JP3681425B2 - GaAs Hall element - Google Patents

GaAs Hall element Download PDF

Info

Publication number
JP3681425B2
JP3681425B2 JP00863595A JP863595A JP3681425B2 JP 3681425 B2 JP3681425 B2 JP 3681425B2 JP 00863595 A JP00863595 A JP 00863595A JP 863595 A JP863595 A JP 863595A JP 3681425 B2 JP3681425 B2 JP 3681425B2
Authority
JP
Japan
Prior art keywords
gaas
hall
conductive layer
hall element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00863595A
Other languages
Japanese (ja)
Other versions
JPH08204251A (en
Inventor
和宏 永瀬
朗 一井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP00863595A priority Critical patent/JP3681425B2/en
Publication of JPH08204251A publication Critical patent/JPH08204251A/en
Application granted granted Critical
Publication of JP3681425B2 publication Critical patent/JP3681425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、広い温度範囲においてホール出力電圧の変動が小さく、しかも実用上十分な感度を有し、高精度の測定に適するホール素子に関するものである。
【0002】
【従来の技術】
ホール素子は、InSb、InAs、GaAs等の半導体のホール効果を利用して磁場をホール出力電圧に変換することにより、磁場強度を検出する磁気センサーであり、モーター、非接触スイッチなどに幅広く利用されている。ホール素子の用途のうち、磁場強度測定用ガウスメーターや電流センサ等においては、磁場強度に対するホール出力電圧の直線性に加えて、周囲温度の変動に対するホール出力電圧の安定性が要求される。しかしながら、従来のホール素子のホール出力電圧の温度変化率は、ホール素子の駆動方法にもよるが、InSbホール素子で2%/℃程度、特性の温度依存性の小さいGaAsホール素子でも0.06%/℃程度であったため、上記のような用途においては、ホール出力電圧の温度変化を補正するためのICが不可欠となっていた。
【0003】
ところで、ICでホール出力電圧の温度変化を補正する方法には以下の問題点があった。まず、ホール出力電圧は一般に温度に対して直線的には変化しないため、温度補正の方法が、ひいては温度補正用ICの構成が非常に複雑なものになり、ICの製造コストが非常に高価なものになっていた。また、ホール素子の温度特性のばらつきが大きいと、温度補正用ICをもってしても十分な精度で温度補正を行うことができなくなるため、ホール素子の選別が必要となっており、これもコストを押し上げる大きな要因となっていた。さらに、温度補正用ICチップが比較的大きいため、実装上の問題もあった。
【0004】
しかも、近年、従来よりも広い温度範囲でホール出力電圧の温度変化補正を必要とするホール素子の用途が現れてきた。例えば、自動車関連の用途では、−50℃から150℃程度の温度範囲での温度補正が要求されている。このように非常に広い温度範囲の場合、ICでホール出力電圧の温度変化を補正する方法は、上記の問題点がより顕著となる。
【0005】
このように、周囲温度の変動に対するホール出力電圧の安定性が要求される用途においては、ICでホール出力電圧の温度変化を補正する方法が専ら用いられてきたが、コスト的に非常に高価なものになるという問題点や実装上の問題点があり、しかも、これらの問題点は今後ますます顕著になる状況にある。
【0006】
【本発明が解決しようとする課題】
本発明は、周囲温度の変動に対するホール出力電圧の安定性が十分に高く、かつ実用上十分に高い感度を有し、高精度の測定に適するホール素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、従来のホール素子の中で、ホール出力電圧の温度変化率が最も小さいGaAsホール素子に着目し、その温度変化率をさらに小さくするための研究の結果、ホール出力電圧の温度変化率が補正用ICを必要としない程度に十分低く、しかも、ホール出力電圧が実用上十分に高いGaAsホール素子の実現に成功し、本発明に至った。
【0008】
すなわち、本発明は以下のとおりである。
1. シートキャリア濃度が8×1012/cm2 以上のGaAsからなる導電層を有し、入力抵抗値が該導電層のシート抵抗値の1.6倍以上であることを特徴とするGaAsホ−ル素子。
2. 400keV以下の加速電圧のイオン注入により、導電層を形成したことを特徴とする上記1のGaAsホール素子。
【0009】
本発明者らの研究の結果、GaAsホール素子において、感磁層となるGaAs導電層のシートキャリア濃度を増加させると、ホール出力電圧の温度変化率を小さくすることができるが、一方、シートキャリア濃度の増加にともなって、ホール素子の積感度が低下し、高精度の測定に適さないという問題が同時に発生することが明らかになった。そこで、GaAs導電層のシートキャリア濃度、ホール素子のパターン形状を総合的に検討し、GaAsホ−ル素子のおいて、シートキャリア濃度が8×1012/cm2 以上のGaAsからなる導電層を有し、かつ入力抵抗値を該導電層のシート抵抗値の1.6倍以上にすることにより、目的とするホール素子が得られたものである。
【0010】
以下、詳細に本発明を説明する。
本発明によるホール素子の平面図を図1に、図1中のA−A’線での断面構造図を図2に示した。図1において、1は基板、2は感磁層であるGaAs導電層、3aと3a’はGaAs導電層に電気的に接続した入力側オーミック電極、3bと3b’はGaAs導電層に電気的に接続した出力側オーミック電極、4はGaAs導電層2やオーミック電極3を湿気等から保護するための保護膜である。基板1は半絶縁性GaAs基板、GaAs薄膜を成長させたSi基板等であるが、本発明で特に限定されるものではない。
【0011】
GaAs導電層2は、ドナー不純物を含有するGaAs薄膜からなる。形成方法としては、半絶縁性GaAs基板にドナー不純物をイオン注入する方法、半絶縁性GaAs基板上やSi基板上に成長させたGaAs薄膜にドナー不純物をイオン注入する方法、半絶縁性のGaAs基板上やSi基板上にドナー不純物を含有するGaAs薄膜を成長させる方法等があるが、中でも特にイオン注入法が好ましい。ドナー不純物としては、GaAs中でドナーとなるものであれば何でも良いが、Si、Ge、Se等が好ましい。イオン注入によりGaAs導電層2を形成する場合、加速電圧により導電層の厚さが決定されるが、高電圧のイオン注入は装置が高価になる上にキャリア濃度が低くなるため、400keV以下が好ましく、250keV以下がより好ましい。また、100keV未満になると表面空乏層の影響で導電層が形成されにくくなることから100keV以上が好ましい。イオン注入したドナー不純物を活性化するアニール処理についても、その方法や条件については特に限定されない。
【0012】
本発明において、GaAs導電層2中のシートキャリア濃度は8×1012/cm2 以上が好ましく、1×1013/cm2 以上がより好ましい。シートキャリア濃度がこの値未満であると、本発明の目的である周囲温度の変動に対するホール出力電圧の安定性が十分に高いホール素子が実現できない。また、シートキャリア濃度は、8×1013/cm2 以上になると不純物が活性化しにくく、これ以上の濃度は現実的ではない。
【0013】
本発明において、入力側オーミック電極3aと3a’間の入力抵抗値は、GaAs導電層2のシート抵抗値の1.6倍以上であることが必要であり、好ましくは1.8〜3.5倍の範囲である。1.6倍よりも低い場合、ホール素子の積感度が低く、実用上十分な感度が得られず、高精度の測定に適さない。入力抵抗値の制御は、感磁部であるGaAs導電層の平面形状をかえることにより行う。
【0014】
オーミック電極3は、GaAs導電層2とオーミック接触するものであれば何でも良いが、AuGe/Ni/Au構造を含むもの等は特に好ましい。形成方法については特に限定されない。
保護膜4は、湿気や酸化によるGaAs導電層2の汚染あるいは劣化防止の目的で形成されるものであり、SiO2 やSiN等の無機絶縁膜、もしくはポリイミド等の有機薄膜からなり、厚さは、0.1〜5μm程度が好ましい。
【0015】
【実施例】
次に実施例により本発明を説明する。
【0016】
【実施例1】
まず、半絶縁性GaAs基板に感光性レジストのパターンを形成した。素子の入力抵抗は、導電層のシート抵抗の1.8倍となるように感磁部の平面形状を設計した。その後、加速電圧250keV、注入のドーズ量1.2×1013/cm2 でイオン注入を行い、導電層となる部分を形成した後、注入したイオンの活性化のため、850℃で15分間アニールを行った。このときのシートキャリア濃度は9.2×1012/cm2 、シート抵抗は418Ωであった。ドーズ量とシートキャリア濃度の差異は、イオン注入された不純物の活性化率が100%でないことによる。次に電極形成のためのレジストパターンを形成した後、ウエハ全面に電極金属として基板側から順にAuGe200nm、Ni50nm、Au300nmを順次蒸着した。その後、リフトオフを行い、合金化により導電層部分とオーミック接合をとった。さらにプラズマCVD法により300nmのSiO2 をウエハ全面に形成し保護膜とした。このウエハーをダイシングし、ダイボンド、ワイヤボンドを行い、エポキシ樹脂にモールドされた素子を完成した。こうして試作した素子の入力抵抗は752Ωで、設計通りシート抵抗の1.8倍であった。積感度12mV/mAkGと実用上十分に高く、不平衡電圧の偏差は0.2mV/mAであった。ホール出力の温度係数は0.01%であった。−50℃〜150℃の使用温度範囲において、ホール出力の変動幅が2%以下と小さく、測定系の誤差が2〜3%はあることも考慮すると本発明のホール素子においては、温度補正用のICを用いなくても十分に従来の測定確度を得ることができる。従って、本発明によるホール素子を使うことにより、低コストで、高精度の測定が可能となる。また、不平衡電圧の偏差の3倍を不平衡電圧のバラツキと考えると、積感度に対する不平衡電圧の比率は5%と低く、高精度測定に適することがわかる。
【0017】
【比較例1】
シートキャリア濃度と温度依存性の関係を明らかにするために、実施例1と同じマスク、プロセスを使って、シートキャリア濃度のみ異なるものを作成した。素子構造は、図1に示したものと同様であり、感磁部の形状も同じで、イオン注入の条件は、加速電圧250keV、ドーズ量4×1012/cm2 である。
このときのシートキャリア濃度は3.2×1012/cm2 、シート抵抗は約700Ωである。また、素子の入力抵抗は1260Ω、積感度20mV/mAkG、不平衡電圧の偏差は0.2mV/mAであった。
【0018】
本発明による実施例1と比較例1に示したホール素子の温度特性を図3に示した。図中において、横軸は周囲温度、縦軸は定電流駆動時のホール出力である。比較しやすいように、縦軸は室温でのホール出力を100%としたときの変化分で表した。図からも明らかなように比較例1では温度係数0.06%であり、−50℃から150℃の温度範囲において室温での値に対し、変動幅にし12%程度の変動があることがわかる。従って、温度による出力補正用のICが別途必要となり、コスト的に高価になるばかりでなく、温度補正用ICのスペースが必要になり、素子の実装上問題が生じる。
【0019】
【比較例2】
次に、素子の感磁部形状による素子特性の違いを明らかにするために実施例1と同じプロセスで、感磁部形状のみ異なるホール素子を試作した。比較例2において入力抵抗はシート抵抗の1.4倍である。素子の入力抵抗は590Ωで、積感度8.5mV/mAkG、不平衡電圧の偏差0.9mV/mAであった。
【0020】
比較例2のホール素子は、本発明による実施例1と同じシートキャリア濃度を有し、特性の温度依存性は本発明による試作例と同じであるが、積感度が低くなっている。しかも、比較例2では不平衡電圧の偏差が大きくなっているため、積感度に対する不平衡電圧の比率が高い。このため、偏差の3倍を不平衡電圧のばらつきとしたとき、比較例2では積感度に対して30%を越える不平衡電圧となり、本発明による実施例1と比較し、1桁不平衡率が高くなり、高精度の測定には適さない。
【0021】
【発明の効果】
本発明のホール素子では、高精度の測定には適する程に十分に高感度で、且つホール出力電圧の温度変化率が非常に小さいため、ホール出力電圧の温度補正用ICを必要としない、あるいは、温度補正用ICを使用する場合であっても、非常に簡単な構成ですむ。したがって、周囲温度の変動によらない安定な磁場強度測定を、非常に安価に行うことができる。
【図面の簡単な説明】
【図1】本発明による、保護膜を省略したホール素子の上面図である(導電層および電極の形状を分かりやすくするために省略している。)。
【図2】本発明によるホール素子の断面構造図である。
【図3】実施例1によるホール素子と比較例1のホール出力電圧の温度変化を示したグラフ図である。
【符号の説明】
1 基板
2 GaAs導電層
3a 入力側オーミック電極
3a, 入力側オーミック電極
3b 出力側オーミック電極
3b, 出力側オーミック電極
4 保護膜
5 実施例1
6 比較例1
[0001]
[Industrial application fields]
The present invention relates to a Hall element that has a small variation in Hall output voltage over a wide temperature range, has sufficient sensitivity for practical use, and is suitable for high-accuracy measurement.
[0002]
[Prior art]
The Hall element is a magnetic sensor that detects the magnetic field strength by converting the magnetic field into a Hall output voltage using the Hall effect of semiconductors such as InSb, InAs, and GaAs, and is widely used for motors, non-contact switches, etc. ing. Among the applications of the Hall element, the magnetic field strength measurement gauss meter, current sensor, and the like require the Hall output voltage stability with respect to fluctuations in ambient temperature in addition to the linearity of the Hall output voltage with respect to the magnetic field strength. However, although the temperature change rate of the Hall output voltage of the conventional Hall element depends on the Hall element driving method, it is about 2% / ° C. for the InSb Hall element and 0.06 even for the GaAs Hall element having a small temperature dependency of characteristics. Since it was about% / ° C., an IC for correcting the temperature change of the Hall output voltage was indispensable in the above-described applications.
[0003]
Incidentally, the method of correcting the temperature change of the Hall output voltage with the IC has the following problems. First, since the Hall output voltage generally does not change linearly with respect to temperature, the temperature correction method, and thus the configuration of the temperature correction IC, becomes very complicated, and the manufacturing cost of the IC is very expensive. It was a thing. In addition, if the variation in temperature characteristics of the Hall elements is large, temperature correction cannot be performed with sufficient accuracy even with a temperature correction IC, so it is necessary to select the Hall elements. It was a big factor pushing up. Further, since the temperature correcting IC chip is relatively large, there is a problem in mounting.
[0004]
Moreover, in recent years, applications of Hall elements that require temperature change correction of the Hall output voltage over a wider temperature range than before have appeared. For example, in automobile-related applications, temperature correction in a temperature range of about −50 ° C. to 150 ° C. is required. In such a very wide temperature range, the above-described problem becomes more remarkable in the method of correcting the temperature change of the Hall output voltage by the IC.
[0005]
Thus, in applications where the stability of the Hall output voltage with respect to fluctuations in the ambient temperature is required, a method of correcting the temperature change of the Hall output voltage with an IC has been used exclusively, but it is very expensive in terms of cost. There are problems of becoming things and implementation problems, and these problems are becoming more and more prominent in the future.
[0006]
[Problems to be solved by the present invention]
An object of the present invention is to provide a Hall element that has a sufficiently high Hall output voltage stability with respect to a change in ambient temperature, has a sufficiently high sensitivity in practical use, and is suitable for highly accurate measurement.
[0007]
[Means for Solving the Problems]
The present inventors paid attention to a GaAs Hall element having the smallest temperature change rate of the Hall output voltage among the conventional Hall elements, and as a result of research for further reducing the temperature change rate, the temperature of the Hall output voltage The present invention succeeded in realizing a GaAs Hall element having a sufficiently low change rate that does not require a correction IC and having a sufficiently high Hall output voltage in practical use.
[0008]
That is, the present invention is as follows.
1. A GaAs hole having a conductive layer made of GaAs having a sheet carrier concentration of 8 × 10 12 / cm 2 or more and an input resistance value being 1.6 times or more of a sheet resistance value of the conductive layer. element.
2. 2. The GaAs Hall element according to 1 above, wherein a conductive layer is formed by ion implantation with an acceleration voltage of 400 keV or less.
[0009]
As a result of the study by the present inventors, increasing the sheet carrier concentration of the GaAs conductive layer serving as the magnetosensitive layer in the GaAs Hall element can reduce the temperature change rate of the Hall output voltage. As the concentration increased, the product sensitivity of the Hall element decreased, and it became clear that the problem that it was not suitable for high-precision measurement occurred at the same time. Therefore, the sheet carrier concentration of the GaAs conductive layer and the pattern shape of the Hall element are comprehensively studied. In the GaAs hole element, a conductive layer made of GaAs having a sheet carrier concentration of 8 × 10 12 / cm 2 or more is formed. And the desired Hall element is obtained by making the input resistance value 1.6 times or more the sheet resistance value of the conductive layer.
[0010]
Hereinafter, the present invention will be described in detail.
FIG. 1 is a plan view of the Hall element according to the present invention, and FIG. 2 is a sectional structural view taken along line AA ′ in FIG. In FIG. 1, 1 is a substrate, 2 is a GaAs conductive layer which is a magnetosensitive layer, 3a and 3a ′ are input-side ohmic electrodes electrically connected to the GaAs conductive layer, and 3b and 3b ′ are electrically connected to the GaAs conductive layer. The connected output-side ohmic electrode 4 is a protective film for protecting the GaAs conductive layer 2 and the ohmic electrode 3 from moisture and the like. The substrate 1 is a semi-insulating GaAs substrate, a Si substrate on which a GaAs thin film is grown, or the like, but is not particularly limited in the present invention.
[0011]
The GaAs conductive layer 2 is made of a GaAs thin film containing donor impurities. As a forming method, a method of ion-implanting donor impurities into a semi-insulating GaAs substrate, a method of ion-implanting donor impurities into a GaAs thin film grown on a semi-insulating GaAs substrate or Si substrate, a semi-insulating GaAs substrate There is a method of growing a GaAs thin film containing a donor impurity on or on a Si substrate, and the ion implantation method is particularly preferable among them. Any donor impurity may be used as long as it becomes a donor in GaAs, but Si, Ge, Se, and the like are preferable. When the GaAs conductive layer 2 is formed by ion implantation, the thickness of the conductive layer is determined by the acceleration voltage. However, since high-voltage ion implantation is expensive and the carrier concentration is low, 400 keV or less is preferable. 250 keV or less is more preferable. Moreover, since it will become difficult to form a conductive layer under the influence of a surface depletion layer when it becomes less than 100 keV, 100 keV or more is preferable. The annealing process for activating the ion-implanted donor impurity is not particularly limited with respect to the method and conditions.
[0012]
In the present invention, the sheet carrier concentration in the GaAs conductive layer 2 is preferably 8 × 10 12 / cm 2 or more, and more preferably 1 × 10 13 / cm 2 or more. If the sheet carrier concentration is less than this value, a Hall element having a sufficiently high Hall output voltage stability with respect to fluctuations in ambient temperature, which is an object of the present invention, cannot be realized. Further, when the sheet carrier concentration is 8 × 10 13 / cm 2 or more, impurities are not easily activated, and a concentration higher than this is not realistic.
[0013]
In the present invention, the input resistance value between the input-side ohmic electrodes 3a and 3a ′ needs to be 1.6 times or more the sheet resistance value of the GaAs conductive layer 2, and preferably 1.8 to 3.5. Double the range. When the ratio is lower than 1.6 times, the product sensitivity of the Hall element is low, a practically sufficient sensitivity cannot be obtained, and it is not suitable for high-accuracy measurement. The input resistance value is controlled by changing the planar shape of the GaAs conductive layer, which is the magnetic sensitive part.
[0014]
The ohmic electrode 3 may be anything as long as it is in ohmic contact with the GaAs conductive layer 2, but an electrode including an AuGe / Ni / Au structure is particularly preferable. The formation method is not particularly limited.
The protective film 4 is formed for the purpose of preventing contamination or deterioration of the GaAs conductive layer 2 due to moisture or oxidation, and is made of an inorganic insulating film such as SiO 2 or SiN, or an organic thin film such as polyimide, and has a thickness of About 0.1 to 5 μm is preferable.
[0015]
【Example】
Next, an example explains the present invention.
[0016]
[Example 1]
First, a photosensitive resist pattern was formed on a semi-insulating GaAs substrate. The planar shape of the magnetic sensitive part was designed so that the input resistance of the element was 1.8 times the sheet resistance of the conductive layer. Thereafter, ions are implanted at an acceleration voltage of 250 keV and an implantation dose of 1.2 × 10 13 / cm 2 to form a conductive layer, and then annealed at 850 ° C. for 15 minutes to activate the implanted ions. Went. At this time, the sheet carrier concentration was 9.2 × 10 12 / cm 2 and the sheet resistance was 418Ω. The difference between the dose and the sheet carrier concentration is due to the fact that the activation rate of the ion-implanted impurities is not 100%. Next, after forming a resist pattern for electrode formation, AuGe 200 nm, Ni 50 nm, and Au 300 nm were sequentially deposited on the entire surface of the wafer as an electrode metal in this order from the substrate side. Thereafter, lift-off was performed, and ohmic contact with the conductive layer portion was obtained by alloying. Furthermore, 300 nm of SiO 2 was formed on the entire surface of the wafer by plasma CVD to form a protective film. The wafer was diced, die-bonded and wire-bonded to complete an element molded in epoxy resin. The input resistance of the element thus fabricated was 752Ω, which was 1.8 times the sheet resistance as designed. The product sensitivity was 12 mV / mAkG, which was sufficiently high for practical use, and the deviation of the unbalanced voltage was 0.2 mV / mA. The temperature coefficient of Hall output was 0.01%. In consideration of the fact that the fluctuation range of the Hall output is as small as 2% or less in the operating temperature range of −50 ° C. to 150 ° C. and the error of the measurement system is 2 to 3%, the Hall element of the present invention is for temperature correction. The conventional measurement accuracy can be sufficiently obtained without using the IC. Therefore, by using the Hall element according to the present invention, it is possible to perform highly accurate measurement at low cost. Further, when the deviation of the unbalanced voltage is considered to be three times the deviation of the unbalanced voltage, the ratio of the unbalanced voltage to the product sensitivity is as low as 5%, which indicates that it is suitable for high-accuracy measurement.
[0017]
[Comparative Example 1]
In order to clarify the relationship between the sheet carrier concentration and the temperature dependence, the same mask and process as in Example 1 were used, and the sheet carrier concentration only differed. The element structure is the same as that shown in FIG. 1, the shape of the magnetosensitive part is the same, and the ion implantation conditions are an acceleration voltage of 250 keV and a dose of 4 × 10 12 / cm 2 .
At this time, the sheet carrier concentration is 3.2 × 10 12 / cm 2 and the sheet resistance is about 700Ω. The input resistance of the device was 1260Ω, the product sensitivity was 20 mV / mAkG, and the deviation of the unbalanced voltage was 0.2 mV / mA.
[0018]
FIG. 3 shows the temperature characteristics of the Hall elements shown in Example 1 and Comparative Example 1 according to the present invention. In the figure, the horizontal axis represents the ambient temperature, and the vertical axis represents the hall output during constant current driving. For easy comparison, the vertical axis represents the change when the Hall output at room temperature is 100%. As is apparent from the figure, in Comparative Example 1, the temperature coefficient is 0.06%, and in the temperature range from −50 ° C. to 150 ° C., it is found that there is a fluctuation of about 12% in the fluctuation range. . Therefore, an IC for correcting output according to temperature is separately required, which is not only expensive in cost, but also requires space for the IC for temperature correction, which causes a problem in mounting of the element.
[0019]
[Comparative Example 2]
Next, in order to clarify the difference in element characteristics depending on the shape of the magnetic sensing portion of the element, a Hall element having a different magnetic sensing portion shape was manufactured by the same process as in Example 1. In Comparative Example 2, the input resistance is 1.4 times the sheet resistance. The input resistance of the device was 590Ω, the product sensitivity was 8.5 mV / mAkG, and the deviation of the unbalanced voltage was 0.9 mV / mA.
[0020]
The Hall element of Comparative Example 2 has the same sheet carrier concentration as Example 1 according to the present invention, and the temperature dependency of the characteristics is the same as that of the prototype according to the present invention, but the product sensitivity is low. Moreover, since the deviation of the unbalanced voltage is large in Comparative Example 2, the ratio of the unbalanced voltage to the product sensitivity is high. For this reason, when the unbalanced voltage variation is 3 times the deviation, the comparative example 2 has an unbalanced voltage exceeding 30% with respect to the product sensitivity. Is not suitable for high-precision measurement.
[0021]
【The invention's effect】
The Hall element of the present invention is sufficiently sensitive to be suitable for high-accuracy measurement, and the temperature change rate of the Hall output voltage is very small, so that there is no need for a temperature correction IC for the Hall output voltage, or Even when using a temperature compensation IC, a very simple configuration is sufficient. Therefore, stable magnetic field strength measurement that does not depend on variations in ambient temperature can be performed at a very low cost.
[Brief description of the drawings]
FIG. 1 is a top view of a Hall element in which a protective film is omitted according to the present invention (omitted for easy understanding of the shapes of a conductive layer and an electrode).
FIG. 2 is a sectional structural view of a Hall element according to the present invention.
3 is a graph showing a temperature change of the Hall output voltage of the Hall element according to Example 1 and Comparative Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 GaAs conductive layer 3a Input side ohmic electrode 3a , Input side ohmic electrode 3b Output side ohmic electrode 3b , Output side ohmic electrode 4 Protective film 5 Example 1
6 Comparative Example 1

Claims (2)

シートキャリア濃度が8×1012/cm以上8×10 13 /cm 未満のGaAsからなる導電層を有し、入力抵抗値が該導電層のシート抵抗の1.6〜3.5倍であることを特徴とするGaAsホール素子。It has a conductive layer made of GaAs having a sheet carrier concentration of 8 × 10 12 / cm 2 or more and less than 8 × 10 13 / cm 2 , and the input resistance value is 1.6 to 3.5 times the sheet resistance of the conductive layer. There is a GaAs Hall element. 100keV以上400keV以下の加速電圧のイオン注入により、導電層を形成したことを特徴とする請求項1記載のGaAsホール素子。 2. The GaAs Hall element according to claim 1, wherein the conductive layer is formed by ion implantation with an acceleration voltage of not less than 100 keV and not more than 400 keV .
JP00863595A 1995-01-24 1995-01-24 GaAs Hall element Expired - Lifetime JP3681425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00863595A JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00863595A JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Publications (2)

Publication Number Publication Date
JPH08204251A JPH08204251A (en) 1996-08-09
JP3681425B2 true JP3681425B2 (en) 2005-08-10

Family

ID=11698414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00863595A Expired - Lifetime JP3681425B2 (en) 1995-01-24 1995-01-24 GaAs Hall element

Country Status (1)

Country Link
JP (1) JP3681425B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431044B1 (en) * 1998-08-07 2004-05-12 아사히 가세이 가부시키가이샤 Magnetic sensor and method for fabricating th e same
JP4417107B2 (en) 2001-10-01 2010-02-17 旭化成エレクトロニクス株式会社 Magnetic sensor
AU2003201894A1 (en) 2002-01-15 2003-07-30 Asahi Kasei Electronics Co., Ltd. Compound semiconductor multilayer structure, hall device, and hall device manufacturing method
WO2007069680A1 (en) 2005-12-16 2007-06-21 Asahi Kasei Emd Corporation Position detector
JP2015198198A (en) * 2014-04-02 2015-11-09 旭化成エレクトロニクス株式会社 Hall element
CN107132497B (en) * 2017-04-28 2020-05-12 西安工业大学 Substrate for nondestructive testing of Hall effect of semiconductor film and preparation method thereof

Also Published As

Publication number Publication date
JPH08204251A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
US10254354B2 (en) Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US6590389B1 (en) Magnetic sensor, magnetic sensor apparatus, semiconductor magnetic resistance apparatus, and production method thereof
US4263518A (en) Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body
US4978938A (en) Magnetoresistor
US5198795A (en) Magnetoelectric transducer and process for producing the same
EP0300635A1 (en) Current detecting device using ferromagnetic magnetoresistance element
EP0181206A2 (en) Semiconductor devices
US20160299199A1 (en) Electronic Circuit For Driving A Hall Effect Element With A Current Compensated For Substrate Stress
US20020093332A1 (en) Magnetic field sensor with tailored magnetic response
US20190049529A1 (en) Arrangements for Hall Effect Elements and Vertical Epi Resistors Upon a Substrate
US10969444B2 (en) Concept for compensating for a mechanical stress of a hall sensor circuit integrated into a semiconductor substrate
JP4240306B2 (en) Rotation detector
US5502325A (en) Integrated magnetoresistive sensor
US4926154A (en) Indium arsenide magnetoresistor
JP3681425B2 (en) GaAs Hall element
EP0375107B1 (en) Improved magnetoresistors
Pettenpaul et al. GaAs Hall devices produced by local ion implantation
EP0305978B1 (en) Magnetoelectric element and magnetoelectric apparatus
US5117543A (en) Method of making indium arsenide magnetoresistor
JP3006274B2 (en) GaAs Hall element and method of manufacturing the same
JPS6354785A (en) Hetero-junction magnetic sensor
US11402280B2 (en) Magnetic sensor with improved stress compensation accounting for temperature
JPH0870146A (en) Magnetic sensor
JP3399053B2 (en) Heterojunction Hall element
JPH077194A (en) Hall element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term