JPH0820411B2 - Humidity measuring method and humidity measuring apparatus using oxygen sensor - Google Patents

Humidity measuring method and humidity measuring apparatus using oxygen sensor

Info

Publication number
JPH0820411B2
JPH0820411B2 JP63301909A JP30190988A JPH0820411B2 JP H0820411 B2 JPH0820411 B2 JP H0820411B2 JP 63301909 A JP63301909 A JP 63301909A JP 30190988 A JP30190988 A JP 30190988A JP H0820411 B2 JPH0820411 B2 JP H0820411B2
Authority
JP
Japan
Prior art keywords
current value
humidity
oxygen
gas
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63301909A
Other languages
Japanese (ja)
Other versions
JPH02147854A (en
Inventor
秀明 八木
克彦 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63301909A priority Critical patent/JPH0820411B2/en
Priority to EP89312393A priority patent/EP0371774B1/en
Priority to DE68929412T priority patent/DE68929412T2/en
Priority to EP96109059A priority patent/EP0737860B1/en
Priority to DE68928441T priority patent/DE68928441T2/en
Publication of JPH02147854A publication Critical patent/JPH02147854A/en
Priority to US07/896,503 priority patent/US5348630A/en
Publication of JPH0820411B2 publication Critical patent/JPH0820411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質の表面に一対の電極を設け、陰
極への気体拡散制限によって被測定気体中の酸素濃度を
測定するための酸素濃度検出用センサ(以下「酸素セン
サ」とする)を利用して、被測定気体中の湿度(水分濃
度)を測定する湿度測定方法および湿度測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention provides a pair of electrodes on the surface of a solid electrolyte, and oxygen concentration for measuring oxygen concentration in a gas to be measured by limiting gas diffusion to a cathode. The present invention relates to a humidity measuring method and a humidity measuring device for measuring humidity (moisture concentration) in a gas to be measured using a detection sensor (hereinafter referred to as "oxygen sensor").

[従来の技術] 酸素センサを利用して気体中の酸素濃度を測定する湿
度測定方法としては、特開昭60−222761号公報に紹介さ
れた発明のように、被測定気体中の酸素分圧を、酸素拡
散制限による平坦部の限界電流値として除湿前と除湿後
にそれぞれ測定して、各限界電流値に基づいて湿度を求
める方法、特開昭62−150151号公報に紹介された発明の
ように、拡散制限による限界電流値が、被測定気体中の
酸素濃度および水分濃度に応じて二段階の平坦部で求め
られることを利用して、その差に基づいて測定する方
法、特開昭62−150152号公報に紹介された発明のよう
に、被測定気体の酸素濃度あるいは水分濃度による2つ
の平坦部の限界電流値の少なくとも一方と、除湿後の乾
燥させた被測定気体における限界電流値との差に基づい
て測定する方法等が知られている。
[Prior Art] As a humidity measuring method for measuring the oxygen concentration in a gas by using an oxygen sensor, an oxygen partial pressure in a gas to be measured is disclosed as in the invention introduced in JP-A-60-222761. Is measured before and after dehumidification as the limiting current value of the flat portion due to oxygen diffusion limitation, and a method for obtaining the humidity based on each limiting current value, as in the invention introduced in JP-A-62-150151. A method of measuring the limiting current value due to diffusion restriction based on the difference between the oxygen concentration and the water concentration in the gas to be measured is obtained in a two-step flat portion. As disclosed in Japanese Patent Laid-Open No. 150152, at least one of the limiting current values of the two flat portions depending on the oxygen concentration or the water concentration of the measured gas, and the limiting current value of the dried measured gas after dehumidification, How to measure based on the difference of It has been known.

[発明が解決しようとする課題] 以上の各測定方法による湿度測定方法では、被測定気
体を除湿、乾燥させるための乾燥装置が必要であるとと
もに、除湿前の被測定気体と、除湿後の被測定気体のそ
れぞれについて限界電流値を測定する必要があるため、
大規模な測定系が必要であるとともに、応答性が悪いと
いう問題がある。
[Problems to be Solved by the Invention] In the humidity measuring method according to each of the above measuring methods, a drying device for dehumidifying and drying the measured gas is required, and the measured gas before dehumidification and the measured gas after dehumidification are used. Since it is necessary to measure the limiting current value for each of the measurement gases,
There is a problem that a large-scale measurement system is required and the response is poor.

本願発明者等は、上記事項に鑑み、被測定気体中の水
分濃度の簡便な湿度測定方法について研究および試験を
重ねた結果、酸素濃度に応じて現れる第1の平坦部F1に
おける限界電流値IL1は、単に酸素濃度のみによって決
定されるばかりではなく、同時に被測定気体中に含まれ
る水分濃度に応じて酸素分圧が変化することから、水分
濃度の影響を受けることを見出だした。
In view of the above matters, the inventors of the present application have conducted studies and tests on a simple method for measuring the moisture concentration of the gas to be measured, and as a result, have found that the limiting current value I in the first flat portion F1 that appears depending on the oxygen concentration is I. It was found that L1 is influenced not only by the oxygen concentration alone but also by the oxygen concentration because the oxygen partial pressure changes depending on the water concentration contained in the gas to be measured.

すなわち、被測定気体中の各水分濃度における酸素濃
度に応じた第1の平坦部F1における限界電流値IL1は、
第5図に示すとおり、各水分濃度毎に異なり、水分濃度
が高くなるほど限界電流値IL1は低下することを見出だ
した。
That is, the limiting current value I L1 in the first flat portion F1 according to the oxygen concentration at each moisture concentration in the measured gas is
As shown in FIG. 5, it was found that the limiting current value I L1 decreases as the water concentration increases, which is different for each water concentration.

また水分の分解による第2の平坦部F2における限界電
流値IL2は、上記各発明で示されたとおり、水分濃度が
高くなるほど上昇する。
Further, the limiting current value I L2 in the second flat portion F2 due to the decomposition of water increases as the water concentration increases, as shown in the above inventions.

さらに本願発明者等は、各電極間に印加する電圧を上
昇させた場合、第1の平坦部F1から第2の平坦部F2へ変
化する限界電流値が、被測定気体中の酸素濃度が一定で
あれば、ある一定の電圧値VMにおいては水分濃度に関係
なく一定の電流値IMを示し、二次微分値の符号が変わる
変曲点Pとなることを見出だした。
Furthermore, the inventors of the present application have found that when the voltage applied between the electrodes is increased, the limiting current value that changes from the first flat portion F1 to the second flat portion F2 is such that the oxygen concentration in the measured gas is constant. Then, it has been found that at a certain constant voltage value V M , a constant current value I M is exhibited irrespective of the water concentration, and it becomes an inflection point P at which the sign of the second derivative changes.

同時にまた、この変曲点Pの電流値IMは、水分を含ま
ない場合(湿度0%)の第1の平坦部F1(第2の平坦部
F2と同じ)の限界電流値であり、これは被測定気体の温
度に関係なく酸素センサ毎に一定であることも見出だし
た。
At the same time, the current value I M at the inflection point P is the same as the first flat portion F1 (second flat portion) when water is not contained (humidity 0%).
It was also found that the limiting current value is the same as F2), which is constant for each oxygen sensor regardless of the temperature of the gas to be measured.

本発明は、以上の研究の結果得られた非常に優れた湿
度測定方法および湿度測定装置を提供するものである。
The present invention provides a very excellent humidity measuring method and humidity measuring device obtained as a result of the above research.

[課題を解決するための手段] 本発明の第1の発明は、多孔質体からなる一対の電極
が、酸素イオン導電性を有する固体電解質の表面に密着
して設けられるとともに、気体拡散制御手段によって前
記電極への気体拡散が制限される酸素センサの前記電極
間に電圧を印加して、前記気体拡散制御手段によって制
限される前記電極間の限界電流値に基づいて被測定気体
中の湿度を測定する湿度測定方法において、前記被測定
気体中の酸素濃度に応じて制限される第1の限界電流値
と前記被測定気体中の湿度に応じて制限される第2の限
界電流値との変曲点の電流値と、前記第1の限界電流値
と前記第2の限界電流値の少なくとも一方とに基づいて
湿度を求めることを特徴とする。
[Means for Solving the Problems] A first invention of the present invention is to provide a pair of electrodes made of a porous body in close contact with the surface of a solid electrolyte having oxygen ion conductivity, and a gas diffusion control means. By applying a voltage between the electrodes of an oxygen sensor in which gas diffusion to the electrodes is limited, the humidity in the measured gas is adjusted based on the limiting current value between the electrodes that is limited by the gas diffusion control means. In the humidity measuring method for measuring, a change between a first limiting current value limited according to the oxygen concentration in the measured gas and a second limiting current value limited according to the humidity in the measured gas. It is characterized in that the humidity is obtained based on the current value at the inflection point and at least one of the first limiting current value and the second limiting current value.

本発明の第2の発明は、上記第1の発明の方法を実施
するための装置であって、前記酸素センサの電極間に電
圧を印加して、前記被測定気体中の酸素濃度に応じて制
限される第1の限界電流値と前記被測定気体中の湿度に
応じて制限される第2の限界電流値との変曲点の電流値
と、前記第1の限界電流値と前記第2の限界電流値の少
なくとも一方とに基づいて湿度を求めることを特徴とす
る。
A second invention of the present invention is an apparatus for carrying out the method of the first invention, wherein a voltage is applied between the electrodes of the oxygen sensor, and the voltage is applied according to the oxygen concentration in the gas to be measured. A current value at an inflection point between a first limit current value to be limited and a second limit current value to be limited according to the humidity in the gas to be measured, the first limit current value, and the second limit current value. The humidity is obtained based on at least one of the limiting current values of.

[作用] 本発明は、使用する酸素センサについて、陰電極への
拡散制限を行って電極間に電圧を印加した場合に、電極
間に流れる電流値が、酸素濃度に応じて現れる第1の平
坦部では水分濃度が高くなるほど減少し、水分濃度に応
じて現れる第2の平坦部の電流値が水分濃度が高くなる
ほど増大することと、第1の平坦部と第2の平坦部との
変曲点の電流値が、同一の酸素濃度においては水分濃度
の関係なく常に一定であり、このときの電流値は乾燥さ
せた場合の電流値に相当することに基づいて、水分濃度
が求められることを利用したものである。
[Operation] In the present invention, in the oxygen sensor to be used, when diffusion control to the negative electrode is performed and a voltage is applied between the electrodes, the value of the current flowing between the electrodes appears according to the oxygen concentration. In the area, the water content decreases as the water concentration increases, and the current value of the second flat portion that appears according to the water concentration increases as the water concentration increases, and inflection between the first flat portion and the second flat portion. The current value at a point is always constant regardless of the water concentration at the same oxygen concentration, and the water concentration at this point is calculated based on the fact that the current value at this time corresponds to the current value when dried. It was used.

以下、その手順を説明すると、使用する酸素センサに
ついて、予め変曲点の電圧値を調べておき、その調べら
れた変曲点の電圧値を始めに印加して、そのときの電流
値を求める。これによって、被測定気体の乾燥時に相当
する限界電流値を求めることができる。
The procedure will be described below. For the oxygen sensor to be used, the voltage value at the inflection point is checked in advance, and the voltage value at the inflection point thus investigated is applied first to obtain the current value at that time. . With this, it is possible to obtain the limiting current value corresponding to the drying of the gas to be measured.

次に同一の酸素センサを利用して、続けて第1の平坦
部あるいは第2の平坦部となる電圧値を印加してその電
流値を求める。第1の平坦部および第2の平坦部におけ
る各電流値は、被測定気体の水分濃度に応じて変化する
ことから、前述の乾燥時に相当する電流値との比較によ
って被測定気体中の水分濃度を求めることができる。
Next, using the same oxygen sensor, a voltage value for the first flat portion or the second flat portion is continuously applied to obtain the current value. Since each current value in the first flat portion and the second flat portion changes according to the water concentration of the gas to be measured, the water concentration in the gas to be measured is compared with the current value corresponding to the above-described drying time. Can be asked.

[発明の効果] 本発明では、使用する酸素センサについて、あらかじ
め変曲点の電圧値を求めることによって、被測定気体の
乾燥状態に相当する電流値を簡単に調べることができ
る。従って、被測定気体を乾燥させる必要がなく、また
同一の酸素センサを利用してその印加電圧を変えるだけ
で湿度を測定することができるため、湿度測定装置等の
測定系が簡略化される。
[Effect of the Invention] In the present invention, the current value corresponding to the dry state of the gas to be measured can be easily checked by previously obtaining the voltage value at the inflection point for the oxygen sensor to be used. Therefore, it is not necessary to dry the gas to be measured, and the humidity can be measured simply by changing the applied voltage using the same oxygen sensor, so that the measurement system such as the humidity measuring device is simplified.

また、酸素濃度が一定の場合には、一旦変曲点の電流
値を求めておけば、以後は、第1の平坦部あるいは第2
の平坦部の電圧を印加するだけで、そのときどきの水分
濃度を測定することができる。従って応答性のよい測定
を行うことができる。
Further, when the oxygen concentration is constant, once the current value at the inflection point is obtained, thereafter, the first flat portion or the second flat portion can be obtained.
The water concentration at that time can be measured simply by applying a voltage to the flat portion of the. Therefore, it is possible to perform a highly responsive measurement.

さらに、被測定気体中の酸素濃度が変化する場合に
は、変曲点の電圧と、各平坦部の電圧を交互に印加する
ことにより求めることができる。
Further, when the oxygen concentration in the gas to be measured changes, it can be obtained by alternately applying the voltage at the inflection point and the voltage at each flat portion.

[実施例] 次に本発明の湿度測定方法を実施例に基づいて説明す
る。
[Examples] Next, the humidity measuring method of the present invention will be described based on Examples.

第2図は本発明を実施する際に用いられる酸素センサ
1を示す。
FIG. 2 shows an oxygen sensor 1 used in implementing the present invention.

酸素センサ1は、センサ素子10とセラミックヒータ20
とからなる。
The oxygen sensor 1 includes a sensor element 10 and a ceramic heater 20.
Consists of

センサ素子10は、酸素イオン導電板11、陽電極12、陰
電極13、アルミナ多孔質層14、グレーズ層15からなる。
The sensor element 10 includes an oxygen ion conductive plate 11, a positive electrode 12, a negative electrode 13, an alumina porous layer 14, and a glaze layer 15.

酸素イオン導電板11は、酸化ジルコニウムに安定化剤
として酸化イットリウムを添加固溶させた固体電解質と
しての安定化ジルコニア製の板である。本実施例では、
酸素イオン導電板11は、5×7mm四方で厚み0.3mmのもの
を使用している。
The oxygen ion conductive plate 11 is a plate made of stabilized zirconia as a solid electrolyte in which yttrium oxide as a stabilizer is added to zirconium oxide to form a solid solution. In this embodiment,
The oxygen ion conductive plate 11 is 5 × 7 mm square and 0.3 mm thick.

酸素イオン導電板11の一方の面には、陽電極12および
陰電極13が間隔をおいて形成される。各電極12、13は、
酸素イオン導電板11上に白金ペーストを印刷し、酸素イ
オン導電板11と同時に1500℃で焼成された多孔質をなす
白金電極で、陽電極12および陰電極13は、それぞれ電極
部12a、13aと通電用の接続部12b、13bとからなる。
A positive electrode 12 and a negative electrode 13 are formed on one surface of the oxygen ion conductive plate 11 at intervals. Each electrode 12, 13 is
The platinum paste is printed on the oxygen ion conductive plate 11 and is a porous platinum electrode simultaneously fired at 1500 ° C. at the same time as the oxygen ion conductive plate 11, and the positive electrode 12 and the negative electrode 13 are electrode portions 12a and 13a, respectively. It is composed of connection parts 12b and 13b for energization.

陰電極13側の酸素イオン導電板11上には、アルミナ粉
にガラスを混ぜたペーストを塗布したアルミナ多孔質層
14が陰電極13の電極部13aと接続部13bの一部のみを覆う
ようにして設けられ、さらにアルミナ多孔質層14は、陰
電極13の電極部13aへの被測定気体が触れないようにす
るためにガラスを塗布したグレーズ層15によって電極部
13aおよび接続部13bの一部とともに覆われ、アルミナ多
孔質層14およびグレーズ層15は850℃〜900℃で酸素イオ
ン導電板11に焼付けられている。
On the oxygen ion conductive plate 11 on the negative electrode 13 side, an alumina porous layer formed by applying a paste prepared by mixing glass with alumina powder.
14 is provided so as to cover only a part of the electrode portion 13a of the negative electrode 13 and the connection portion 13b, further, the alumina porous layer 14 so that the measured gas does not touch the electrode portion 13a of the negative electrode 13. Electrode part by the glaze layer 15 coated with glass to
The alumina porous layer 14 and the glaze layer 15 covered with 13a and a part of the connecting portion 13b are baked on the oxygen ion conductive plate 11 at 850 ° C to 900 ° C.

従って、第3図に示すとおり、陰電極13の電極部13a
は被測定気体と隔離され、陰電極13の接続部13bはグレ
ーズ層15から露出するため、グレーズ層15の端部15aと
酸素イオン導電板11との間の接続部13bでは、各電極1
2、13に電圧が印加されたとき、酸素拡散量および水蒸
気拡散量を制御するための気体拡散制御体を兼用するこ
とになる。
Therefore, as shown in FIG. 3, the electrode portion 13a of the negative electrode 13 is
Is separated from the gas to be measured, and the connecting portion 13b of the negative electrode 13 is exposed from the glaze layer 15, so that the electrodes 1 are connected at the connecting portion 13b between the end 15a of the glaze layer 15 and the oxygen ion conductive plate 11.
When a voltage is applied to 2 and 13, it also serves as a gas diffusion control body for controlling the oxygen diffusion amount and the water vapor diffusion amount.

ここでは各電極12、13は、厚みtを20μmとし、各電
極部12a、13aは、一辺を2.5mmとする正方形とした。
Here, each electrode 12 and 13 has a thickness t of 20 μm, and each electrode portion 12a and 13a is a square having one side of 2.5 mm.

また、接続部13bでは、第1図に示すとおり、幅Wを1
mmとし、グレーズ層15によって覆われる長さLを2mmと
した。
In addition, at the connecting portion 13b, as shown in FIG.
mm, and the length L covered by the glaze layer 15 was 2 mm.

ここで、電極部12a、13aの面積をS、接続部13bの幅
Wと厚みtとの積によって与えられる断面積をsとする
と、電極部13aへの酸素の拡散量は、断面積sに比例
し、長さLに反比例する。
Here, assuming that the area of the electrode portions 12a and 13a is S and the cross-sectional area given by the product of the width W and the thickness t of the connecting portion 13b is s, the diffusion amount of oxygen into the electrode portion 13a becomes the cross-sectional area s. It is proportional and inversely proportional to the length L.

これらの値に基づいて、限界電流値を得る実用上特に
有効な陰電極13の電極部13aの面積Sに対する気体拡散
電極としての接続部13bとの比Rの範囲を求めると、 R=s/L/S=1×10-5〜8×10-2 であり、本実施例では、s=0.02、L=2、S=6.25で
あることから、この比Rの値は、R=1.6×10-3であっ
た。
Based on these values, the range of the ratio R of the area S of the electrode portion 13a of the negative electrode 13 to the connection portion 13b as the gas diffusion electrode, which is particularly effective for obtaining the limiting current value, is calculated. Since L / S = 1 × 10 −5 to 8 × 10 −2 , and in this embodiment, s = 0.02, L = 2, and S = 6.25, the value of this ratio R is R = 1.6 ×. It was 10 -3 .

センサ素子10は、セラミックヒータ20にガラスを塗布
して約800℃で焼付装着される。
The sensor element 10 is mounted by baking glass at about 800 ° C. by applying glass to the ceramic heater 20.

セラミックヒータ20は、第4図に示すとおり、アルミ
ナ(Al2O3)96%のグリーンシート20A面に、ヒータパタ
ーン20aを形成するようにタングステン(W)からなる
金属ペーストを印刷し、さらに同種のグリーンシート20
Bを被覆して焼成した板状のヒータで、セラミックヒー
タ20内のヒータパターン20aの両端は、導体パターン20
b、20cによって、セラミックヒータ20の表面20dの電極2
1、22とそれぞれ接続されている。
As shown in FIG. 4, the ceramic heater 20 is formed by printing a metal paste made of tungsten (W) on the surface of the green sheet 20A of 96% alumina (Al 2 O 3 ) so as to form the heater pattern 20a. Green sheet of 20
It is a plate-shaped heater that is coated with B and fired. Both ends of the heater pattern 20a in the ceramic heater 20 have conductor patterns 20
b, 20c, the electrode 2 on the surface 20d of the ceramic heater 20
1 and 22 are connected respectively.

ここでは、多孔質からなる陰電極13の接続部13bによ
って気体拡散制限を行うため、セラミックヒータ20のヒ
ータパターン20aは、各電極12、13の電極部12a、13aの
みを局所加熱するようにして、接続部13bによるポンピ
ングを防止している。
Here, since the gas diffusion is limited by the connecting portion 13b of the negative electrode 13 made of a porous material, the heater pattern 20a of the ceramic heater 20 is configured to locally heat only the electrode portions 12a, 13a of the electrodes 12, 13. The pumping by the connecting portion 13b is prevented.

セラミックヒータ20の中央部には、センサ素子10への
加熱効率をよくするために、通気口23が形成され、また
センサ素子10が焼付けられる部分には、表裏を貫通した
貫通孔24、25、26がそれぞれ複数列に渡って設けられて
いる。
A vent hole 23 is formed in the central portion of the ceramic heater 20 in order to improve the heating efficiency of the sensor element 10, and in the portion where the sensor element 10 is baked, through holes 24, 25 penetrating the front and back sides, 26 are arranged in multiple rows.

また、セラミックヒータ20の表面20dには、センサ素
子10の各電極12、13への通電のために、酸化ルテニウム
のプリントパターンによって各接続部12b、13bと接続さ
れたセンサ電極27、28が設けられている。なお、センサ
電極27、28は、パターン形成用ペーストをプリントし、
センサ素子10を焼付装着させる際に、同時に焼付けされ
る。
Further, the surface 20d of the ceramic heater 20 is provided with sensor electrodes 27, 28 connected to the respective connecting portions 12b, 13b by a printed pattern of ruthenium oxide for energizing the respective electrodes 12, 13 of the sensor element 10. Has been. The sensor electrodes 27 and 28 are printed with a pattern forming paste,
When the sensor element 10 is printed and mounted, it is baked at the same time.

以上の構成からなる本実施例の酸素センサ1は、第1
図に示すとおり、各センサ電極27、28間に電圧可変式の
電源Eから電圧が印加される湿度測定装置Aのセンサ部
として用いられ、印加電圧と電流値がそれぞれ測定され
る。またこのとき、セラミックヒータ20は通電されて、
センサ素子10の各電極部12a、13aを中心として300〜700
℃に維持する。
The oxygen sensor 1 of the present embodiment having the above configuration is
As shown in the figure, it is used as a sensor portion of a humidity measuring device A to which a voltage is applied from a voltage-variable power source E between the sensor electrodes 27 and 28, and the applied voltage and current value are measured respectively. At this time, the ceramic heater 20 is energized,
300 to 700 centered on each electrode part 12a, 13a of the sensor element 10
Keep at ℃.

以下、酸素センサ1の作用を説明する。 Hereinafter, the operation of the oxygen sensor 1 will be described.

酸素センサ1が被測定気体中に配され、陽電極12、陰
電極13間に電圧が印加されると、グレーズ層15で覆われ
た電極部13a内の酸素はイオン化されて酸素イオンとな
り、被測定気体中の酸素は、陰電極13から陽電極12へ印
加電圧に応じて陽電極12へポンピングされる。
When the oxygen sensor 1 is placed in the gas to be measured and a voltage is applied between the positive electrode 12 and the negative electrode 13, the oxygen in the electrode portion 13a covered with the glaze layer 15 is ionized to become oxygen ions, Oxygen in the measurement gas is pumped to the positive electrode 12 according to the voltage applied from the negative electrode 13 to the positive electrode 12.

このとき、陰電極13では、電極部13aのみが局所加熱
され、接続部13bは酸素イオン導電性を示す程十分に加
熱されないため、酸素は、接続部13bからグレーズ層15
で覆われた電極部13a内へ拡散する。
At this time, in the negative electrode 13, only the electrode portion 13a is locally heated, and the connection portion 13b is not sufficiently heated to exhibit oxygen ion conductivity. Therefore, oxygen is supplied from the connection portion 13b to the glaze layer 15.
Diffuses into the electrode portion 13a covered with.

電極間に流れる電流値は、印加電圧を高くすると、印
加電圧に応じて電流値が増大する。
When the applied voltage is increased, the current value flowing between the electrodes increases according to the applied voltage.

電極部13a内への酸素拡散量は陰電極13の接続部13bで
制御され、被測定気体中の酸素濃度に応じて制限される
ため、拡散量が制限されるとそれに伴って電流値も制限
されて、拡散制限電流値IL1(第1の平坦部F1)を示
す。
The amount of oxygen diffusion into the electrode portion 13a is controlled by the connection portion 13b of the negative electrode 13 and is limited according to the oxygen concentration in the gas to be measured.Therefore, if the amount of diffusion is limited, the current value is also limited accordingly. The diffusion limited current value I L1 (first flat portion F1) is shown.

酸素の分圧は、被測定気体中の水分濃度が高くなる
と、それに応じて低下するため、拡散制限電流値I
L1は、第5図に示すとおり、水分濃度が高くなるほど低
くなる。なお第5図では、被測定気体の温度が80℃の場
合を示す。
The oxygen partial pressure decreases as the moisture concentration in the measured gas increases, so the diffusion limiting current value I
As shown in FIG. 5, L1 becomes lower as the water concentration becomes higher. Note that FIG. 5 shows the case where the temperature of the gas to be measured is 80 ° C.

印加電圧が、拡散制限電流値IL1が得られる電圧値よ
りさらに高くなると、被測定気体中の水分(水蒸気)の
分解され、その分解で生じた酸素イオン化が、陽電極12
へポンピングされるため、このとき水分も陰電極13の接
続部13bから電極部13a内へ拡散し、拡散量に応じて電流
値が増大する。
When the applied voltage becomes higher than the voltage value at which the diffusion limited current value I L1 is obtained, the moisture (water vapor) in the gas to be measured is decomposed, and the oxygen ionization caused by the decomposition is caused by the positive electrode 12
Since the water is pumped, the moisture also diffuses from the connecting portion 13b of the negative electrode 13 into the electrode portion 13a at this time, and the current value increases according to the amount of diffusion.

印加電圧をさらに高くすると、電流値は水分濃度に応
じてさらに増大するが、陰電極13の接続部13bで水分の
拡散量が制限されると、それに伴って電流値も制限され
て、水分濃度に応じた拡散制限電流値IL2(第2の平坦
部F2)を示す。
When the applied voltage is further increased, the current value further increases in accordance with the water concentration, but when the diffusion amount of water is limited at the connection portion 13b of the negative electrode 13, the current value is also limited accordingly, and the water concentration increases. A diffusion limiting current value I L2 (second flat portion F2) according to the above is shown.

ここで、これらの拡散制限電流値IL1、IL2は、前述の
とおり、被測定気体中の湿度(水分濃度)に応じてそれ
ぞれ変化し、酸素濃度が一定の場合には、拡散制限電流
値IL1は湿度が高いほど少なくなり、逆に拡散制限電流
値IL2は湿度が高いほど多くなる。
Here, these diffusion limiting current values I L1 and I L2 respectively change according to the humidity (moisture concentration) in the gas to be measured as described above, and when the oxygen concentration is constant, the diffusion limiting current values I L1 and I L2 I L1 decreases as the humidity increases, and conversely the diffusion limiting current value I L2 increases as the humidity increases.

また、電極間の印加電圧を拡散制限電流値IL1の電圧
値から拡散制限電流値IL2の電圧値へ高くしたとき、拡
散制限電流値IL1から拡散制限電流値IL2へ電流値が変化
する過程で生じる変曲点Pの電流値IMは、本願発明者等
の研究および考察の結果、被測定気体の酸素濃度のみに
よって決まり、水分濃度には関係なく酸素濃度が一定の
場合には一定の値を示すことと、この値が、被測定気体
中の水分濃度が0%の乾燥状態に相当することが明らか
になった。
Further, when the high voltage applied between the electrodes from a voltage value of the diffusion limiting current I L1 to the voltage value of the diffusion limiting current value I L2, the current value is changed from the diffusion limited current value I L1 to diffusion limited current value I L2 As a result of research and consideration by the inventors of the present invention, the current value I M of the inflection point P that occurs during the process is determined only by the oxygen concentration of the gas to be measured, and when the oxygen concentration is constant regardless of the water concentration. It was revealed that a constant value was exhibited and that this value corresponded to a dry state in which the water concentration in the measured gas was 0%.

従って、使用する酸素センサ1について、予め変曲点
Pが得られる電圧値VMを求めておくと、被測定気体につ
いては、変曲点Pの電圧値VMを印加してその電流値IM
測定し、その後、電流値IMが拡散制限電流値IL1となる
第1の平坦部F1あるいは拡散制限電流値IL2となる第2
の平坦部F2の電圧値を印加して、そのときの電流値を測
定して、各電流値を比較することによって、水分濃度
(湿度)を求めることができる。
Therefore, when the voltage value V M at which the inflection point P is obtained is obtained in advance for the oxygen sensor 1 to be used, for the gas to be measured, the voltage value V M at the inflection point P is applied and its current value I M is measured, and then the current value I M becomes the diffusion limited current value I L1 at the first flat portion F1 or the diffusion limited current value I L2 at the second
The water concentration (humidity) can be obtained by applying the voltage value of the flat portion F2 of, the current value at that time is measured, and the current values are compared.

この場合、変曲点Pの電流値IMは、被測定気体につい
て一度測定しておけば、その後は、いずれかの平坦部に
ついて電流値を求めるだけでよいため、応答性よく水分
濃度を簡単に測定することができる。
In this case, the current value I M at the inflection point P can be measured once with respect to the gas to be measured, and then only the current value with respect to one of the flat portions can be obtained. Can be measured.

また、被測定気体の酸素濃度を変化する可能性がある
場合には、変曲点Pの電流値IMを求めてから、いずれか
の平坦部について電流値を求めるだけでよい。
Further, when there is a possibility that the oxygen concentration of the gas to be measured changes, it is only necessary to obtain the current value I M at the inflection point P and then obtain the current value for any flat portion.

また、第6図には、被測定気体中(大気)の酸素濃度
が一定の場合の、湿度変化に対する各平坦部F1、F2の電
流値IL1、IL2の特性を示す。
Further, FIG. 6 shows the characteristics of the current values I L1 and I L2 of the flat portions F1 and F2 with respect to changes in humidity when the oxygen concentration in the measured gas (atmosphere) is constant.

第6図中、実線は第1の平坦部F1における拡散制限電
流値IL1は、破線は第2の平坦部F2における拡散制限電
流値IL2を、被測定気体中(大気)の温度がそれぞれ40
℃、60℃、80℃の場合について示す。なお、一点鎖線は
変曲点Pにおける電流値IMを示す。
In FIG. 6, the solid line indicates the diffusion limiting current value I L1 in the first flat portion F1, the broken line indicates the diffusion limiting current value I L2 in the second flat portion F2, and the temperature in the gas to be measured (atmosphere) respectively. 40
It shows about the case of ℃, 60 ℃, 80 ℃. The alternate long and short dash line shows the current value I M at the inflection point P.

以上のとおり、本発明によれば、従来のように、被測
定気体を乾燥させる必要がないため、湿度測定装置の測
定系が簡略化される。また、酸素濃度が一定の場合に
は、応答性のよい湿度測定を行うことができる。さら
に、被測定気体中の酸素濃度が変化する場合にも測定系
を変更することなく簡単に対応できる。
As described above, according to the present invention, unlike the conventional case, it is not necessary to dry the gas to be measured, so that the measurement system of the humidity measuring device is simplified. Further, when the oxygen concentration is constant, it is possible to measure humidity with good responsiveness. Further, even when the oxygen concentration in the gas to be measured changes, it can be easily handled without changing the measurement system.

以上の実施例では、第1図等に示す上記の酸素センサ
1を使用したが、使用する酸素センサは第7図に示すよ
うに、酸素イオン導電板30の対向する面に陽電極31と陰
電極32をそれぞれ設け、陰電極32を微小孔33を備えた函
体34によって覆い、空隙部35への酸素拡散制限および水
蒸気拡散制限を微小孔33によって行うものや、第8図に
示すように、陰電極32を多孔質からなる函体36で覆っ
て、空隙部35への酸素拡散制限および水蒸気拡散制限を
行うものでもよい。
In the above embodiments, the oxygen sensor 1 shown in FIG. 1 and the like was used. However, as shown in FIG. 7, the oxygen sensor used is the positive electrode 31 and the negative electrode 31 on the opposite surface of the oxygen ion conductive plate 30. Electrodes 32 are respectively provided, the negative electrode 32 is covered with a box 34 having micropores 33, and oxygen diffusion and water vapor diffusion in the cavity 35 are limited by the micropores 33, as shown in FIG. Alternatively, the negative electrode 32 may be covered with a box 36 made of a porous material to limit oxygen diffusion and water vapor diffusion into the voids 35.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図はいずれも本発明方法の実施のための
第1実施例を示し、第1図は湿度測定装置の概略図、第
2図は酸素センサの斜視図、第3図は酸素センサの断面
図、第4図は本実施例のセラミックヒータの構成を示す
斜視図、第5図は第1実施例の湿度測定装置による測定
を示す電圧−電流特性図、第6図は第1実施例における
湿度に対する各平坦部の電流値特性を示す特性図、第7
図は本発明を実施するための第2実施例を示す概略図、
第8図は本発明を実施するための第3実施例を示す概略
図である。 図中、1……酸素センサ、11……酸素イオン導電板(固
体電解質)、12……陽電極、13……陰電極、13b……接
続部(気体拡散制御手段)、A……湿度測定装置。
1 to 4 each show a first embodiment for carrying out the method of the present invention. FIG. 1 is a schematic view of a humidity measuring device, FIG. 2 is a perspective view of an oxygen sensor, and FIG. FIG. 4 is a sectional view of the oxygen sensor, FIG. 4 is a perspective view showing the structure of the ceramic heater of the present embodiment, FIG. 5 is a voltage-current characteristic diagram showing the measurement by the humidity measuring apparatus of the first embodiment, and FIG. FIG. 7 is a characteristic diagram showing a current value characteristic of each flat portion with respect to humidity in one example.
FIG. 1 is a schematic diagram showing a second embodiment for carrying out the present invention,
FIG. 8 is a schematic diagram showing a third embodiment for carrying out the present invention. In the figure, 1 ... Oxygen sensor, 11 ... Oxygen ion conductive plate (solid electrolyte), 12 ... Positive electrode, 13 ... Cathode electrode, 13b ... Connection part (gas diffusion control means), A ... Humidity measurement apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多孔質体からなる一対の電極が、酸素イオ
ン導電性を有する固体電解質の表面に密着して設けられ
るとともに、気体拡散制御手段によって前記電極への気
体拡散が制限される酸素センサの前記電極間に電圧を印
加して、前記気体拡散制御手段によって制限される前記
電極間の限界電流値に基づいて被測定気体中の湿度を測
定する湿度測定方法において、 前記被測定気体中の酸素濃度に応じて制限される第1の
限界電流値と前記被測定気体中の湿度に応じて制限され
る第2の限界電流値との変曲点の電流値と、前記第1の
限界電流値と前記第2の限界電流値の少なくとも一方と
に基づいて湿度を求めることを特徴とする酸素センサを
用いた湿度測定方法。
1. An oxygen sensor in which a pair of electrodes made of a porous body are provided in close contact with the surface of a solid electrolyte having oxygen ion conductivity, and gas diffusion control means limits the gas diffusion to the electrodes. In the humidity measurement method of applying a voltage between the electrodes, to measure the humidity in the measured gas based on the limiting current value between the electrodes limited by the gas diffusion control means, A current value at an inflection point between a first limiting current value limited according to oxygen concentration and a second limiting current value limited according to humidity in the measured gas, and the first limiting current A humidity measuring method using an oxygen sensor, wherein the humidity is obtained based on a value and at least one of the second limiting current value.
【請求項2】多孔質体からなる一対の電極が、酸素イオ
ン導電性を有する固体電解質の表面に密着して設けられ
るとともに、気体拡散制御手段によって前記電極への気
体拡散が制限される酸素センサの前記電極間に電圧を印
加して、前記気体拡散制御手段によって制限される前記
電極間の限界電流値に基づいて被測定気体中の湿度を測
定する湿度測定装置において、 前記被測定気体中の酸素濃度に応じて制限される第1の
限界電流値と前記被測定気体中の湿度に応じて制限され
る第2の限界電流値との変曲点の電流値と、前記第1の
限界電流値と前記第2の限界電流値の少なくとも一方と
に基づいて湿度を求めることを特徴とする酸素センサを
用いた湿度測定装置。
2. An oxygen sensor in which a pair of electrodes made of a porous material are provided in close contact with the surface of a solid electrolyte having oxygen ion conductivity, and gas diffusion control means limits the gas diffusion to the electrodes. In the humidity measuring device for applying a voltage between the electrodes, to measure the humidity in the measured gas based on the limiting current value between the electrodes limited by the gas diffusion control means, A current value at an inflection point between a first limiting current value limited according to oxygen concentration and a second limiting current value limited according to humidity in the measured gas, and the first limiting current A humidity measuring device using an oxygen sensor, wherein the humidity is obtained based on a value and at least one of the second limiting current value.
JP63301909A 1988-11-29 1988-11-29 Humidity measuring method and humidity measuring apparatus using oxygen sensor Expired - Lifetime JPH0820411B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63301909A JPH0820411B2 (en) 1988-11-29 1988-11-29 Humidity measuring method and humidity measuring apparatus using oxygen sensor
EP89312393A EP0371774B1 (en) 1988-11-29 1989-11-29 A humidity measurement device by use of an electrochemical cell
DE68929412T DE68929412T2 (en) 1988-11-29 1989-11-29 Method for determining the reference current at zero humidity for a humidity sensor using an electrochemical cell
EP96109059A EP0737860B1 (en) 1988-11-29 1989-11-29 A method of determining a zero-humidity reference current level for an electrochemical cell humidity measurement device
DE68928441T DE68928441T2 (en) 1988-11-29 1989-11-29 A moisture sensor using an electrochemical cell
US07/896,503 US5348630A (en) 1988-11-29 1992-06-02 Method of measuring humidity using an electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301909A JPH0820411B2 (en) 1988-11-29 1988-11-29 Humidity measuring method and humidity measuring apparatus using oxygen sensor

Publications (2)

Publication Number Publication Date
JPH02147854A JPH02147854A (en) 1990-06-06
JPH0820411B2 true JPH0820411B2 (en) 1996-03-04

Family

ID=17902572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301909A Expired - Lifetime JPH0820411B2 (en) 1988-11-29 1988-11-29 Humidity measuring method and humidity measuring apparatus using oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0820411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534612B2 (en) 1998-05-18 2004-06-07 日本特殊陶業株式会社 Flat limit current sensor
US10948450B2 (en) * 2018-07-23 2021-03-16 Genmark Diagnostics, Inc. Electrochemical measurements of components in coatings

Also Published As

Publication number Publication date
JPH02147854A (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US4462890A (en) Oxygen sensing element having barrier layer between ceramic substrate and solid electrolyte layer
EP0371774B1 (en) A humidity measurement device by use of an electrochemical cell
JPS6151555A (en) Electrochemical device
JP2857229B2 (en) Humidity measurement method using oxygen sensor
JPH08122287A (en) Measuring device and method of concentration of gas component
JP3835022B2 (en) Gas sensor element
US4947125A (en) Method and device for determining oxygen in gases
JPH0820411B2 (en) Humidity measuring method and humidity measuring apparatus using oxygen sensor
JP3094067B2 (en) Electrochemical element processing method
JP4099391B2 (en) Heating device
JP3589384B2 (en) Carbon monoxide sensor and its aging method
US7244316B2 (en) Methods of making gas sensors and sensors formed therefrom
JPH02147853A (en) Sensor for detecting concentration of gas
JP3943262B2 (en) NOx gas concentration measuring apparatus and NOx gas concentration measuring method
JP3529567B2 (en) Gas sensor
JPH1144671A (en) Gas sensor
JP3105959B2 (en) Gas concentration sensor
JPH079081Y2 (en) Limiting current type oxygen sensor
JPH0664005B2 (en) Compound gas sensor
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JPH07111414B2 (en) Oxygen sensor
JPH0616026B2 (en) Method and apparatus for measuring oxygen content of unknown gas
KR0128552Y1 (en) Thick film type three terminal gas sensor element
JPH0587773A (en) Gas sensor
JPH06160338A (en) Limiting current type gas sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13