JPH08204251A - Gaas hall element - Google Patents

Gaas hall element

Info

Publication number
JPH08204251A
JPH08204251A JP7008635A JP863595A JPH08204251A JP H08204251 A JPH08204251 A JP H08204251A JP 7008635 A JP7008635 A JP 7008635A JP 863595 A JP863595 A JP 863595A JP H08204251 A JPH08204251 A JP H08204251A
Authority
JP
Japan
Prior art keywords
gaas
conductive layer
hall
hall element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7008635A
Other languages
Japanese (ja)
Other versions
JP3681425B2 (en
Inventor
Kazuhiro Nagase
和宏 永瀬
Akira Ichii
朗 一井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP00863595A priority Critical patent/JP3681425B2/en
Publication of JPH08204251A publication Critical patent/JPH08204251A/en
Application granted granted Critical
Publication of JP3681425B2 publication Critical patent/JP3681425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To obtain a Hall element having sufficiently high practical sensitivity and suitable for highly accurate measurement in which the Hall output voltage exhibits sufficiently high stability against fluctuation of ambient temperature by specifying the sheet carrier concentration and the input voltage of a conductive layer made of GaAs. CONSTITUTION: A magnetosensitive layer, i.e., a GaAs conductive layer 2, is connected electrically with input side ohmic electrodes 3a, 3a' and output side ohmic electrodes 3b, 3b'. The GaAs conductive layer 2 comprises a thin film of GaAs containing donor impurities and produced by implanting donor impurity ions into a semi-insulating GaAs substrate. The sheet carrier concentration in the GaAs conductive layer 2 is set, preferably, at 8×10<12> /cm<2> or above and, more preferably, at 1×10<13> /cm<2> or above. The input resistance between the input side ohmic electrodes 3a, 3a' must be 1.6 times of the sheet resistance of the GaAs conductive layer 2 or above and preferably set in the range of 1.8-3.5 times thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広い温度範囲において
ホール出力電圧の変動が小さく、しかも実用上十分な感
度を有し、高精度の測定に適するホール素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Hall element suitable for high-accuracy measurement, which has a small fluctuation in Hall output voltage over a wide temperature range and has sufficient sensitivity for practical use.

【0002】[0002]

【従来の技術】ホール素子は、InSb、InAs、G
aAs等の半導体のホール効果を利用して磁場をホール
出力電圧に変換することにより、磁場強度を検出する磁
気センサーであり、モーター、非接触スイッチなどに幅
広く利用されている。ホール素子の用途のうち、磁場強
度測定用ガウスメーターや電流センサ等においては、磁
場強度に対するホール出力電圧の直線性に加えて、周囲
温度の変動に対するホール出力電圧の安定性が要求され
る。しかしながら、従来のホール素子のホール出力電圧
の温度変化率は、ホール素子の駆動方法にもよるが、I
nSbホール素子で2%/℃程度、特性の温度依存性の
小さいGaAsホール素子でも0.06%/℃程度であ
ったため、上記のような用途においては、ホール出力電
圧の温度変化を補正するためのICが不可欠となってい
た。
2. Description of the Related Art Hall elements are InSb, InAs, G
It is a magnetic sensor that detects the magnetic field strength by converting the magnetic field into a Hall output voltage by utilizing the Hall effect of a semiconductor such as aAs, and is widely used in motors, non-contact switches and the like. Among the applications of the Hall element, in the Gauss meter for measuring the magnetic field strength, the current sensor, etc., in addition to the linearity of the Hall output voltage with respect to the magnetic field strength, the stability of the Hall output voltage with respect to the fluctuation of the ambient temperature is required. However, the temperature change rate of the Hall output voltage of the conventional Hall element depends on the driving method of the Hall element, I
The nSb Hall element has a temperature of about 2% / ° C, and the GaAs Hall element having a small temperature dependency of the characteristic has a value of about 0.06% / ° C. IC was essential.

【0003】ところで、ICでホール出力電圧の温度変
化を補正する方法には以下の問題点があった。まず、ホ
ール出力電圧は一般に温度に対して直線的には変化しな
いため、温度補正の方法が、ひいては温度補正用ICの
構成が非常に複雑なものになり、ICの製造コストが非
常に高価なものになっていた。また、ホール素子の温度
特性のばらつきが大きいと、温度補正用ICをもってし
ても十分な精度で温度補正を行うことができなくなるた
め、ホール素子の選別が必要となっており、これもコス
トを押し上げる大きな要因となっていた。さらに、温度
補正用ICチップが比較的大きいため、実装上の問題も
あった。
However, the method of correcting the temperature change of the Hall output voltage by the IC has the following problems. First, since the Hall output voltage generally does not change linearly with respect to temperature, the method of temperature correction, and the structure of the temperature correction IC, becomes very complicated, and the manufacturing cost of the IC is very high. It was a thing. Further, if the temperature characteristics of the Hall elements vary greatly, it becomes impossible to perform temperature correction with sufficient accuracy even with the temperature correction IC, so it is necessary to select the Hall elements, which also reduces the cost. It was a big factor pushing up. Further, since the temperature correction IC chip is relatively large, there is a mounting problem.

【0004】しかも、近年、従来よりも広い温度範囲で
ホール出力電圧の温度変化補正を必要とするホール素子
の用途が現れてきた。例えば、自動車関連の用途では、
−50℃から150℃程度の温度範囲での温度補正が要
求されている。このように非常に広い温度範囲の場合、
ICでホール出力電圧の温度変化を補正する方法は、上
記の問題点がより顕著となる。
Moreover, in recent years, the use of the Hall element, which requires the temperature change correction of the Hall output voltage in a wider temperature range than the conventional one, has appeared. For example, in automotive applications,
Temperature correction in the temperature range of -50 ° C to 150 ° C is required. For such a very wide temperature range,
The above problem becomes more remarkable in the method of correcting the temperature change of the Hall output voltage by the IC.

【0005】このように、周囲温度の変動に対するホー
ル出力電圧の安定性が要求される用途においては、IC
でホール出力電圧の温度変化を補正する方法が専ら用い
られてきたが、コスト的に非常に高価なものになるとい
う問題点や実装上の問題点があり、しかも、これらの問
題点は今後ますます顕著になる状況にある。
As described above, the IC is used in applications where the stability of the Hall output voltage against the fluctuation of the ambient temperature is required.
The method of compensating for the temperature change of the Hall output voltage has been used exclusively, but there is a problem that it becomes very expensive in terms of cost and a problem in mounting, and these problems will be in the future. The situation is becoming more prominent.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、周囲温度
の変動に対するホール出力電圧の安定性が十分に高く、
かつ実用上十分に高い感度を有し、高精度の測定に適す
るホール素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has a sufficiently high Hall output voltage stability with respect to fluctuations in ambient temperature.
Moreover, it is an object of the present invention to provide a Hall element which has a sufficiently high sensitivity for practical use and is suitable for highly accurate measurement.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来のホ
ール素子の中で、ホール出力電圧の温度変化率が最も小
さいGaAsホール素子に着目し、その温度変化率をさ
らに小さくするための研究の結果、ホール出力電圧の温
度変化率が補正用ICを必要としない程度に十分低く、
しかも、ホール出力電圧が実用上十分に高いGaAsホ
ール素子の実現に成功し、本発明に至った。
The inventors of the present invention focused on a GaAs Hall element having the smallest temperature change rate of the Hall output voltage among the conventional Hall elements, and made it possible to further reduce the temperature change rate. As a result of the research, the temperature change rate of the Hall output voltage is low enough not to require the correction IC,
Moreover, a GaAs Hall element with a Hall output voltage that is sufficiently high in practical use was successfully realized, and the present invention was achieved.

【0008】すなわち、本発明は以下のとおりである。 1. シートキャリア濃度が8×1012/cm2 以上の
GaAsからなる導電層を有し、入力抵抗値が該導電層
のシート抵抗値の1.6倍以上であることを特徴とする
GaAsホ−ル素子。 2. 400keV以下の加速電圧のイオン注入によ
り、導電層を形成したことを特徴とする上記1のGaA
sホール素子。
That is, the present invention is as follows. 1. A GaAs hole having a conductive layer made of GaAs having a sheet carrier concentration of 8 × 10 12 / cm 2 or more and having an input resistance value of 1.6 times or more the sheet resistance value of the conductive layer. element. 2. The GaA according to the above 1, wherein the conductive layer is formed by ion implantation with an acceleration voltage of 400 keV or less.
s Hall element.

【0009】本発明者らの研究の結果、GaAsホール
素子において、感磁層となるGaAs導電層のシートキ
ャリア濃度を増加させると、ホール出力電圧の温度変化
率を小さくすることができるが、一方、シートキャリア
濃度の増加にともなって、ホール素子の積感度が低下
し、高精度の測定に適さないという問題が同時に発生す
ることが明らかになった。そこで、GaAs導電層のシ
ートキャリア濃度、ホール素子のパターン形状を総合的
に検討し、GaAsホ−ル素子のおいて、シートキャリ
ア濃度が8×1012/cm2 以上のGaAsからなる導
電層を有し、かつ入力抵抗値を該導電層のシート抵抗値
の1.6倍以上にすることにより、目的とするホール素
子が得られたものである。
As a result of the research conducted by the present inventors, in the GaAs Hall element, increasing the sheet carrier concentration of the GaAs conductive layer serving as the magnetic sensitive layer can reduce the temperature change rate of the Hall output voltage. It was revealed that the product sensitivity of the Hall element was lowered with the increase of the sheet carrier concentration, and the problem that it was not suitable for highly accurate measurement occurred at the same time. Therefore, comprehensively studying the sheet carrier concentration of the GaAs conductive layer and the pattern shape of the Hall element, a conductive layer made of GaAs having a sheet carrier concentration of 8 × 10 12 / cm 2 or more is formed in the GaAs hole element. By having the input resistance value of 1.6 times or more of the sheet resistance value of the conductive layer, the intended Hall element was obtained.

【0010】以下、詳細に本発明を説明する。本発明に
よるホール素子の平面図を図1に、図1中のA−A’線
での断面構造図を図2に示した。図1において、1は基
板、2は感磁層であるGaAs導電層、3aと3a’は
GaAs導電層に電気的に接続した入力側オーミック電
極、3bと3b’はGaAs導電層に電気的に接続した
出力側オーミック電極、4はGaAs導電層2やオーミ
ック電極3を湿気等から保護するための保護膜である。
基板1は半絶縁性GaAs基板、GaAs薄膜を成長さ
せたSi基板等であるが、本発明で特に限定されるもの
ではない。
The present invention will be described in detail below. A plan view of the Hall element according to the present invention is shown in FIG. 1, and a sectional structural view taken along the line AA 'in FIG. 1 is shown in FIG. In FIG. 1, 1 is a substrate, 2 is a GaAs conductive layer which is a magnetic sensitive layer, 3a and 3a 'are input side ohmic electrodes electrically connected to the GaAs conductive layer, 3b and 3b' are electrically connected to the GaAs conductive layer. The connected output-side ohmic electrodes 4 are protective films for protecting the GaAs conductive layer 2 and the ohmic electrode 3 from moisture and the like.
The substrate 1 is a semi-insulating GaAs substrate, a Si substrate on which a GaAs thin film is grown, or the like, but is not particularly limited in the present invention.

【0011】GaAs導電層2は、ドナー不純物を含有
するGaAs薄膜からなる。形成方法としては、半絶縁
性GaAs基板にドナー不純物をイオン注入する方法、
半絶縁性GaAs基板上やSi基板上に成長させたGa
As薄膜にドナー不純物をイオン注入する方法、半絶縁
性のGaAs基板上やSi基板上にドナー不純物を含有
するGaAs薄膜を成長させる方法等があるが、中でも
特にイオン注入法が好ましい。ドナー不純物としては、
GaAs中でドナーとなるものであれば何でも良いが、
Si、Ge、Se等が好ましい。イオン注入によりGa
As導電層2を形成する場合、加速電圧により導電層の
厚さが決定されるが、高電圧のイオン注入は装置が高価
になる上にキャリア濃度が低くなるため、400keV
以下が好ましく、250keV以下がより好ましい。ま
た、100keV未満になると表面空乏層の影響で導電
層が形成されにくくなることから100keV以上が好
ましい。イオン注入したドナー不純物を活性化するアニ
ール処理についても、その方法や条件については特に限
定されない。
The GaAs conductive layer 2 is composed of a GaAs thin film containing a donor impurity. As a forming method, a method of ion-implanting a donor impurity into a semi-insulating GaAs substrate,
Ga grown on a semi-insulating GaAs substrate or Si substrate
There are a method of ion-implanting a donor impurity into an As thin film and a method of growing a GaAs thin film containing a donor impurity on a semi-insulating GaAs substrate or Si substrate. Among them, the ion implantation method is particularly preferable. As a donor impurity,
Anything can be used as a donor in GaAs,
Si, Ge, Se and the like are preferable. Ga by ion implantation
When the As conductive layer 2 is formed, the thickness of the conductive layer is determined by the accelerating voltage. However, high voltage ion implantation makes the device expensive and lowers the carrier concentration.
The following is preferable, and 250 keV or less is more preferable. Further, if it is less than 100 keV, the conductive layer is less likely to be formed due to the influence of the surface depletion layer, so 100 keV or more is preferable. Regarding the annealing treatment for activating the ion-implanted donor impurities, the method and conditions are not particularly limited.

【0012】本発明において、GaAs導電層2中のシ
ートキャリア濃度は8×1012/cm2 以上が好まし
く、1×1013/cm2 以上がより好ましい。シートキ
ャリア濃度がこの値未満であると、本発明の目的である
周囲温度の変動に対するホール出力電圧の安定性が十分
に高いホール素子が実現できない。また、シートキャリ
ア濃度は、8×1013/cm2 以上になると不純物が活
性化しにくく、これ以上の濃度は現実的ではない。
In the present invention, the sheet carrier concentration in the GaAs conductive layer 2 is preferably 8 × 10 12 / cm 2 or more, more preferably 1 × 10 13 / cm 2 or more. If the sheet carrier concentration is less than this value, the Hall element, which is the object of the present invention, having sufficiently high stability of the Hall output voltage against fluctuations in ambient temperature cannot be realized. Further, when the sheet carrier concentration is 8 × 10 13 / cm 2 or more, impurities are hard to be activated, and a concentration higher than this is not realistic.

【0013】本発明において、入力側オーミック電極3
aと3a’間の入力抵抗値は、GaAs導電層2のシー
ト抵抗値の1.6倍以上であることが必要であり、好ま
しくは1.8〜3.5倍の範囲である。1.6倍よりも
低い場合、ホール素子の積感度が低く、実用上十分な感
度が得られず、高精度の測定に適さない。入力抵抗値の
制御は、感磁部であるGaAs導電層の平面形状をかえ
ることにより行う。
In the present invention, the input side ohmic electrode 3
The input resistance value between a and 3a ′ must be 1.6 times or more the sheet resistance value of the GaAs conductive layer 2, and preferably in the range of 1.8 to 3.5 times. When it is lower than 1.6 times, the product sensitivity of the Hall element is low, and sufficient sensitivity cannot be obtained in practical use, which is not suitable for highly accurate measurement. The control of the input resistance value is performed by changing the planar shape of the GaAs conductive layer which is the magnetic sensing section.

【0014】オーミック電極3は、GaAs導電層2と
オーミック接触するものであれば何でも良いが、AuG
e/Ni/Au構造を含むもの等は特に好ましい。形成
方法については特に限定されない。保護膜4は、湿気や
酸化によるGaAs導電層2の汚染あるいは劣化防止の
目的で形成されるものであり、SiO2 やSiN等の無
機絶縁膜、もしくはポリイミド等の有機薄膜からなり、
厚さは、0.1〜5μm程度が好ましい。
Any ohmic electrode 3 may be used as long as it makes ohmic contact with the GaAs conductive layer 2.
Those containing an e / Ni / Au structure are particularly preferable. The forming method is not particularly limited. The protective film 4 is formed for the purpose of preventing contamination or deterioration of the GaAs conductive layer 2 due to moisture or oxidation, and is made of an inorganic insulating film such as SiO 2 or SiN, or an organic thin film such as polyimide,
The thickness is preferably about 0.1 to 5 μm.

【0015】[0015]

【実施例】次に実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0016】[0016]

【実施例1】まず、半絶縁性GaAs基板に感光性レジ
ストのパターンを形成した。素子の入力抵抗は、導電層
のシート抵抗の1.8倍となるように感磁部の平面形状
を設計した。その後、加速電圧250keV、注入のド
ーズ量1.2×1013/cm 2 でイオン注入を行い、導
電層となる部分を形成した後、注入したイオンの活性化
のため、850℃で15分間アニールを行った。このと
きのシートキャリア濃度は9.2×1012/cm2 、シ
ート抵抗は418Ωであった。ドーズ量とシートキャリ
ア濃度の差異は、イオン注入された不純物の活性化率が
100%でないことによる。次に電極形成のためのレジ
ストパターンを形成した後、ウエハ全面に電極金属とし
て基板側から順にAuGe200nm、Ni50nm、
Au300nmを順次蒸着した。その後、リフトオフを
行い、合金化により導電層部分とオーミック接合をとっ
た。さらにプラズマCVD法により300nmのSiO
2をウエハ全面に形成し保護膜とした。このウエハーを
ダイシングし、ダイボンド、ワイヤボンドを行い、エポ
キシ樹脂にモールドされた素子を完成した。こうして試
作した素子の入力抵抗は752Ωで、設計通りシート抵
抗の1.8倍であった。積感度12mV/mAkGと実
用上十分に高く、不平衡電圧の偏差は0.2mV/mA
であった。ホール出力の温度係数は0.01%であっ
た。−50℃〜150℃の使用温度範囲において、ホー
ル出力の変動幅が2%以下と小さく、測定系の誤差が2
〜3%はあることも考慮すると本発明のホール素子にお
いては、温度補正用のICを用いなくても十分に従来の
測定確度を得ることができる。従って、本発明によるホ
ール素子を使うことにより、低コストで、高精度の測定
が可能となる。また、不平衡電圧の偏差の3倍を不平衡
電圧のバラツキと考えると、積感度に対する不平衡電圧
の比率は5%と低く、高精度測定に適することがわか
る。
[Example 1] First, a photosensitive resist was formed on a semi-insulating GaAs substrate.
A strike pattern was formed. The input resistance of the element is the conductive layer
The sheet shape of the magnetic sensitive part is 1.8 times the sheet resistance of
Designed. After that, the accelerating voltage is 250 keV and the injection voltage is
Dose amount 1.2 × 1013/ Cm 2Ion implantation with
Activation of the implanted ions after forming the part that becomes the charge layer
Therefore, annealing was performed at 850 ° C. for 15 minutes. This and
Mushroom sheet carrier concentration is 9.2 × 1012/ Cm2, Shi
The sheet resistance was 418Ω. Dose amount and seat carry
The difference in the concentration is that the activation rate of ion-implanted impurities is
Because it is not 100%. Next, a register for electrode formation
After forming the strike pattern, the electrode metal is formed on the entire surface of the wafer.
From the substrate side, AuGe 200 nm, Ni 50 nm,
Au 300 nm was sequentially deposited. Then lift off
And form an ohmic contact with the conductive layer by alloying.
Was. Furthermore, by the plasma CVD method, 300 nm SiO
2Was formed on the entire surface of the wafer to form a protective film. This wafer
Dicing, die bonding, wire bonding, EPO
A device molded in xy resin was completed. Thus try
The input resistance of the device made is 752Ω, which is as designed.
It was 1.8 times higher than that of anti. Product sensitivity 12 mV / mAkG and actual
High enough for use, deviation of unbalanced voltage is 0.2mV / mA
Met. Hall output temperature coefficient is 0.01%
Was. In the operating temperature range of -50 ℃ to 150 ℃,
The fluctuation range of the output power is as small as 2% or less, and the measurement system error is 2
Considering that it is ~ 3%, the Hall element of the present invention has
In this case, even if the IC for temperature correction is not used,
Measurement accuracy can be obtained. Therefore, according to the present invention,
Low cost and high accuracy measurement
Becomes possible. In addition, 3 times the deviation of the unbalanced voltage
Considering the voltage variation, the unbalance voltage with respect to the product sensitivity
The ratio of 5% is as low as 5%, which means that it is suitable for high precision measurement.
It

【0017】[0017]

【比較例1】シートキャリア濃度と温度依存性の関係を
明らかにするために、実施例1と同じマスク、プロセス
を使って、シートキャリア濃度のみ異なるものを作成し
た。素子構造は、図1に示したものと同様であり、感磁
部の形状も同じで、イオン注入の条件は、加速電圧25
0keV、ドーズ量4×1012/cm2 である。このと
きのシートキャリア濃度は3.2×1012/cm2 、シ
ート抵抗は約700Ωである。また、素子の入力抵抗は
1260Ω、積感度20mV/mAkG、不平衡電圧の
偏差は0.2mV/mAであった。
Comparative Example 1 In order to clarify the relationship between the sheet carrier concentration and the temperature dependence, the same mask and process as in Example 1 were used, and different sheet carrier concentrations were prepared. The element structure is the same as that shown in FIG. 1, and the shape of the magnetically sensitive portion is also the same.
It is 0 keV and the dose amount is 4 × 10 12 / cm 2 . At this time, the sheet carrier concentration is 3.2 × 10 12 / cm 2 , and the sheet resistance is about 700Ω. The input resistance of the device was 1260Ω, the product sensitivity was 20 mV / mAkG, and the deviation of the unbalanced voltage was 0.2 mV / mA.

【0018】本発明による実施例1と比較例1に示した
ホール素子の温度特性を図3に示した。図中において、
横軸は周囲温度、縦軸は定電流駆動時のホール出力であ
る。比較しやすいように、縦軸は室温でのホール出力を
100%としたときの変化分で表した。図からも明らか
なように比較例1では温度係数0.06%であり、−5
0℃から150℃の温度範囲において室温での値に対
し、変動幅にし12%程度の変動があることがわかる。
従って、温度による出力補正用のICが別途必要とな
り、コスト的に高価になるばかりでなく、温度補正用I
Cのスペースが必要になり、素子の実装上問題が生じ
る。
FIG. 3 shows the temperature characteristics of the Hall elements shown in Example 1 and Comparative Example 1 according to the present invention. In the figure,
The horizontal axis is the ambient temperature, and the vertical axis is the Hall output during constant current driving. For easy comparison, the vertical axis is represented by the change when the Hall output at room temperature is 100%. As is clear from the figure, in Comparative Example 1, the temperature coefficient was 0.06%, and -5
It can be seen that in the temperature range of 0 ° C. to 150 ° C., there is a fluctuation range of about 12% with respect to the value at room temperature.
Therefore, an IC for output correction depending on temperature is separately required, which not only makes the cost expensive but also the temperature correction I
A space of C is required, which causes a problem in mounting the device.

【0019】[0019]

【比較例2】次に、素子の感磁部形状による素子特性の
違いを明らかにするために実施例1と同じプロセスで、
感磁部形状のみ異なるホール素子を試作した。比較例2
において入力抵抗はシート抵抗の1.4倍である。素子
の入力抵抗は590Ωで、積感度8.5mV/mAk
G、不平衡電圧の偏差0.9mV/mAであった。
Comparative Example 2 Next, in order to clarify the difference in element characteristics due to the shape of the magnetic sensitive portion of the element, the same process as in Example 1 was performed.
We made a prototype of a Hall element that differs only in the shape of the magnetic sensing part. Comparative Example 2
In, the input resistance is 1.4 times the sheet resistance. The input resistance of the device is 590Ω and the product sensitivity is 8.5 mV / mAk.
G, the deviation of the unbalanced voltage was 0.9 mV / mA.

【0020】比較例2のホール素子は、本発明による実
施例1と同じシートキャリア濃度を有し、特性の温度依
存性は本発明による試作例と同じであるが、積感度が低
くなっている。しかも、比較例2では不平衡電圧の偏差
が大きくなっているため、積感度に対する不平衡電圧の
比率が高い。このため、偏差の3倍を不平衡電圧のばら
つきとしたとき、比較例2では積感度に対して30%を
越える不平衡電圧となり、本発明による実施例1と比較
し、1桁不平衡率が高くなり、高精度の測定には適さな
い。
The Hall element of Comparative Example 2 has the same sheet carrier concentration as that of Example 1 according to the present invention, and the temperature dependence of the characteristics is the same as that of the prototype according to the present invention, but the product sensitivity is low. . Moreover, in Comparative Example 2, since the deviation of the unbalanced voltage is large, the ratio of the unbalanced voltage to the product sensitivity is high. Therefore, when the deviation of the unbalance voltage is set to be three times the deviation, the unbalance voltage exceeds 30% with respect to the product sensitivity in Comparative Example 2, which is one digit unbalance rate as compared with Example 1 according to the present invention. Is not suitable for high precision measurement.

【0021】[0021]

【発明の効果】本発明のホール素子では、高精度の測定
には適する程に十分に高感度で、且つホール出力電圧の
温度変化率が非常に小さいため、ホール出力電圧の温度
補正用ICを必要としない、あるいは、温度補正用IC
を使用する場合であっても、非常に簡単な構成ですむ。
したがって、周囲温度の変動によらない安定な磁場強度
測定を、非常に安価に行うことができる。
The Hall element of the present invention has a sensitivity sufficiently high enough to be used for highly accurate measurement, and the temperature change rate of the Hall output voltage is very small. IC not required or for temperature correction
Even if you use, very simple configuration is required.
Therefore, stable magnetic field strength measurement independent of fluctuations in ambient temperature can be performed at a very low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による、保護膜を省略したホール素子の
上面図である(導電層および電極の形状を分かりやすく
するために省略している。)。
FIG. 1 is a top view of a Hall element in which a protective film is omitted according to the present invention (omitted for clarity of shapes of a conductive layer and an electrode).

【図2】本発明によるホール素子の断面構造図である。FIG. 2 is a sectional structural view of a Hall element according to the present invention.

【図3】実施例1によるホール素子と比較例1のホール
出力電圧の温度変化を示したグラフ図である。
FIG. 3 is a graph showing the temperature change of the Hall output voltage of the Hall element according to Example 1 and that of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 基板 2 GaAs導電層 3a 入力側オーミック電極 3a, 入力側オーミック電極 3b 出力側オーミック電極 3b, 出力側オーミック電極 4 保護膜 5 実施例1 6 比較例11 Substrate 2 GaAs Conductive Layer 3a Input Side Ohmic Electrode 3a , Input Side Ohmic Electrode 3b Output Side Ohmic Electrode 3b , Output Side Ohmic Electrode 4 Protective Film 5 Example 1 6 Comparative Example 1

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シートキャリア濃度が8×1012/cm
2 以上のGaAsからなる導電層を有し、入力抵抗値が
該導電層のシート抵抗値の1.6倍以上であることを特
徴とするGaAsホ−ル素子。
1. The sheet carrier concentration is 8 × 10 12 / cm.
A GaAs hall element having a conductive layer made of 2 or more GaAs and having an input resistance value of 1.6 times or more of a sheet resistance value of the conductive layer.
【請求項2】 400keV以下の加速電圧のイオン注
入により、導電層を形成したことを特徴とする請求項1
記載のGaAsホール素子。
2. The conductive layer is formed by ion implantation at an acceleration voltage of 400 keV or less.
The GaAs Hall element described.
JP00863595A 1995-01-24 1995-01-24 GaAs Hall element Expired - Lifetime JP3681425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00863595A JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00863595A JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Publications (2)

Publication Number Publication Date
JPH08204251A true JPH08204251A (en) 1996-08-09
JP3681425B2 JP3681425B2 (en) 2005-08-10

Family

ID=11698414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00863595A Expired - Lifetime JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Country Status (1)

Country Link
JP (1) JP3681425B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008695A1 (en) * 1998-08-07 2000-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic sensor and method for fabricating the same
US7372119B2 (en) 2001-10-01 2008-05-13 Asahi Kasei Microsystems Co., Ltd. Cross-shaped Hall device having extensions with slits
US7388268B2 (en) 2002-01-15 2008-06-17 Asahi Kasei Electronics Co., Ltd. Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
US7843190B2 (en) 2005-12-16 2010-11-30 Asahi Kasei Emd Corporation Position detection apparatus
JP2015198198A (en) * 2014-04-02 2015-11-09 旭化成エレクトロニクス株式会社 Hall element
CN107132497A (en) * 2017-04-28 2017-09-05 西安工业大学 Substrate for Non-Destructive Testing semiconductive thin film Hall effect and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008695A1 (en) * 1998-08-07 2000-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic sensor and method for fabricating the same
EP1124271A1 (en) * 1998-08-07 2001-08-16 Asahi Kasei Kabushiki Kaisha Magnetic sensor and method for fabricating the same
US6590389B1 (en) 1998-08-07 2003-07-08 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic sensor, magnetic sensor apparatus, semiconductor magnetic resistance apparatus, and production method thereof
EP1124271A4 (en) * 1998-08-07 2005-01-26 Asahi Chemical Ind Magnetic sensor and method for fabricating the same
EP1813954A1 (en) * 1998-08-07 2007-08-01 Asahi Kasei Kabushiki Kaisha Magnetic sensor and production method thereof
US7372119B2 (en) 2001-10-01 2008-05-13 Asahi Kasei Microsystems Co., Ltd. Cross-shaped Hall device having extensions with slits
US7388268B2 (en) 2002-01-15 2008-06-17 Asahi Kasei Electronics Co., Ltd. Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
US7843190B2 (en) 2005-12-16 2010-11-30 Asahi Kasei Emd Corporation Position detection apparatus
JP2015198198A (en) * 2014-04-02 2015-11-09 旭化成エレクトロニクス株式会社 Hall element
CN107132497A (en) * 2017-04-28 2017-09-05 西安工业大学 Substrate for Non-Destructive Testing semiconductive thin film Hall effect and preparation method thereof

Also Published As

Publication number Publication date
JP3681425B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US10254354B2 (en) Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10712400B2 (en) Vertical hall sensor circuit comprising stress compensation circuit
EP3278126B1 (en) Electronic circuit for driving a hall effect element with a current compensated for substrate stress
Popović Hall-effect devices
US6590389B1 (en) Magnetic sensor, magnetic sensor apparatus, semiconductor magnetic resistance apparatus, and production method thereof
EP0181206A2 (en) Semiconductor devices
US20020093332A1 (en) Magnetic field sensor with tailored magnetic response
US4263518A (en) Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body
US10520559B2 (en) Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US6400252B1 (en) Polysilicon resistor and a method of producing it
JPH08102563A (en) Semiconductor hall element
US10969444B2 (en) Concept for compensating for a mechanical stress of a hall sensor circuit integrated into a semiconductor substrate
JP4240306B2 (en) Rotation detector
JPH08204251A (en) Gaas hall element
US20160379975A1 (en) Lateral bipolar sensor with sensing signal amplification
CN113167841B (en) Magnetic sensor and hall sensor using anomalous hall effect and method of manufacturing hall sensor
JP2000138403A (en) Thin film magnetic sensor
EP0305978B1 (en) Magnetoelectric element and magnetoelectric apparatus
US5117543A (en) Method of making indium arsenide magnetoresistor
JPH0870146A (en) Magnetic sensor
JPH10270461A (en) Compound semiconductor device and method of controlling its characteristic
JPH05291644A (en) Gaas hall element and its fabrication
JPH0697530A (en) Gaas hall element
US20210048353A1 (en) Magnetic sensor with stress compensation
JP2001102655A (en) Hall element and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term