JPH06160338A - Limiting current type gas sensor - Google Patents

Limiting current type gas sensor

Info

Publication number
JPH06160338A
JPH06160338A JP43A JP30546692A JPH06160338A JP H06160338 A JPH06160338 A JP H06160338A JP 43 A JP43 A JP 43A JP 30546692 A JP30546692 A JP 30546692A JP H06160338 A JPH06160338 A JP H06160338A
Authority
JP
Japan
Prior art keywords
electrode
gas
sensor unit
sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP3263153B2 (en
Inventor
Hideaki Yagi
秀明 八木
Keiichi Ichikawa
圭一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP30546692A priority Critical patent/JP3263153B2/en
Publication of JPH06160338A publication Critical patent/JPH06160338A/en
Application granted granted Critical
Publication of JP3263153B2 publication Critical patent/JP3263153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To replace a sensor unit at a low cost by connecting resistors electrically in series and in parallel to electrodes of the sensor unit, respectively. CONSTITUTION:A sensor unit S wherein resistors Ra and Rb are connected in series and in parallel to a cathode electrode 2 and an anode electrode 3 respectively is disposed in a gas to be measured and a voltage is impressed between sensor electrodes 23 and 33. Oxygen in the gas is pumped from the electrode 2 to the electrode 3 in accordance with the voltage V and diffused from a connecting part 22 into an electrode part 21. When the voltage impressed between the electrode 23 and the resistor Ra is set herein at a certain value, the amount of diffusion is limited in accordance with the concentration of oxygen and a current I between the electrodes 23 and 33 is also limited and becomes a diffusion control current value IL1. When the voltage V is increased further, water vapor in the gas is also diffused and limited and a diffusion control current value IL2 corresponding the concentration of the water vapor is obtained. While the concentrations of the oxygen and the water vapor are detected from these current values IL1 and IL2, however non-uniformity occurs for each unit S due to a minute difference in a gas diffusion limiting means 4. Therefore, the nonuniformity is eliminated by setting resistance values of the resistors Ra and Rb and thus the interchangeability of the unit S is established.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、限界電流式ガスセンサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type gas sensor.

【0002】[0002]

【従来の技術】限界電流式ガスセンサは、通常、酸素イ
オン良導電性を有する固体電解質板、該固体電解質板に
密着して配される多孔質の一対の電極、及び被測定ガス
の拡散を制限するガス供給制限手段を備えるセンサユニ
ットと、上記電極間に直流電圧を印加し、出力電流値が
平坦になる限界電流の大きさに基づいて、被測定ガス中
の酸素濃度や水蒸気量を検出する検出回路とを備える。
そして、センサユニットの劣化や破損等に対して、以下
の様に対処している。 (ア)センサユニットを新品に交換するとともに、検出
回路もセンサユニットに対応したものに交換する。 (イ)予め、特性の近似したセンサユニットを複数個、
選んでおき、不具合の生じたセンサユニットをこの新品
に交換する。
2. Description of the Related Art A limiting current type gas sensor usually has a solid electrolyte plate having good oxygen ion conductivity, a pair of porous electrodes arranged in close contact with the solid electrolyte plate, and diffusion of a gas to be measured is limited. DC voltage is applied between the sensor unit having the gas supply limiting means and the electrode, and the oxygen concentration and the amount of water vapor in the measured gas are detected based on the magnitude of the limiting current at which the output current value becomes flat. And a detection circuit.
The following measures are taken against deterioration and damage of the sensor unit. (A) Replace the sensor unit with a new one, and replace the detection circuit with one that is compatible with the sensor unit. (A) In advance, multiple sensor units with similar characteristics,
Select it and replace the defective sensor unit with this new one.

【0003】[0003]

【発明が解決しようとする課題】しかるに、従来の技術
は、以下の様な欠点がある。上記(ア)は、センサユニ
ットが劣化や破損する度に、検出回路を交換するか、セ
ンサ特性に合わせ再調整する必要があり、コストがかか
る。又、上記(イ)においては、特性の近似したセンサ
ユニットを製造する事は非常に難しく、手間やコストが
かかる。
However, the conventional techniques have the following drawbacks. In the case of (a), it is necessary to replace the detection circuit or readjust the sensor unit every time the sensor unit is deteriorated or damaged, which is costly. Further, in the above (a), it is very difficult to manufacture a sensor unit having similar characteristics, and it takes time and cost.

【0004】本発明の目的は、センサユニットの交換が
低コストで行える限界電流式ガスセンサの提供にある。
An object of the present invention is to provide a limiting current type gas sensor in which the sensor unit can be replaced at low cost.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為、
本発明は、酸素イオン良導電性を有する固体電解質板、
該固体電解質板に密着して配される多孔質の一対の電
極、及び電極へのガス拡散を制限するガス拡散制限手段
を備えるセンサユニットの、上記電極に対して直列及び
並列に、特性を均一化させる為の抵抗(Ra、Rb)を
電気接続し、上記電極の一端と抵抗(Ra)の他端間に
印加する直流電圧の上昇に対して抵抗(Ra)の端子電
圧が頭打ちになる限界電流値に基づいて、被測定雰囲気
中のガス濃度を測定する構成を採用した。
[Means for Solving the Problems] In order to solve the above problems,
The present invention is a solid electrolyte plate having good conductivity of oxygen ions,
A sensor unit having a pair of porous electrodes arranged in close contact with the solid electrolyte plate and gas diffusion limiting means for limiting gas diffusion to the electrodes, has uniform characteristics in series and in parallel with the electrodes. The resistances (Ra, Rb) for electrical conversion are electrically connected, and the terminal voltage of the resistance (Ra) reaches a ceiling with respect to the rise of the DC voltage applied between one end of the electrode and the other end of the resistance (Ra). A configuration is adopted in which the gas concentration in the measured atmosphere is measured based on the current value.

【0006】[0006]

【作用】センサユニットを被測定雰囲気中に配すると、
電極に位置する固体電解質板の酸素イオン導電性が高ま
る。被測定雰囲気中のガスは、一方電極内に拡散し、こ
こでイオン化されて酸素イオンとなり、電極間にかかる
電圧に応じて他方電極へポンピングされる。電極の一端
と抵抗(Ra)の他端間に印加する直流電圧を或る値に
すると、ガス拡散制限手段に拠り、一方電極内ヘの酸素
拡散量が、被測定雰囲気中のガス濃度(例えば水蒸気濃
度)に応じて決まる値で頭打ちとなり、電圧を上げても
抵抗(Ra)の端子電圧が上昇しなくなる。この抵抗
(Ra)の端子電圧の上昇が頭打ちとなる限界電流値
(端子電圧値)に基づいて被測定雰囲気中のガス濃度が
求められる。尚、抵抗(Ra、Rb)の各抵抗値を設定
する事により、ガス拡散制限手段等の相違に起因する、
センサユニット毎のガス濃度- 端子電圧特性のバラツキ
を解消する事ができる。
[Operation] When the sensor unit is placed in the atmosphere to be measured,
Oxygen ion conductivity of the solid electrolyte plate located at the electrode is enhanced. The gas in the atmosphere to be measured diffuses into one electrode, is ionized into oxygen ions, and is pumped to the other electrode according to the voltage applied between the electrodes. When the DC voltage applied between one end of the electrode and the other end of the resistance (Ra) is set to a certain value, the amount of oxygen diffusion into the electrode on the one hand depends on the gas diffusion limiting means, and the amount of oxygen diffusion into the measured atmosphere (for example, A value determined according to (water vapor concentration) reaches a peak, and the terminal voltage of the resistor (Ra) does not rise even if the voltage is increased. The gas concentration in the atmosphere to be measured is determined based on the limiting current value (terminal voltage value) at which the rise in the terminal voltage of the resistance (Ra) reaches a peak. By setting the respective resistance values of the resistors (Ra, Rb), it is caused by the difference in the gas diffusion limiting means, etc.
It is possible to eliminate variations in gas concentration-terminal voltage characteristics for each sensor unit.

【0007】[0007]

【発明の効果】抵抗(Ra、Rb)の各抵抗値を設定す
る事により、センサユニット毎のガス濃度- 端子電圧特
性のバラツキが解消でき、基準とするガス濃度- 端子電
圧特性にする事ができる。この為、例えば、基準とする
ガス濃度- 端子電圧特性となる様に抵抗値を設定した抵
抗(Ra、Rb)をセンサユニット側に組み付けたもの
を必要数、用意しておけば、センサユニットの交換が低
コストで行える。
[Effects of the Invention] By setting the resistance values of the resistors (Ra, Rb), it is possible to eliminate the variations in the gas concentration-terminal voltage characteristics for each sensor unit, and to set the reference gas concentration-terminal voltage characteristics. it can. For this reason, for example, if you prepare the required number of resistors (Ra, Rb) whose resistance values are set so that the standard gas concentration-terminal voltage characteristics are attached to the sensor unit side, Exchange can be done at low cost.

【0008】[0008]

【実施例】本発明の一実施例を図1〜図6に基づいて説
明する。図1〜図4に示す如く、限界電流式ガスセンサ
は、安定化ジルコニア板1、多孔質の陰電極2及び陽電
極3、陰電極2に対して付与されるガス拡散制限手段
4、及びセラミックヒータ5を備えるセンサユニットS
と、陰電極2及び陽電極3に対して直列及び並列に電気
接続される抵抗Ra、Rbとを具備し、本実施例では室
内の湿度を検出する。尚、抵抗Ra、Rbは、センサユ
ニットSを差し込む函体(図示せず)内に配設され、該
函体は、センサユニットSを差し込んだ状態で検出回路
の5Pのソケット(図示せず)に装着される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 4, the limiting current type gas sensor includes a stabilized zirconia plate 1, a porous negative electrode 2 and a positive electrode 3, gas diffusion limiting means 4 provided to the negative electrode 2, and a ceramic heater. Sensor unit S with 5
And resistors Ra and Rb electrically connected in series and in parallel to the negative electrode 2 and the positive electrode 3, respectively, and in this embodiment, the indoor humidity is detected. The resistors Ra and Rb are arranged inside a box (not shown) into which the sensor unit S is inserted, and the box is a 5P socket (not shown) of the detection circuit with the sensor unit S inserted. Be attached to.

【0009】安定化ジルコニア板1は、酸化ジルコニウ
ムに安定化剤として酸化イットリウムを添加固溶させた
酸素イオン良導電性の固体電解質であり、本実施例で
は、縦5mm、横7mm、厚さ0.3mmのものを使用
している。
The stabilized zirconia plate 1 is a solid electrolyte having good conductivity of oxygen ions in which zirconium oxide is added with yttrium oxide as a stabilizer to form a solid solution. In this embodiment, the length is 5 mm, the width is 7 mm, and the thickness is 0 mm. The one with a thickness of 0.3 mm is used.

【0010】安定化ジルコニア板1の上面に密着して並
設される陰電極2及び陽電極3は、夫々、電極部21、
31と通電用の接続部22、32とを備える。尚、本実
施例では、陰電極2及び陽電極3は厚み20μm、1辺
2.5mmの正方形である。
The negative electrode 2 and the positive electrode 3, which are arranged in close contact with the upper surface of the stabilized zirconia plate 1, respectively, have an electrode portion 21 and an electrode portion 21, respectively.
31 and connection parts 22 and 32 for energization. In this embodiment, the negative electrode 2 and the positive electrode 3 are squares having a thickness of 20 μm and a side of 2.5 mm.

【0011】図2に示すガス拡散制限手段4は、陰電極
2の接続部22の一部及び電極部21を覆うアルミナ多
孔質層41、被測定ガスが電極部21に直接侵入しない
様にアルミナ多孔質層41を含む電極部21の周辺を覆
うグレーズ層42、及びグレーズ層42に覆われない接
続部22の露出部により構成される。
The gas diffusion limiting means 4 shown in FIG. 2 comprises an alumina porous layer 41 covering a part of the connecting portion 22 of the negative electrode 2 and the electrode portion 21, and alumina so that the gas to be measured does not directly enter the electrode portion 21. The glaze layer 42 covers the periphery of the electrode portion 21 including the porous layer 41, and the exposed portion of the connection portion 22 not covered by the glaze layer 42.

【0012】セラミックヒータ5は、アルミナを主体と
するセラミック中にタングステンを埋設したものであ
り、通電により電極部21、31を300℃〜700℃
に局所加熱する。尚、51は通電用露出部、52は安定
化ジルコニア板1の加熱効率を上げる為の通気口であ
る。
The ceramic heater 5 is formed by burying tungsten in a ceramic mainly composed of alumina, and the electrode portions 21 and 31 are heated to 300 ° C. to 700 ° C.
Locally heat to. Incidentally, 51 is an exposed portion for energization, and 52 is a vent for increasing the heating efficiency of the stabilized zirconia plate 1.

【0013】ここで、センサユニットSの製造方法を述
べる。焼成後に安定化ジルコニア板1となるグリーンシ
ート上に、焼成後に陰電極2、陽電極3となる白金ペー
ストを印刷し、1500℃で一体焼成する。陰電極2、
陽電極3を形成した安定化ジルコニア板1上に、アルミ
ナ粉末にガラスを混ぜてなるペースト(焼成後にアルミ
ナ多孔質層41となる)を、陰電極2の接続部22の一
部及び電極部21を覆う様に塗布し、さらに、この上に
ガラス粉末(焼成後にグレーズ層42となる)を塗布
し、850℃〜900℃で焼き付け、センサ体チップを
製造する。焼成後に通気口52となる窓520を穿設し
たアルミナ96重量%のグリーンシート500の上面に
タングステンペーストでヒータパターン530を印刷
し、この上に、焼成後に通電用露出部51となる導電ペ
ースト511及び焼成後にセンサ電極23、33となる
酸化ルテニウム製ペーストを印刷した同様のグリーンシ
ート501を被せ、これを焼成一体化してセラミックヒ
ータ5を製造する(図3参照)。センサ体チップとセラ
ミックヒータ24とを、封着ガラスを用いて約800℃
で接合する。センサ電極23、33と、接続部22、3
2とをろう付けする。
Here, a method of manufacturing the sensor unit S will be described. A platinum paste, which becomes the negative electrode 2 and the positive electrode 3 after firing, is printed on the green sheet that becomes the stabilized zirconia plate 1 after firing, and integrally fired at 1500 ° C. Negative electrode 2,
On the stabilized zirconia plate 1 on which the positive electrode 3 is formed, a paste (which becomes the alumina porous layer 41 after firing) made by mixing alumina powder with glass is used as a part of the connecting portion 22 of the negative electrode 2 and the electrode portion 21. Is coated so as to cover the glass substrate, glass powder (which becomes the glaze layer 42 after firing) is further coated thereon, and baked at 850 ° C. to 900 ° C. to manufacture a sensor body chip. A heater pattern 530 is printed with a tungsten paste on the upper surface of a green sheet 500 of 96% by weight of alumina in which a window 520 to be the ventilation hole 52 is formed after firing, and a conductive paste 511 to be the exposed portion 51 for energization after firing is printed thereon. Then, a similar green sheet 501 printed with a ruthenium oxide paste that will become the sensor electrodes 23 and 33 after firing is covered, and this is fired and integrated to manufacture the ceramic heater 5 (see FIG. 3). The sensor chip and the ceramic heater 24 are sealed with sealing glass at about 800 ° C.
Join with. The sensor electrodes 23 and 33 and the connecting portions 22 and 3
Braze 2 and.

【0014】つぎに、センサユニットS単体での動作を
図5とともに説明する。センサユニットSを被測定ガス
中に配し、セラミックヒータ5に通電し、センサ電極2
3、33間に電圧を印加する。陰電極2の電極部21内
部の酸素は、イオン化されて酸素イオンとなり、被測定
ガス中の酸素は、印加電圧Vに応じ、陰電極2から陽電
極3にポンピングされる。この時、電極部21の安定化
ジルコニア板1のみ局所加熱され、接続部22の安定化
ジルコニア板1は酸素イオン導電性を示す程充分に加熱
されない為、酸素はグレーズ層42に覆われない接続部
22の露出部からグレーズ層42に覆われた電極部21
内に拡散する。ここで、センサ電極23- センサ電極3
3間に流れる電流Iは、図5に示す様に変化する。印加
電圧Vが電圧値V1 〜V2 においては、電極部21内へ
の酸素拡散量は、陰電極2のガス拡散制限手段4で制御
され、被測定ガス中の酸素濃度に応じて制限される為、
拡散量が制限され、それに伴い電流Iも制限されて拡散
制限電流値IL1となり、第1の平坦部F1となる。印加
電圧Vが拡散制限電流値IL1が得られる電圧値V2 より
さらに高くなると、被測定ガス中の水蒸気(水分)が分
解され、その分解で生じた酸素イオンが陽電極3にポン
ピングされる為、水蒸気も、グレーズ層42に覆われな
い接続部22の露出部からグレーズ層42に覆われた電
極部21内に拡散し、拡散量に応じて電流値が増大す
る。印加電圧Vをさらに高くして電圧値V3 〜V4 にす
ると電流Iは水蒸気濃度に応じてさらに増大するが、陰
電極2のガス拡散制限手段4で水蒸気の拡散量が制限さ
れ、それに伴い電流値も制限され、水蒸気濃度に応じた
拡散制限電流値IL2となり、第2の平坦部F2を示す。
ここで、センサ電極23- センサ電極33間にV1 〜V
2 の電圧を印加して拡散制限電流値IL1を測定すれば拡
散制限電流値IL1の大きさから酸素濃度が検出できる。
又、V3 〜V4 の電圧を印加して拡散制限電流値IL2
測定すれば拡散制限電流値IL2の大きさから水蒸気濃度
が検出できる。
Next, the operation of the sensor unit S alone will be described with reference to FIG. The sensor unit S is placed in the gas to be measured, the ceramic heater 5 is energized, and the sensor electrode 2
A voltage is applied between 3 and 33. Oxygen inside the electrode portion 21 of the negative electrode 2 is ionized into oxygen ions, and oxygen in the gas to be measured is pumped from the negative electrode 2 to the positive electrode 3 according to the applied voltage V. At this time, only the stabilized zirconia plate 1 of the electrode portion 21 is locally heated, and the stabilized zirconia plate 1 of the connection portion 22 is not sufficiently heated to exhibit oxygen ion conductivity. Therefore, oxygen is not covered by the glaze layer 42. The electrode part 21 covered with the glaze layer 42 from the exposed part of the part 22
Diffuse in. Here, sensor electrode 23-sensor electrode 3
The current I flowing between 3 changes as shown in FIG. When the applied voltage V is a voltage value V 1 to V 2 , the oxygen diffusion amount into the electrode portion 21 is controlled by the gas diffusion limiting means 4 of the negative electrode 2 and is limited according to the oxygen concentration in the gas to be measured. Because
The diffusion amount is limited, and accordingly, the current I is also limited to the diffusion limited current value I L1 and the first flat portion F1 is obtained. When the applied voltage V becomes higher than the voltage value V 2 at which the diffusion limiting current value I L1 is obtained, the water vapor (water content) in the measurement gas is decomposed, and the oxygen ions generated by the decomposition are pumped to the positive electrode 3. Therefore, the water vapor also diffuses from the exposed portion of the connection portion 22 which is not covered by the glaze layer 42 into the electrode portion 21 which is covered by the glaze layer 42, and the current value increases according to the amount of diffusion. When the applied voltage V is further increased to the voltage values V 3 to V 4 , the current I further increases according to the water vapor concentration, but the gas diffusion limiting means 4 of the negative electrode 2 limits the diffusion amount of the water vapor, and accordingly. The current value is also limited and becomes the diffusion limited current value I L2 according to the water vapor concentration, which indicates the second flat portion F2.
Here, V 1 to V are provided between the sensor electrode 23 and the sensor electrode 33.
When the voltage of 2 is applied and the diffusion limited current value I L1 is measured, the oxygen concentration can be detected from the magnitude of the diffusion limited current value I L1 .
If the diffusion limiting current value I L2 is measured by applying a voltage of V 3 to V 4, the water vapor concentration can be detected from the magnitude of the diffusion limiting current value I L2 .

【0015】図6に示す様に、酸素ガス濃度及び水蒸気
濃度- 拡散制限電流値IL1、IL2特性は、ガス拡散制限
手段4の微小な相違(大きさや形状)等によりセンサユ
ニットS毎にばらつく。そこで、今、あるセンサユニッ
トSの水蒸気濃度- 拡散制限電流値IL2特性を以下の式
で表わす。 IL2=a×C+b …………………… 但し、Cは水蒸気濃度、a,bは定数 そして、式で表されるセンサユニットSに対して、セ
ンサ電極23、センサ電極33に、直列及び並列に、抵
抗Ra、Rbを電気接続して、端子61- 62間に直流
電圧Eを印加し、出力電流の大きさを抵抗Raの端子電
圧に変換して検出できる様にする。
As shown in FIG. 6, the oxygen gas concentration and water vapor concentration-diffusion limiting current values I L1 and I L2 characteristics are different for each sensor unit S due to slight differences (size and shape) of the gas diffusion limiting means 4. Vary. Therefore, the water vapor concentration-diffusion limited current value I L2 characteristic of a certain sensor unit S is now expressed by the following formula. I L2 = a × C + b, where C is the water vapor concentration, a and b are constants, and the sensor unit S represented by the formula is connected in series to the sensor electrodes 23 and 33. Further, the resistors Ra and Rb are electrically connected in parallel, and the DC voltage E is applied between the terminals 61 and 62 so that the magnitude of the output current can be converted into the terminal voltage of the resistor Ra and detected.

【0016】又、全てのセンサユニットSのガス濃度-
拡散制限電流値特性(例えば、水蒸気濃度- 拡散制限電
流値IL2特性)を変換する式を以下に示す。 I’L2=A×C+B ………………… 但し、A、Bは定数 ここで、I’L2はある抵抗値を有する抵抗Ra’を流れ
る電流としている。つまり、抵抗Ra間の電位差と抵抗
Ra’間の電位差が同じになる様に、夫々、抵抗Ra、
Rbの抵抗値を決めれば、式で表される水蒸気濃度-
拡散制限電流値IL2特性を、同一の式に変換でき、水
蒸気濃度- 拡散制限電流値IL2特性が一つとなり、全て
のセンサユニットSで互換性が成立する様になる。
Further, the gas concentration of all the sensor units S-
An equation for converting the diffusion limiting current value characteristic (for example, water vapor concentration-diffusion limiting current value I L2 characteristic) is shown below. I ′ L2 = A × C + B, where A and B are constants, and I ′ L2 is a current flowing through a resistor Ra ′ having a certain resistance value. In other words, the resistors Ra and Ra 'are set so that the potential difference between the resistors Ra and Ra' are the same.
If the resistance value of Rb is determined, the water vapor concentration expressed by the formula-
The diffusion limiting current value I L2 characteristic can be converted into the same formula, and the water vapor concentration-diffusion limiting current value I L2 characteristic becomes one, and compatibility is established in all the sensor units S.

【0017】つぎに、抵抗Ra、Rbの抵抗値の設定方
法について説明する。抵抗Ra間の電位差をVout 、抵
抗Ra’間の電位差をVout ’とすると、V out 、V
out ’は、以下の式で表せる。 Vout =Ra(aC+b+i) Vout ’=Ra’(AC+B) 但し、iは抵抗Rbを流れる電流値 そして、Vout =Vout ’が成立すれば良いので、Ra
(aC+b+i)=Ra’(AC+B)となり、この式
は任意の水蒸気濃度Cで成立する。 よって、Ra=(A×Ra’)/a ……… 又、i=(a×B)/A−bと求められ、抵抗Ra間の
電位差が印加電圧Eに比べて十分に小さい場合、抵抗R
a挿入に対して、センサ電極23- センサ電極33間に
印加される電圧の変化は、拡散制限電流値IL2が得られ
るフラット領域内であるので無視でき、抵抗Rbを以下
の様に定める事ができる。 Rb≒E/i ………
Next, how to set the resistance values of the resistors Ra and Rb
The method will be explained. The potential difference between the resistors Ra is Vout,
The potential difference between anti-Ra 'is Vout’, V out, V
out′ Can be expressed by the following equation. Vout= Ra (aC + b + i) Vout′ = Ra ′ (AC + B) where i is the current value flowing through the resistor Rb and Vout= Vout′ Is satisfied, Ra
(AC + b + i) = Ra '(AC + B)
Holds at an arbitrary water vapor concentration C. Therefore, Ra = (A * Ra ') / a ... Also, i = (a * B) / Ab is obtained, and the resistance Ra
When the potential difference is sufficiently smaller than the applied voltage E, the resistance R
For insertion of a, between the sensor electrode 23 and the sensor electrode 33
The applied voltage changes according to the diffusion limiting current value IL2Is obtained
Since it is in the flat area, it can be ignored.
You can set it as follows. Rb ≒ E / i …………

【0018】本実施例の限界電流式ガスセンサは、以下
の利点を有する。 (あ)上記、式より求められる抵抗値を有する抵抗
Ra、Rbを、製造する全てのセンサユニットS毎に、
各センサユニットSを差し込む各函体内に配設し、セン
サ電極23- センサ電極33に対して直列、並列に電気
接続される様にしておけば、全てのセンサユニットS
の、水蒸気濃度- 拡散制限電流値IL2特性を均一化する
事ができる。尚、センサの交換の際、センサユニットS
と抵抗Ra、Rbを配設した函体とを同時に新品のもの
に取り替える。つまり、各センサユニットSの特性が均
一化する様にセンサユニットSを精密に製造する必要が
無く、又、拡散制限電流値IL2に基づいて水蒸気濃度を
検出する検出回路を、ユニット取り替え時に取り替える
必要がない。この為、安価に、センサを取り替える事が
できるとともに、検出精度も維持できる。 (い)センサユニットS側に直接、抵抗Ra、Rbを配
設せず、センサユニットSを差し込む函体に抵抗Ra、
Rbを配設する構成であるので、センサユニットSの製
造方法を変更する必要がない。
The limiting current type gas sensor of this embodiment has the following advantages. (A) For each of all the sensor units S to be manufactured, the resistors Ra and Rb having the resistance value obtained from the above formula are
If all the sensor units S are arranged in each box into which each sensor unit S is inserted and are electrically connected in series and in parallel to the sensor electrode 23-sensor electrode 33.
It is possible to make the water vapor concentration-diffusion limited current value I L2 characteristic uniform. When replacing the sensor, the sensor unit S
At the same time, the box having the resistors Ra and Rb is replaced with a new one. That is, it is not necessary to precisely manufacture the sensor units S so that the characteristics of the sensor units S are uniform, and the detection circuit for detecting the water vapor concentration based on the diffusion limiting current value I L2 is replaced when the units are replaced. No need. Therefore, the sensor can be replaced at low cost and the detection accuracy can be maintained. (Ii) Without directly arranging the resistors Ra and Rb on the sensor unit S side, the resistor Ra,
Since Rb is arranged, it is not necessary to change the manufacturing method of the sensor unit S.

【0019】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.限界電流式ガスセンサのセンサユニットSは、図7
に示す様に、被測定ガスの拡散を制限する微小穴43
(ガス拡散制限手段)を陰電極2側に形成した、空隙部
44を有するハウジング45を備えたものであっても良
く、図8に示す様に、被測定ガスの拡散を制限する、空
隙部44を有する多孔質のハウジング46(ガス拡散制
限手段)を陰電極2側に設けたものであっても良い。 b.限界電流式ガスセンサは、水蒸気量以外に、酸素濃
度、CO2 濃度、NO2濃度等を測定するものであって
も良い。 c.限界電流式ガスセンサを酸素ガス濃度を検出する酸
素センサとして使用しても良い。この場合、センサユニ
ットSの酸素濃度- 拡散制限電流値IL1特性を抵抗R
a、Rbの抵抗値の設定で均一化すれば良い。 d.センサユニットSに、抵抗Ra、Rbを直接、組み
付けても良い。 e.抵抗Ra、Rbを可変抵抗とし、センサユニットS
側、又は検出回路側に配設しても良い。 f.陰電極、陽電極は、固体電解質板中に埋設されてい
ても良い。
The present invention includes the following embodiments in addition to the above embodiments. a. The sensor unit S of the limiting current type gas sensor is shown in FIG.
As shown in FIG.
It is also possible to provide a housing 45 having a void portion 44 in which a (gas diffusion limiting means) is formed on the negative electrode 2 side, and as shown in FIG. 8, a void portion for limiting the diffusion of the gas to be measured. A porous housing 46 having 44 (gas diffusion limiting means) may be provided on the negative electrode 2 side. b. The limiting current type gas sensor may measure oxygen concentration, CO 2 concentration, NO 2 concentration, etc. in addition to the amount of water vapor. c. The limiting current type gas sensor may be used as an oxygen sensor for detecting the oxygen gas concentration. In this case, the oxygen concentration-diffusion limiting current value I L1 characteristic of the sensor unit S is set to the resistance R
It may be made uniform by setting the resistance values of a and Rb. d. The resistors Ra and Rb may be directly attached to the sensor unit S. e. The resistors Ra and Rb are variable resistors, and the sensor unit S
Side or the detection circuit side. f. The negative electrode and the positive electrode may be embedded in the solid electrolyte plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るセンサユニットの組み
付け図である。
FIG. 1 is an assembly diagram of a sensor unit according to an embodiment of the present invention.

【図2】そのセンサユニットの要部断面図である。FIG. 2 is a cross-sectional view of a main part of the sensor unit.

【図3】そのセンサユニットのセラミックヒータの製造
方法を説明する為の説明図である。
FIG. 3 is an explanatory diagram for explaining a method of manufacturing a ceramic heater of the sensor unit.

【図4】そのセンサユニットと抵抗との電気接続を示す
電気回路図である。
FIG. 4 is an electric circuit diagram showing electric connection between the sensor unit and a resistor.

【図5】そのセンサユニットの印加電圧- 電流特性を示
すグラフである。
FIG. 5 is a graph showing applied voltage-current characteristics of the sensor unit.

【図6】そのセンサユニットのガス濃度- 電流特性を示
すグラフである。
FIG. 6 is a graph showing gas concentration-current characteristics of the sensor unit.

【図7】本発明の他の実施例に係るセンサユニットの断
面図である。
FIG. 7 is a sectional view of a sensor unit according to another embodiment of the present invention.

【図8】本発明の他の実施例に係るセンサユニットの断
面図である。
FIG. 8 is a sectional view of a sensor unit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 安定化ジルコニア板(固体電解質板) 2 陰電極(電極) 3 陽電極(電極) 4 ガス拡散制限手段 Ra 抵抗 Rb 抵抗 S センサユニット 1 stabilized zirconia plate (solid electrolyte plate) 2 negative electrode (electrode) 3 positive electrode (electrode) 4 gas diffusion limiting means Ra resistance Rb resistance S sensor unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン良導電性を有する固体電解質
板、該固体電解質板に密着して配される多孔質の一対の
電極、及び電極へのガス拡散を制限するガス拡散制限手
段を備えるセンサユニットの、 上記電極に対して直列及び並列に、特性を均一化させる
為の抵抗(Ra、Rb)を電気接続し、 上記電極の一端と抵抗(Ra)の他端間に印加する直流
電圧の上昇に対して抵抗(Ra)の端子電圧が頭打ちに
なる限界電流値に基づいて、被測定雰囲気中のガス濃度
を測定する限界電流式ガスセンサ。
1. A sensor comprising a solid electrolyte plate having good oxygen ion conductivity, a pair of porous electrodes arranged in close contact with the solid electrolyte plate, and gas diffusion limiting means for limiting gas diffusion to the electrodes. Resistors (Ra, Rb) for equalizing the characteristics of the unit are electrically connected in series and in parallel to the electrodes, and the DC voltage applied between one end of the electrodes and the other end of the resistance (Ra). A limiting current type gas sensor for measuring a gas concentration in an atmosphere to be measured based on a limiting current value at which a terminal voltage of a resistance (Ra) reaches a peak with respect to an increase.
JP30546692A 1992-11-16 1992-11-16 Limit current type gas sensor Expired - Fee Related JP3263153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30546692A JP3263153B2 (en) 1992-11-16 1992-11-16 Limit current type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30546692A JP3263153B2 (en) 1992-11-16 1992-11-16 Limit current type gas sensor

Publications (2)

Publication Number Publication Date
JPH06160338A true JPH06160338A (en) 1994-06-07
JP3263153B2 JP3263153B2 (en) 2002-03-04

Family

ID=17945490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30546692A Expired - Fee Related JP3263153B2 (en) 1992-11-16 1992-11-16 Limit current type gas sensor

Country Status (1)

Country Link
JP (1) JP3263153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582797A (en) * 1995-03-01 1996-12-10 Andros Incorporated Sensor support subassembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582797A (en) * 1995-03-01 1996-12-10 Andros Incorporated Sensor support subassembly

Also Published As

Publication number Publication date
JP3263153B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US4697165A (en) Ceramic heater and a method of manufacturing the same
JP2535372B2 (en) Ceramic heater, electrochemical device and oxygen analyzer
EP0125069B1 (en) Electrochemical element and device including the element
JPH0786498B2 (en) Heating type oxygen sensor
US6007697A (en) Method for cleaning a limiting current type gas sensor
US20090242402A1 (en) NOx SENSOR
US4839019A (en) Oxygen sensor
EP0191627B1 (en) Electrochemical apparatus and method of manufacturing the same
JPS6126850A (en) Oxygen sensor
US5348630A (en) Method of measuring humidity using an electrochemical cell
US11047825B2 (en) Ceramic heater, sensor element, and gas sensor
JPS5965758A (en) Electrochemical device and cell
JP2857229B2 (en) Humidity measurement method using oxygen sensor
JP3263153B2 (en) Limit current type gas sensor
JP2788640B2 (en) Gas concentration detection sensor
EP0526031B1 (en) Oxygen sensor
JP3529567B2 (en) Gas sensor
JP3152698B2 (en) Gas sensor
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JPH0612528Y2 (en) Electrochemical device
JPH02147854A (en) Method and apparatus for measuring humidity by using oxygen sensor
JPS60192251A (en) Manufacture of oxygen sensor
JP3444640B2 (en) Gas sensor for water vapor and gas sensor for both oxygen and water vapor
JPH06242067A (en) Limit current type oxygen sensor and manufacture thereof
JPH03277959A (en) Gas-concentration sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees