JPH08206499A - Catalyst for removing nitrogen oxide - Google Patents

Catalyst for removing nitrogen oxide

Info

Publication number
JPH08206499A
JPH08206499A JP7299330A JP29933095A JPH08206499A JP H08206499 A JPH08206499 A JP H08206499A JP 7299330 A JP7299330 A JP 7299330A JP 29933095 A JP29933095 A JP 29933095A JP H08206499 A JPH08206499 A JP H08206499A
Authority
JP
Japan
Prior art keywords
catalyst
silver
alumina
nitrogen oxide
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7299330A
Other languages
Japanese (ja)
Other versions
JP2843977B2 (en
Inventor
Yoshihiro Iriyama
義宏 入山
Minoru Furuya
実 古谷
Yukiaki Honma
亨暁 本間
Mitsuo Kojima
光雄 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17871159&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08206499(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikki Kagaku KK filed Critical Nikki Kagaku KK
Priority to JP7299330A priority Critical patent/JP2843977B2/en
Publication of JPH08206499A publication Critical patent/JPH08206499A/en
Application granted granted Critical
Publication of JP2843977B2 publication Critical patent/JP2843977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To efficiently remove nitrogen oxide contained in exhaust gas, which is in an oxidizing atmosphere of a high oxygen concentration and which contains sulfur oxide, continuously even at a high temperature, in the presence of hydrocarbons or organic compounds containing oxygen. CONSTITUTION: In the catalyst for removing nitrogen oxide for use in the presence of hydrocarbons or organic compounds containing oxygen, alumina prepared by hydrolyzing organic aluminum compound is used as the porous heat resistant carrier, and at least one kind of active component selected from among silver or silver compounds is carried on the alumina.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物浄化用触媒に
関し、詳しくはリーンバーンガソリンエンジン自動車、
ディーゼルエンジン自動車等の排ガス、もしくはボイラ
ー排ガスのような酸素濃度の高い排ガス中に含まれる窒
素酸化物を効率よく除去し、無害化するための窒素酸化
物浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying nitrogen oxides, more specifically, a lean burn gasoline engine automobile,
The present invention relates to a catalyst for purifying nitrogen oxides for efficiently removing and detoxifying nitrogen oxides contained in exhaust gas from diesel engine automobiles or exhaust gas with high oxygen concentration such as boiler exhaust gas.

【0002】[0002]

【従来の技術】大気汚染防止を目的として近年、リーン
バーンガソリンエンジン自動車、ディーゼルエンジン自
動車、コージェネレーション発電機またはボイラーから
の排ガスのように、高い酸素濃度の排ガス中の窒素酸化
物を浄化することが急務となっている。
2. Description of the Related Art In recent years, purifying nitrogen oxides in exhaust gas having a high oxygen concentration such as exhaust gas from a lean burn gasoline engine vehicle, a diesel engine vehicle, a cogeneration generator or a boiler for the purpose of preventing air pollution. Is an urgent task.

【0003】一般に、こうした酸素濃度の高い排ガス中
の窒素酸化物を除去する方法としては、V25/TiO
2系触媒を使用したアンモニア還元法がよく知られてお
り、アンモニアによって窒素酸化物を選択的に還元して
無害な窒素に転換するものである。しかし、この方法は
危険性の高いアンモニアを取り扱うため、特に自動車等
の移動発生源からの排ガスへの適応は困難である。ま
た、この方法は設備が大型化するため、自動車等のよう
な限定されたスペースから発生する窒素酸化物の除去方
法には適さない。
Generally, V 2 O 5 / TiO 2 is used as a method for removing nitrogen oxides in exhaust gas having a high oxygen concentration.
Ammonia reduction method using a two- system catalyst is well known, and nitrogen oxide is selectively reduced by ammonia to convert into harmless nitrogen. However, since this method handles highly dangerous ammonia, it is difficult to adapt to exhaust gas from mobile sources such as automobiles. Further, this method is not suitable as a method for removing nitrogen oxides generated from a limited space such as an automobile because the equipment becomes large.

【0004】従って、アンモニア還元法に代わる安全な
還元剤を使用し、かつ省スペースの窒素酸化物除去方法
の開発が期待されていた。例えば特開平4−28184
4号公報には窒素酸化物を含む排ガスにプロピレンを添
加して還元剤となし、これらの混合ガスとAg/Al2
3系触媒とを接触させることで窒素酸化物を窒素に転
換する方法が開示され、また特開平4−367740号
公報にはSiO2/Al23モル比が20〜60である
ZSM−5にFeを含有した触媒と窒素酸化物、酸素お
よび炭化水素としてエチレンを含むガスを接触させ、ガ
ス中の窒素酸化物を除去する方法が提案されている。
Therefore, it has been expected to develop a nitrogen oxide removing method which uses a safe reducing agent instead of the ammonia reducing method and saves space. For example, JP-A-4-28184
No. 4 discloses that propylene is added to exhaust gas containing nitrogen oxides to form a reducing agent, and mixed gas of these and Ag / Al 2
A method of converting nitrogen oxides to nitrogen by contacting with an O 3 -based catalyst is disclosed, and JP-A-4-366740 discloses a ZSM- having a SiO 2 / Al 2 O 3 molar ratio of 20 to 60. A method has been proposed in which a catalyst containing Fe in 5 is brought into contact with a gas containing nitrogen oxide, oxygen and ethylene as a hydrocarbon to remove nitrogen oxide in the gas.

【0005】しかるに、前記した特開平4−28184
4号公報および特開平4−367740号公報等に開示
されているような炭化水素類もしくは含酸素有機化合物
を還元剤として添加することによる従来の窒素酸化物除
去技術においては、400℃以下の比較的低温領域での
窒素酸化物の除去においては有効であるが、500℃以
上という高温領域での窒素酸化物の除去性能が劣るとい
う問題がある。
However, the above-mentioned Japanese Patent Laid-Open No. 4-28184.
In conventional nitrogen oxide removal technology by adding hydrocarbons or oxygen-containing organic compounds as a reducing agent as disclosed in Japanese Patent Laid-Open No. 4 and Japanese Patent Laid-Open No. 4-377740, comparisons at temperatures of 400 ° C. or lower are made. Although it is effective in removing nitrogen oxides in a relatively low temperature range, there is a problem that nitrogen oxide removing performance is poor in a high temperature range of 500 ° C. or higher.

【0006】炭化水素類あるいは含酸素有機化合物類の
ような還元剤を添加して窒素酸化物を除去する技術にお
いては、触媒に所望の特性として、添加された還元剤を
完全酸化させないことが重要である。完全酸化活性の高
い触媒、例えば銀、酸化銀や白金族元素等を担持させた
触媒では、添加された還元剤の完全酸化反応が促進され
ることにより、窒素酸化物に対する還元剤としての作用
をもたなくなる。従来技術における高温領域の窒素酸化
物除去活性が低い原因はこの点にある。
In the technique of removing nitrogen oxides by adding a reducing agent such as hydrocarbons or oxygen-containing organic compounds, it is important that the added reducing agent is not completely oxidized as a desired characteristic of the catalyst. Is. A catalyst having a high complete oxidation activity, for example, a catalyst supporting silver, silver oxide, a platinum group element, or the like, functions as a reducing agent for nitrogen oxides by promoting the complete oxidation reaction of the added reducing agent. I will lose it. This is the reason why the nitrogen oxide removing activity in the high temperature region in the prior art is low.

【0007】また、特開平6−7641号公報や特開平
6−71175号公報等にはγ−アルミナ等の多孔質の
無機酸化物に銀または銀化合物を担持した窒素酸化物を
還元する窒素酸化物除去触媒が開示されているが、この
場合にも高温での窒素酸化物の除去が効率よく行なうこ
とができない。
Further, in JP-A-6-7641 and JP-A-6-71175, nitrogen oxidation is carried out to reduce a nitrogen oxide in which silver or a silver compound is supported on a porous inorganic oxide such as γ-alumina. Although a substance removal catalyst is disclosed, removal of nitrogen oxides at high temperature cannot be performed efficiently even in this case.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、酸素
濃度の高い、酸化雰囲気にある排ガスに含まれる窒素酸
化物を、炭化水素類または含酸素有機化合物類を共存下
に、高温においても効率よく除去し得る窒素酸化物浄化
用触媒を提供することにあり、さらには、排ガス中に共
存する硫黄酸化物の共存によっても除去効率の低下が少
ない窒素酸化物浄化用触媒を提供することにある。
The object of the present invention is to prevent nitrogen oxides contained in exhaust gas in an oxidizing atmosphere having a high oxygen concentration from coexisting with hydrocarbons or oxygen-containing organic compounds even at high temperatures. It is to provide a catalyst for purifying nitrogen oxides that can be efficiently removed, and further to provide a catalyst for purifying nitrogen oxides in which the removal efficiency is less reduced even by the coexistence of sulfur oxides that coexist in the exhaust gas. is there.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は、銀
を高温においても安定な化合物として特定の多孔質耐熱
担体上に担持させることにより、硫黄酸化物を含む高酸
素濃度の排ガス中の窒素酸化物を炭化水素類もしくは含
酸素有機化合物類の共存下に接触させることによって、
高い温度領域でも効率よく窒素酸化物を除去することが
できることを知見して本発明に到達した。
The above object of the present invention is to support silver in a high oxygen concentration exhaust gas containing sulfur oxides by supporting silver as a compound stable even at high temperature on a specific porous heat-resistant carrier. By contacting nitrogen oxides in the presence of hydrocarbons or oxygen-containing organic compounds,
The present invention has been achieved by finding that nitrogen oxides can be removed efficiently even in a high temperature region.

【0010】すなわち、本発明の窒素酸化物除去用触媒
は、炭化水素類もしくは含酸素有機化合物の共存下に用
いられる窒素酸化物浄化用触媒であって、多孔質耐熱担
体として有機アルミニウム化合物を加水分解することに
よって調製されたアルミナを用い、これに銀または銀化
合物から選択された少なくとも1種の活性成分を担持し
てなることを特徴とする。
That is, the catalyst for removing nitrogen oxides of the present invention is a catalyst for purifying nitrogen oxides which is used in the coexistence of hydrocarbons or oxygen-containing organic compounds and which hydrolyzes an organoaluminum compound as a porous heat-resistant carrier. Alumina prepared by decomposing is used, which is loaded with at least one active ingredient selected from silver or a silver compound.

【0011】[0011]

【発明の実施の形態】本発明では、触媒の活性成分とし
て銀または銀化合物から選択された少なくとも1種が用
いられる。銀化合物としては塩化銀、臭化銀等のハロゲ
ン化銀や硫酸銀、燐酸銀、酸化銀等が用いられる。この
ような銀または銀化合物を用いることによって、高温、
すなわち500℃以上の温度でも窒素酸化物を効率よく
除去できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, at least one selected from silver and silver compounds is used as an active component of a catalyst. As the silver compound, silver halides such as silver chloride and silver bromide, silver sulfate, silver phosphate, silver oxide and the like are used. By using such silver or silver compound, high temperature,
That is, nitrogen oxides can be efficiently removed even at a temperature of 500 ° C. or higher.

【0012】これら銀または銀化合物(活性成分)の多
孔質耐熱担体への担持量は、触媒総量に対して銀に換算
して好ましくは0.01〜20.0重量%、さらに好ま
しくは0.05〜15.0重量%である。銀または銀化
合物の銀に換算した量が触媒総量に対して0.01重量
%未満の場合には、窒素酸化物の除去効率が小さく、2
0.0重量%を超えた場合には、高温での窒素酸化物除
去効率が劣ったものとなる。
The amount of silver or silver compound (active ingredient) supported on the porous heat-resistant carrier is preferably 0.01 to 20.0% by weight, more preferably 0.1% by weight in terms of silver based on the total amount of the catalyst. It is 05 to 15.0% by weight. When the amount of silver or a silver compound converted to silver is less than 0.01% by weight based on the total amount of the catalyst, the removal efficiency of nitrogen oxides is low, and 2
If it exceeds 0.0% by weight, the nitrogen oxide removal efficiency at high temperatures becomes poor.

【0013】本発明で用いられる多孔質耐熱担体とは、
有機アルミニウム化合物、すなわちアルミニウムアルコ
レートを加水分解することによって調製されたアルミナ
である。アルミニウムアルコレートとしては、例えばア
ルミニウムイソプロポキシド(Al[OCH(C
333)、アルミニウムエトキシド(Al(OC2
53)、アルミニウム−t−ブトキシド(Al[OC
(CH333)等が例示され、これらアルミニウムア
ルコレートを水に溶解し、さらに大量の水を加えて加水
分解し、得られた水和酸化アルミニウムを乾燥し、次い
で300℃以上で焼成してアルミナを得る。このような
アルミナを多孔質耐熱担体として用いることによって、
高温での窒素酸化物除去効率が優れたものとなり、さら
に排ガス中の数ppm〜500ppm程度の高い硫黄酸
化物の共存下においても除去効率の低下が少ないものと
なる。硫酸アルミニウムやアルミン酸ナトリウムを原料
とした通常のアルミナ、例えばγ−アルミナを多孔質耐
熱担体として用いた場合には高温での高い窒素酸化物除
去効率は得られない。本発明で用いられるこの有機アル
ミニウム化合物を加水分解することによって調製された
アルミナからなる多孔質耐熱担体にシリカを一定量以下
含有させることによって、高温での窒素酸化物除去効率
がさらに向上するがその含有量は15重量%以下であ
る。シリカの含有量が15重量%を超えると上記した特
定のアルミナの高温での窒素酸化物除去効率が損われ
る。この多孔質耐熱担体は、通常酸化物の状態で銀また
は銀化合物を担持するが、特に酸化物に限定されるもの
ではなく、熱分解を経ていない水和酸化物上に前記の銀
または銀化合物を担持し、最終的に熱処理して触媒とな
すこともできる。
The porous heat-resistant carrier used in the present invention is
An organoaluminum compound, an alumina prepared by hydrolyzing an aluminum alcoholate. Examples of the aluminum alcoholate include aluminum isopropoxide (Al [OCH (C
H 3) 3] 3), aluminum ethoxide (Al (OC 2 H
5 ) 3 ), aluminum-t-butoxide (Al [OC
(CH 3 ) 3 ] 3 ) and the like. These aluminum alcoholates are dissolved in water, and a large amount of water is added to hydrolyze them, and the resulting hydrated aluminum oxide is dried, and then at 300 ° C or higher Calcination gives alumina. By using such alumina as a porous heat-resistant carrier,
The removal efficiency of nitrogen oxides at high temperature becomes excellent, and further, the removal efficiency decreases less even in the presence of high sulfur oxides of several ppm to 500 ppm in the exhaust gas. When ordinary alumina made of aluminum sulfate or sodium aluminate, for example, γ-alumina is used as the porous heat-resistant carrier, high nitrogen oxide removal efficiency at high temperature cannot be obtained. By including a certain amount or less of silica in the porous heat-resistant carrier made of alumina prepared by hydrolyzing the organoaluminum compound used in the present invention, the nitrogen oxide removal efficiency at high temperature is further improved. The content is 15% by weight or less. When the content of silica exceeds 15% by weight, the nitrogen oxide removal efficiency at high temperature of the above-mentioned specific alumina is impaired. This porous heat-resistant carrier usually carries silver or a silver compound in the state of an oxide, but is not particularly limited to an oxide, and the above-mentioned silver or silver compound is not formed on a hydrated oxide that has not undergone thermal decomposition. Can also be supported and finally heat treated to form a catalyst.

【0014】多孔質耐熱担体への前記銀または銀化合物
の担持方法は特に限定されるものではなく、任意の方法
でよいが、例えば硝酸銀水溶液に前記の担体粉末を懸濁
させた後に、塩化アンモニウム、塩化ナトリウム等の水
溶性塩素化合物の水溶液を添加し、担体上に塩化銀とし
て担持させた後、熱処理して触媒とすることができる。
The method for supporting the above-mentioned silver or silver compound on the porous heat-resistant carrier is not particularly limited and may be any method. For example, ammonium chloride is prepared after suspending the above-mentioned carrier powder in an aqueous solution of silver nitrate. , An aqueous solution of a water-soluble chlorine compound such as sodium chloride may be added, and after being supported as silver chloride on a carrier, heat treatment may be performed to obtain a catalyst.

【0015】このような本発明の窒素酸化物浄化用触媒
は、通常、水性スラリーとなし、これをハニカムにウォ
ッシュコートすることにより触媒に固着し、次いで焼成
して得られるハニカム構造体触媒として用いられる。
Such a catalyst for purifying nitrogen oxides of the present invention is usually used as a honeycomb structure catalyst obtained by forming an aqueous slurry, fixing it to the catalyst by washcoating it on a honeycomb, and then firing it. To be

【0016】本発明の窒素酸化物浄化用触媒を用いて窒
素酸化物を除去する際には、炭化水素類もしくは含酸素
有機化合物類の共存下で行なわれる。この理由は酸素濃
度の高い排ガス中の一酸化窒素は酸素によって酸化さ
れ、二酸化窒素が生成する。この二酸化窒素を還元する
ための還元剤として炭化水素類もしくは含酸素有機化合
物類が用いられるからである。
Removal of nitrogen oxides using the catalyst for purifying nitrogen oxides of the present invention is carried out in the presence of hydrocarbons or oxygen-containing organic compounds. The reason for this is that nitric oxide in the exhaust gas having a high oxygen concentration is oxidized by oxygen to generate nitrogen dioxide. This is because hydrocarbons or oxygen-containing organic compounds are used as a reducing agent for reducing this nitrogen dioxide.

【0017】ここでいう炭化水素類とは、エチレン、プ
ロピレン等のオレフィン系炭化水素、プロパン等のパラ
フィン系炭化水素、トルエン、キシレン等の芳香族系炭
化水素等が挙げられる。また、含酸素有機化合物類とし
てはメチルアルコール、エチルアルコール、プロピルア
ルコール、エチレングリコール、プロピレングリコール
等のアルコール、アセトン、エチルメチルケトン、メチ
ルプロピルケトン等のケトン等が例示される。
Examples of the hydrocarbons include olefinic hydrocarbons such as ethylene and propylene, paraffinic hydrocarbons such as propane, aromatic hydrocarbons such as toluene and xylene. Examples of the oxygen-containing organic compounds include alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, ethylene glycol and propylene glycol, and ketones such as acetone, ethyl methyl ketone and methyl propyl ketone.

【0018】[0018]

【作用】本発明の触媒は、特定のアルミナからなる多孔
質耐熱担体上に高温でも分解しない安定な銀または銀化
合物を担持している。この触媒においては、多孔質耐熱
担体である特定のアルミナの純度が極めて高く、また水
蒸気が共存雰囲気での使用に対して構造が安定してい
る。このため、本発明の触媒は特に10容量%程度の水
蒸気と、数ppm〜500ppm程度の硫黄酸化物が含
まれる雰囲気で、窒素酸化物の除去が高温でも効率よく
なされると共に、長期に安定した除去特性を持続する。
The catalyst of the present invention has a stable heat-resistant silver or silver compound that does not decompose even at high temperatures, supported on a porous heat-resistant carrier made of a specific alumina. In this catalyst, the specific alumina that is the porous heat-resistant carrier has extremely high purity, and the structure is stable even when used in an atmosphere in which water vapor coexists. For this reason, the catalyst of the present invention is particularly effective in removing nitrogen oxides even at high temperatures and is stable for a long period of time in an atmosphere containing about 10% by volume of water vapor and about several ppm to about 500 ppm of sulfur oxides. Retains removal characteristics.

【0019】[0019]

【実施例】以下、本発明を実施例等によってさらに詳し
く説明する。実施例1 純水250g中に硝酸銀4.14gを添加して溶解し
た。40℃に維持したこの液に、アルミニウムイソプロ
ポキシドの加水分解によって得たアルミナ水和酸化物の
粉末100gを加えて撹拌、懸濁した。別に調製した塩
化アンモニウム1.43gを純水50gに溶解した水溶
液を15分間で添加して水和酸化アルミニウムの粒子上
に塩化銀を担持させた。60分間熟成した後、濾過、洗
浄し、120℃で乾燥、さらに450℃で60分間焼
成、粉砕して銀に換算して3.0重量%を含有する、塩
化銀/アルミナ触媒を得た。この触媒の触媒組成、銀換
算含有量、アルミナ原料種類を表1に示す。
EXAMPLES The present invention will now be described in more detail with reference to Examples and the like. Example 1 To 250 g of pure water, 4.14 g of silver nitrate was added and dissolved. To this liquid maintained at 40 ° C., 100 g of powder of hydrated alumina oxide obtained by hydrolysis of aluminum isopropoxide was added and stirred and suspended. An aqueous solution prepared by dissolving 1.43 g of separately prepared ammonium chloride in 50 g of pure water was added over 15 minutes to support silver chloride on the particles of hydrated aluminum oxide. After aging for 60 minutes, it was filtered, washed, dried at 120 ° C., calcined at 450 ° C. for 60 minutes and pulverized to obtain a silver chloride / alumina catalyst containing 3.0% by weight in terms of silver. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0020】次いで、この触媒45gと純水100g、
酢酸2.25gおよびアルミナゾル(アルミナ含有率1
0.5wt%、以下同様)21.4gを加えて撹拌、混
合し、湿式粉砕機を用いて触媒のメジアン径8.5μm
とし、固形分濃度28.0重量%の水性スラリーを調製
した。このスラリーの粘度を測定したところ15cps
であった。
Next, 45 g of this catalyst and 100 g of pure water,
Acetic acid 2.25 g and alumina sol (alumina content 1
0.5 wt%, the same applies hereinafter) 21.4 g was added, stirred and mixed, and the median diameter of the catalyst was 8.5 μm using a wet pulverizer.
To prepare an aqueous slurry having a solid content concentration of 28.0% by weight. When the viscosity of this slurry was measured, it was 15 cps.
Met.

【0021】このスラリーに直径20mm、高さ16m
m、セル数400セル/inch2のコージェライト製
ハニカム構造体をディップし、引き上げた後に加圧空気
によりセル内の余分なスラリーを除去した。190〜2
00℃で乾燥してこの操作を2回繰り返し、最終的に6
00℃で90分間焼成して窒素酸化物浄化用ハニカム構
造体触媒を得た。
This slurry has a diameter of 20 mm and a height of 16 m.
A cordierite honeycomb structure having m and the number of cells of 400 cells / inch 2 was dipped and pulled up, and then excess slurry in the cells was removed by pressurized air. 190-2
Dry at 00 ° C and repeat this operation twice, finally
The honeycomb structure catalyst for purifying nitrogen oxides was obtained by firing at 00 ° C. for 90 minutes.

【0022】このハニカム構造体触媒を用い、窒素酸化
物浄化用試験を次の操作に従って行なった。この試験方
法は、調製されたハニカム構造体触媒をステンレス反応
管に充填し、下記の組成のガスを流通させながら所定温
度まで昇温した。窒素酸化物除去率の測定は、所定反応
温度に60分間維持して触媒の窒素酸化物除去活性に関
する温度依存性の比較試験を行なった。結果を表2に示
す。また、この触媒の寿命については下記の反応ガス組
成および反応条件の下で、反応温度を450℃に維持し
て200時間の触媒性能寿命比較試験を行なった。結果
を表3に示す。
Using this honeycomb structure catalyst, a nitrogen oxide purification test was conducted according to the following procedure. In this test method, the prepared honeycomb structure catalyst was filled in a stainless steel reaction tube, and the temperature was raised to a predetermined temperature while circulating a gas having the following composition. The nitrogen oxide removal rate was measured by maintaining the temperature at a predetermined reaction temperature for 60 minutes to perform a comparative test of temperature dependency on the nitrogen oxide removal activity of the catalyst. Table 2 shows the results. Regarding the life of this catalyst, a catalyst performance life comparison test was carried out for 200 hours while maintaining the reaction temperature at 450 ° C. under the following reaction gas composition and reaction conditions. The results are shown in Table 3.

【0023】 (反応ガス組成) NO 1,000ppm SO2 80ppm O2 10vol% H2O 10vol% C25OH 1,563ppm N2 残部 (反応条件) C25OH/NO重量比 3 GHSV 20,000Hr-1 (Reaction gas composition) NO 1,000 ppm SO 2 80 ppm O 2 10 vol% H 2 O 10 vol% C 2 H 5 OH 1,563 ppm N 2 balance (reaction conditions) C 2 H 5 OH / NO weight ratio 3 GHSV 20,000 Hr -1

【0024】所定反応温度下に触媒層を通過した反応ガ
スを反応管出口でサンプリングし、化学発光窒素酸化物
分析計により窒素酸化物濃度を測定した。窒素酸化物の
除去率は次式によって計算した。 除去率(%)=[(1,000ppm−反応管出口の窒
素酸化物濃度ppm)/原料反応ガス中の窒素酸化物濃
度1,000ppm]×100
The reaction gas passing through the catalyst layer at a predetermined reaction temperature was sampled at the outlet of the reaction tube, and the nitrogen oxide concentration was measured by a chemiluminescence nitrogen oxide analyzer. The nitrogen oxide removal rate was calculated by the following formula. Removal rate (%) = [(1,000 ppm-nitrogen oxide concentration ppm at reaction tube outlet) / nitrogen oxide concentration in raw material reaction gas 1,000 ppm] × 100

【0025】実施例2 純水250g中に硝酸銀23.3gを添加して溶解し
た。40℃に維持したこの液に、アルミニウムイソプロ
ポキシドの加水分解で生成させた水和酸化アルミニウム
を550℃で3時間焼成して得たアルミナの粉末100
gを加え撹拌、懸濁した。別に調製した炭酸ナトリウム
8.0gを純水50gに溶解した水溶液を15分で添加
してアルミナ粒子上に炭酸銀を担持させた。60分間熟
成した後、濾過、洗浄し、120℃で乾燥、さらに45
0℃で焼成、粉砕して銀に換算して12.5重量%を含
有する炭酸銀/アルミナ触媒を得た。この触媒の触媒組
成、銀換算含有量、アルミナ原料種類を表1に示す。
Example 2 To 250 g of pure water, 23.3 g of silver nitrate was added and dissolved. Alumina powder 100 obtained by baking hydrated aluminum oxide produced by hydrolysis of aluminum isopropoxide at 550 ° C. for 3 hours in this liquid maintained at 40 ° C.
g was added, and the mixture was stirred and suspended. An aqueous solution prepared by dissolving 8.0 g of separately prepared sodium carbonate in 50 g of pure water was added over 15 minutes to support silver carbonate on the alumina particles. After aging for 60 minutes, it is filtered, washed, dried at 120 ° C, and further 45 minutes.
A silver carbonate / alumina catalyst containing 12.5% by weight in terms of silver was obtained by firing at 0 ° C. and pulverizing. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0026】次いで、この触媒65gと純水100g、
酢酸2.0gおよびアルミナゾル18.6gを加えて撹
拌、混合し、さらに湿式粉砕機を用いてメジアン径1
0.5μmになるように粒子径を調製し、固形分濃度3
6.1重量%の水性スラリーを調製した。このスラリー
の粘度を測定したところ58cpsであった。
Next, 65 g of this catalyst and 100 g of pure water,
Add 2.0 g of acetic acid and 18.6 g of alumina sol, stir and mix, and use a wet pulverizer to obtain a median diameter of 1
Adjust the particle size to 0.5 μm and adjust the solid content to 3
A 6.1 wt% aqueous slurry was prepared. When the viscosity of this slurry was measured, it was 58 cps.

【0027】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0028】実施例3 アルミニウムエトキシドの加水分解で生成させた水和酸
化アルミニウムの粉末170gをSiO2として22.
5g含有するシリカゾルの水溶液530g中に懸濁、撹
拌した。このスラリーをスプレードライし、さらに55
0℃で3時間焼成してシリカ15重量%を含有するシリ
カ・アルミナ粉末担体を調製した。
Example 3 170 g of hydrated aluminum oxide powder produced by hydrolysis of aluminum ethoxide was used as SiO 2 .
It was suspended and stirred in 530 g of an aqueous solution of silica sol containing 5 g. This slurry is spray dried and then 55
It was calcined at 0 ° C. for 3 hours to prepare a silica / alumina powder carrier containing 15% by weight of silica.

【0029】純水500g中に硝酸銀4.93gを添加
して溶解した。40℃に維持したこの液に、先に調製し
たシリカ15重量%を含有するシリカ・アルミナ粉末担
体100gを加えて、撹拌、懸濁した。別に調製した硫
酸ナトリウム2.26gを純水50gに溶解した水溶液
を15分で添加してシリカ・アルミナ粒子上に硫酸銀を
担持させた。60分間熟成した後、濾過、洗浄し、12
0℃で乾燥、さらに450℃で焼成、粉砕して銀に換算
して3.0重量%を含有する硫酸銀/アルミナ触媒を得
た。この触媒の触媒組成、銀換算含有量、アルミナ原料
種類を表1に示す。
To 500 g of pure water, 4.93 g of silver nitrate was added and dissolved. To this liquid maintained at 40 ° C., 100 g of the silica / alumina powder carrier containing 15% by weight of silica prepared above was added, and the mixture was stirred and suspended. An aqueous solution prepared by dissolving 2.26 g of separately prepared sodium sulfate in 50 g of pure water was added over 15 minutes to support silver sulfate on the silica / alumina particles. After aging for 60 minutes, filter, wash, and
It was dried at 0 ° C., further baked at 450 ° C., pulverized to obtain a silver sulfate / alumina catalyst containing 3.0% by weight in terms of silver. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0030】次いで、この触媒50gと純水100g、
酢酸2.5gおよびアルミナゾル23.8gを加えて撹
拌、混合し、さらに湿式粉砕機を用いてメジアン径3.
5μmになるように粒子径を調製し、固形分濃度29.
8重量%の水性スラリーを調製した。このスラリーの粘
度を測定したところ21cpsであった。
Next, 50 g of this catalyst and 100 g of pure water,
Acetic acid (2.5 g) and alumina sol (23.8 g) were added, and the mixture was stirred and mixed, and further, a median diameter of 3.
The particle size was adjusted so as to be 5 μm, and the solid content concentration was 29.
An 8 wt% aqueous slurry was prepared. The viscosity of this slurry was measured and found to be 21 cps.

【0031】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0032】実施例4 純水500g中に硝酸銀4.14gを添加して溶解し
た。40℃に維持したこの液に、アルミニウム−t−ブ
トキシドの加水分解で生成させた水和酸化アルミニウム
の粉末100gを加え撹拌、懸濁した。加熱しながら蒸
発凝固し、120℃で乾燥、さらに450℃で焼成し
た。粉砕して銀に換算して3.4重量%を含有する酸化
銀/アルミナ触媒を得た。この触媒の触媒組成、銀換算
含有量、アルミナ原料種類を表1に示す。
Example 4 4.14 g of silver nitrate was added and dissolved in 500 g of pure water. To this solution maintained at 40 ° C, 100 g of powder of hydrated aluminum oxide produced by hydrolysis of aluminum-t-butoxide was added and stirred and suspended. It was evaporated and solidified while being heated, dried at 120 ° C., and further baked at 450 ° C. Crushed to obtain a silver oxide / alumina catalyst containing 3.4% by weight in terms of silver. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0033】次いで、この触媒65gと純水100g、
酢酸2.0gおよびアルミナゾル18.6gを加えて撹
拌、混合し、さらに湿式粉砕機を用いてメジアン径1
0.5μmになるように粒子径を調製し、固形分濃度3
6.1重量%の水性スラリーを調製した。このスラリー
の粘度を測定したところ58cpsであった。
Next, 65 g of this catalyst and 100 g of pure water,
Add 2.0 g of acetic acid and 18.6 g of alumina sol, stir and mix, and use a wet pulverizer to obtain a median diameter of 1
Adjust the particle size to 0.5 μm and adjust the solid content to 3
A 6.1 wt% aqueous slurry was prepared. When the viscosity of this slurry was measured, it was 58 cps.

【0034】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0035】比較例1 アルミン酸ナトリウム水溶液に硫酸水溶液を添加して中
和し、得られた水和酸化アルミニウムの沈殿を洗浄、乾
燥、粉砕した後、550℃で4時間焼成してアルミナ粉
末担体を得た。
Comparative Example 1 An aqueous solution of sulfuric acid was added to an aqueous solution of sodium aluminate for neutralization, and the obtained precipitate of hydrated aluminum oxide was washed, dried and pulverized, and then calcined at 550 ° C. for 4 hours to obtain an alumina powder carrier. Got

【0036】純水500g中に硝酸銀4.93gを添加
して溶解した。40℃に維持したこの液に、アルミナ粉
末担体100gを加えて撹拌、懸濁した。別に調製した
塩化アンモニウム1.72gを純水50gに溶解した水
溶液を15分間で添加してアルミナ粒子上に塩化銀を担
持させた。60分間熟成した後、濾過、洗浄し、120
℃で乾燥、さらに450℃で焼成、粉砕して銀に換算し
て3.0重量%を含有する、塩化銀/アルミナ触媒を得
た。この触媒の触媒組成、銀換算含有量、アルミナ原料
種類を表1に示す。
To 500 g of pure water, 4.93 g of silver nitrate was added and dissolved. To this liquid maintained at 40 ° C, 100 g of an alumina powder carrier was added and stirred and suspended. An aqueous solution prepared by dissolving 1.72 g of separately prepared ammonium chloride in 50 g of pure water was added over 15 minutes to support silver chloride on the alumina particles. After aging for 60 minutes, filter, wash, and
A silver chloride / alumina catalyst containing 3.0% by weight in terms of silver was obtained by drying at 0 ° C., calcining at 450 ° C., crushing. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0037】次いで、この触媒50gと純水100g、
酢酸2.5gおよびアルミナゾル23.8gを加えて撹
拌、混合し、湿式粉砕機を用いて触媒のメジアン径6.
1μmとし、固形分濃度27.8重量%の水性スラリー
を調製した。このスラリーの粘度を測定したところ36
cpsであった。
Next, 50 g of this catalyst and 100 g of pure water,
Add 2.5 g of acetic acid and 23.8 g of alumina sol, stir and mix, and use a wet pulverizer to obtain a median diameter of the catalyst of 6.
An aqueous slurry having a solid content of 27.8% by weight was prepared with a thickness of 1 μm. The viscosity of this slurry was measured and found to be 36
It was cps.

【0038】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0039】比較例2 硫酸アルミニウム水溶液にアンモニア水を添加して中和
し、得られた水和酸化アルミニウムの沈殿を洗浄、乾
燥、粉砕した後、550℃で4時間焼成してアルミナ粉
末担体を得た。
Comparative Example 2 Ammonia water was added to an aqueous solution of aluminum sulfate for neutralization, and the obtained hydrated aluminum oxide precipitate was washed, dried and pulverized, and then calcined at 550 ° C. for 4 hours to obtain an alumina powder carrier. Obtained.

【0040】純水500g中に硝酸銀4.93gを添加
して溶解した。40℃に維持したこの液に、アルミナ粉
末担体100gを加えて撹拌、懸濁した。別に調製した
塩化アンモニウム1.72gを純水50gに溶解した水
溶液を15分間で添加してアルミナ粒子上に塩化銀を担
持させた。60分間熟成した後、濾過、洗浄し、120
℃で乾燥、さらに450℃で焼成、粉砕して銀に換算し
て3.0重量%を含有する、塩化銀/アルミナ触媒を得
た。この触媒の触媒組成、銀換算含有量、アルミナ原料
種類を表1に示す。
To 500 g of pure water, 4.93 g of silver nitrate was added and dissolved. To this liquid maintained at 40 ° C, 100 g of an alumina powder carrier was added and stirred and suspended. An aqueous solution prepared by dissolving 1.72 g of separately prepared ammonium chloride in 50 g of pure water was added over 15 minutes to support silver chloride on the alumina particles. After aging for 60 minutes, filter, wash, and
A silver chloride / alumina catalyst containing 3.0% by weight in terms of silver was obtained by drying at 0 ° C., calcining at 450 ° C., crushing. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0041】次いで、この触媒50gと純水100g、
酢酸2.5gおよびアルミナゾル23.8gを加えて撹
拌、混合し、湿式粉砕機を用いて触媒のメジアン径6.
1μmとし、固形分濃度27.8重量%の水性スラリー
を調製した。このスラリーの粘度を測定したところ36
cpsであった。
Next, 50 g of this catalyst and 100 g of pure water,
Add 2.5 g of acetic acid and 23.8 g of alumina sol, stir and mix, and use a wet pulverizer to obtain a median diameter of the catalyst of 6.
An aqueous slurry having a solid content of 27.8% by weight was prepared with a thickness of 1 μm. The viscosity of this slurry was measured and found to be 36
It was cps.

【0042】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0043】比較例3 硫酸アルミニウム水溶液にアンモニア水を添加して中和
し、得られた水和酸化アルミニウムの沈殿を洗浄、乾燥
して担体用の水和酸化アルミニウムを得た。
Comparative Example 3 Ammonia water was added to an aqueous solution of aluminum sulfate for neutralization, and the obtained precipitate of hydrated aluminum oxide was washed and dried to obtain hydrated aluminum oxide for a carrier.

【0044】純水250g中に硝酸銀3.70gを添加
して溶解した。40℃に維持したこの液に、水和酸化ア
ルミニウム粉末担体100gを加えて撹拌、懸濁した。
別に調製した硫酸ナトリウム1.70gを純水50gに
溶解した水溶液を15分間で添加して水和酸化アルミニ
ウム粒子上に硫酸銀を担持させた。60分間熟成した
後、濾過、洗浄し、120℃で乾燥、さらに450℃で
焼成、粉砕して銀に換算して3.0重量%を含有する、
硫酸銀/アルミナ触媒を得た。この触媒の触媒組成、銀
換算含有量、アルミナ原料種類を表1に示す。
To 250 g of pure water, 3.70 g of silver nitrate was added and dissolved. To this liquid maintained at 40 ° C., 100 g of hydrated aluminum oxide powder carrier was added and stirred and suspended.
An aqueous solution prepared by dissolving 1.70 g of separately prepared sodium sulfate in 50 g of pure water was added over 15 minutes to support silver sulfate on the hydrated aluminum oxide particles. After aging for 60 minutes, it is filtered, washed, dried at 120 ° C., further baked at 450 ° C., pulverized to contain 3.0% by weight in terms of silver.
A silver sulfate / alumina catalyst was obtained. Table 1 shows the catalyst composition, silver content, and alumina raw material type of this catalyst.

【0045】次いで、この触媒45gと純水100g、
酢酸2.25gおよびアルミナゾル21.4gを加えて
撹拌、混合し、湿式粉砕機を用いて触媒のメジアン径
7.5μmとし、固形分濃度26.5重量%の水性スラ
リーを調製した。このスラリーの粘度を測定したところ
28cpsであった。
Next, 45 g of this catalyst and 100 g of pure water,
2.25 g of acetic acid and 21.4 g of alumina sol were added, stirred and mixed, and the median diameter of the catalyst was 7.5 μm using a wet pulverizer to prepare an aqueous slurry having a solid content concentration of 26.5% by weight. When the viscosity of this slurry was measured, it was 28 cps.

【0046】このスラリーを用いて実施例1の方法に準
じてハニカム構造体のセル表面にスラリーを塗布し、最
終的に600℃で90分間焼成してハニカム構造体触媒
を調製し、実施例1に準じた方法で窒素酸化物浄化試験
を行なった。結果を表2〜3に示す。
Using this slurry, the slurry was applied to the cell surface of the honeycomb structure according to the method of Example 1 and finally baked at 600 ° C. for 90 minutes to prepare a honeycomb structure catalyst. A nitrogen oxide purification test was performed by a method according to. The results are shown in Tables 2-3.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【発明の効果】以上説明したように、本発明の窒素酸化
物浄化用触媒を使用することによって、硫黄酸化物の共
存する高酸素濃度下で、高い反応温度であっても効率よ
く窒素酸化物を除去することが可能であり、添加した還
元剤としての炭化水素類あるいは含酸素有機化合物の完
全酸化反応を抑制して、経済的に還元作用を行わしめる
ことができる。その結果、硫黄酸化物の共存においても
除去効率の低下が抑制されると共に、高温においても窒
素酸化物の除去が効率的に行なえる。
As described above, by using the catalyst for purifying nitrogen oxides of the present invention, the nitrogen oxides can be efficiently used even under a high oxygen concentration in the presence of sulfur oxides even at a high reaction temperature. Can be removed, and the reducing action can be economically performed by suppressing the complete oxidation reaction of the added hydrocarbon or the oxygen-containing organic compound as a reducing agent. As a result, the reduction of the removal efficiency is suppressed even in the coexistence of the sulfur oxides, and the nitrogen oxides can be efficiently removed even at a high temperature.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 21/04 ZAB A 21/12 ZAB A 37/02 301 B B01D 53/36 102 A (72)発明者 小島 光雄 新潟県新津市滝谷本町1番26号日揮化学株 式会社新津事業所内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 21/04 ZAB A 21/12 ZAB A 37/02 301 B B01D 53/36 102 A (72) Inventor Kojima Mitsuo 1-26 Takitanihonmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. Niitsu Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素類もしくは含酸素有機化合物の
共存下に用いられる窒素酸化物浄化用触媒であって、多
孔質耐熱担体として有機アルミニウム化合物を加水分解
することによって調製されたアルミナを用い、これに銀
または銀化合物から選択された少なくとも1種の活性成
分を担持してなることを特徴とする窒素酸化物浄化用触
媒。
1. A nitrogen oxide purifying catalyst used in the coexistence of hydrocarbons or oxygen-containing organic compounds, wherein alumina prepared by hydrolyzing an organoaluminum compound is used as a porous heat-resistant carrier, A catalyst for purifying nitrogen oxides, which carries at least one active component selected from silver or a silver compound.
【請求項2】 前記多孔質耐熱担体が、アルミナに加え
てシリカを15重量%以下含有する請求項1に記載の窒
素酸化物浄化用触媒。
2. The catalyst for purifying nitrogen oxides according to claim 1, wherein the porous refractory carrier contains 15% by weight or less of silica in addition to alumina.
【請求項3】 前記銀または銀化合物から選択される1
種を銀に換算して0.01〜20.0重量%含有する請
求項1または2に記載の窒素酸化物浄化用触媒。
3. One selected from the silver or silver compounds.
The catalyst for purifying nitrogen oxides according to claim 1 or 2, which contains 0.01 to 20.0% by weight of seeds in terms of silver.
JP7299330A 1995-10-25 1995-10-25 Nitrogen oxide purification catalyst Expired - Lifetime JP2843977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7299330A JP2843977B2 (en) 1995-10-25 1995-10-25 Nitrogen oxide purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7299330A JP2843977B2 (en) 1995-10-25 1995-10-25 Nitrogen oxide purification catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6111688A Division JP2739630B2 (en) 1994-04-28 1994-04-28 Method for producing honeycomb structured catalyst for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPH08206499A true JPH08206499A (en) 1996-08-13
JP2843977B2 JP2843977B2 (en) 1999-01-06

Family

ID=17871159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7299330A Expired - Lifetime JP2843977B2 (en) 1995-10-25 1995-10-25 Nitrogen oxide purification catalyst

Country Status (1)

Country Link
JP (1) JP2843977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007216A (en) * 2004-06-24 2006-01-12 Caterpillar Inc Silver added catalyst for exhaust gas treatment
JP2009011934A (en) * 2007-07-04 2009-01-22 Cataler Corp Method for adjusting viscosity of slurry and method for manufacturing slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007216A (en) * 2004-06-24 2006-01-12 Caterpillar Inc Silver added catalyst for exhaust gas treatment
JP2009011934A (en) * 2007-07-04 2009-01-22 Cataler Corp Method for adjusting viscosity of slurry and method for manufacturing slurry

Also Published As

Publication number Publication date
JP2843977B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US5208202A (en) Exhaust gas cleaner and method of cleaning exhaust gas catalyst for cleaning exhaust gas
CA1115682A (en) Catalyst having protection against poisoning by extraneous materials
JP2006289211A (en) Ammonia oxidation catalyst
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
EP0722767A1 (en) Catalyst for purifying exhaust gases
US6491886B1 (en) Method for treating gases to reduce nitrogen oxide emissions
JPH05184929A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2843977B2 (en) Nitrogen oxide purification catalyst
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JPH09117663A (en) Catalyst for cleaning nitrogen oxides
JP3215865B2 (en) Nitrogen oxide catalytic reduction catalyst and method for catalytic reduction of nitrogen oxides
EP0822005A2 (en) Catalyst and method for purifying exhaust gases
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2961249B2 (en) Method for oxidizing and removing carbon fine particles in exhaust gas of diesel engine and catalyst used therefor
JP4017089B2 (en) Nitrogen oxide removal catalyst contained in combustion exhaust gas of diesel engine and nitrogen oxide removal method using the same
JP3131630B2 (en) Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
JPH08266900A (en) Exhaust gas purifying catalyst and its production
JPH057776A (en) Catalyst and its manufacture
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
EP0770421A1 (en) Catalyst for removing nitrogen oxides
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JPH09206559A (en) Contact reducing method of nitrogen oxides