302A Pending JPH01272101A (en) 1987-08-13 1987-08-13 Surface-modified magnetic powder and bond magnet composition containing same

Country Status (1)

Country Link
JP (1) JPH01272101A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343957A2 (en) * 1988-05-25 1989-11-29 Daihachi Chemical Industry Co., Ltd. A surface-treated magnetic powder and a moldable permanent magnet composition containing the same
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
WO2010107387A1 (en) * 2009-03-17 2010-09-23 Magnequench International, Inc. A magnetic material
DE102013004985A1 (en) 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (en) 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
CN110895985A (en) * 2019-11-06 2020-03-20 包头稀土研究院 Mixed rare earth sintered neodymium-iron-boron permanent magnet and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343957A2 (en) * 1988-05-25 1989-11-29 Daihachi Chemical Industry Co., Ltd. A surface-treated magnetic powder and a moldable permanent magnet composition containing the same
EP0343957A3 (en) * 1988-05-25 1991-01-16 Daihachi Chemical Industry Co., Ltd. A surface-treated magnetic powder and a moldable permanent magnet composition containing the same
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
WO2010107387A1 (en) * 2009-03-17 2010-09-23 Magnequench International, Inc. A magnetic material
CN102725806A (en) * 2009-03-17 2012-10-10 马格内昆茨国际公司 A magnetic material
DE102013004985A1 (en) 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
US10312019B2 (en) 2012-11-14 2019-06-04 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
DE102013213494A1 (en) 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet and electric machine with such a permanent magnet
CN110895985A (en) * 2019-11-06 2020-03-20 包头稀土研究院 Mixed rare earth sintered neodymium-iron-boron permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
US4983231A (en) Coated magnetic powder and a bonded permanent magnet composition containing the same
EP2394761B1 (en) Surface treated rare earth magnetic powder, bonded magnet resin composition that includes this powder, and bonded magnet
JP2011223006A (en) Coating formulation and application of organic passivation layer onto iron-based rare earth powder
US5840375A (en) Method for the preparation of a highly corrosion resistant rare earth based permanent magnet
WO1998008233A1 (en) Magnetic powder and magnetic molded article
EP0111331B1 (en) Plastic magnets impregnated with a dye-coated metallic magnet powder
JP2022109276A (en) Manufacturing method of magnetic powder
JPH01272101A (en) Surface-modified magnetic powder and bond magnet composition containing same
JP4340035B2 (en) Hydraulic composition bonded magnet
JP7335515B2 (en) Manufacturing method of compound for bonded magnet
EP1453069B1 (en) Rare-earth permanent magnet having corrosion-resistant coating and process for producing the same
JPH07326508A (en) Compose magnetic material for bond-molded magnetic body and bond-molded magnetic body
US20230374257A1 (en) Method of producing magnetic powder-containing resin composition
WO2022259949A1 (en) Smfen-based anisotropic magnetic powder, bonded maget, method for producing said smfen-based anisotropic magnetic powder, and method for producing said bonded maget
WO2023048003A1 (en) Smfen-based anisotropic magnetic powder and bonded magnet, and method for producing said powder and magnet
WO2022107462A1 (en) PRODUCTION METHOD OF PHOSPHATE-COATED SmFeN-BASE ANISOTROPIC MAGNETIC POWDER, AND BOND MAGNET
JPS63234503A (en) Manufacture of permanent magnet
JPH07230906A (en) Permanent magnet and its manufacture
JP2024051932A (en) MANUFACTURING METHOD FOR PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
JP3059296B2 (en) Method for improving magnetic properties of molded resin magnet
JPH043651B2 (en)
JP2022189752A (en) MANUFACTURING METHOD FOR SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
TW202341192A (en) Resin composition for bonded magnet and molded article using the same
JPH03261105A (en) Resin coupled type rare earth magnet
RU1769625C (en) Method of manufacture of permanent magnets