JPH0587773A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0587773A
JPH0587773A JP3252202A JP25220291A JPH0587773A JP H0587773 A JPH0587773 A JP H0587773A JP 3252202 A JP3252202 A JP 3252202A JP 25220291 A JP25220291 A JP 25220291A JP H0587773 A JPH0587773 A JP H0587773A
Authority
JP
Japan
Prior art keywords
gas
solid electrolyte
sensor
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3252202A
Other languages
Japanese (ja)
Other versions
JP3152698B2 (en
Inventor
Hideaki Yagi
秀明 八木
Keiichi Ichikawa
圭一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP25220291A priority Critical patent/JP3152698B2/en
Publication of JPH0587773A publication Critical patent/JPH0587773A/en
Application granted granted Critical
Publication of JP3152698B2 publication Critical patent/JP3152698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gas sensor capable of measuring the concns. of at least two kinds of gases at the same time. CONSTITUTION:A gas sensor is equipped with a ceramic heater 1, the stabilized zirconia plates 2,3 fixed to the upper and rear surfaces of said heater, the anodes 21, 31 and cathodes 22, 32 embedded in the stabilized zirconia plates 2, 3 in parallel, a gas lead-out means constituted of outlets 23, 33 and a gas restricting and introducing means constituted of a gas introducing part 26 and a gas diffusion control part 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素、炭酸ガス、湿度
など、二種類以上のガス濃度を測定するガスセンサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor for measuring the concentration of two or more kinds of gases such as oxygen, carbon dioxide and humidity.

【0002】[0002]

【従来の技術】二種類のガス(例えば酸素と水蒸気)の
ガス濃度を測定する技術として以下のものが知られてい
る。 (ア)酸素濃度を酸素センサで測定し、水蒸気量を湿度
センサで測定する。 (イ)酸素センサを用い、ガス濃度に比例した限界電流
値が得られる印加電圧値を、酸素濃度を測定する時と水
蒸気量を測定する時とで変える。
2. Description of the Related Art The following techniques are known as techniques for measuring the gas concentrations of two kinds of gases (for example, oxygen and water vapor). (A) The oxygen concentration is measured with an oxygen sensor, and the amount of water vapor is measured with a humidity sensor. (A) An oxygen sensor is used, and the applied voltage value at which the limiting current value proportional to the gas concentration is obtained is changed between when the oxygen concentration is measured and when the water vapor amount is measured.

【0003】[0003]

【発明が解決しようとする課題】しかるに、上記従来の
技術は以下の様な欠点がある。前者は、二種類のセンサ
が必要でありコストがかかる。後者は、印加電圧を変え
ても収束するのに時間がかかり、リアルタイムで各ガス
のガス濃度が測定できない。本発明の目的は、少なくと
も二種類のガスのガス濃度を同時に測定することができ
るガスセンサの提供にある。
However, the above-mentioned conventional techniques have the following drawbacks. The former requires two types of sensors and is costly. The latter takes time to converge even if the applied voltage is changed, and the gas concentration of each gas cannot be measured in real time. An object of the present invention is to provide a gas sensor capable of simultaneously measuring gas concentrations of at least two kinds of gases.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する為、
本発明は、以下の構成を採用した。 (1)酸素イオン絶縁性を示す板状の電熱ヒータと、酸
素イオン良導電性を示すとともに、前記電熱ヒータの表
面及び裏面にそれぞれ固着される固体電解質板と、これ
ら固体電解質板に一組ずつ担持される、多孔質の陰電極
及び陽電極と、被測定ガスの拡散を制限する為、上記そ
れぞれの陰電極に付与されるガス制限導入手段とを備え
る。 (2)酸素イオン絶縁性を示す板状の電熱ヒータと、酸
素イオン良導電性を示すとともに、前記電熱ヒータの主
端面に固着される固体電解質板と、該固体電解質板に担
持される、多孔質の陰電極群及び陽電極と、被測定ガス
の拡散を制限する為、上記それぞれの陰電極に付与され
るガス制限導入手段とを備える。
[Means for Solving the Problems] In order to solve the above problems,
The present invention has the following configurations. (1) A plate-shaped electrothermal heater exhibiting oxygen ion insulation, a solid electrolyte plate exhibiting good oxygen ion conductivity and fixed to the front surface and the back surface of the electrothermal heater, and a pair of these solid electrolyte plates. It is provided with a porous negative electrode and a positive electrode which are carried, and a gas restriction introducing means which is provided to each of the negative electrodes in order to restrict the diffusion of the gas to be measured. (2) A plate-shaped electrothermal heater exhibiting oxygen ion insulation, a solid electrolyte plate exhibiting good oxygen ion conductivity and fixed to the main end surface of the electrothermal heater, and a porous layer carried by the solid electrolyte plate. A negative electrode group and a positive electrode of high quality, and gas limiting introduction means provided to each of the negative electrodes in order to limit the diffusion of the gas to be measured.

【0005】[0005]

【作用及び発明の効果】[Operation and effect of the invention]

(請求項1について)酸素イオン絶縁性を示す板状の電
熱ヒータの表面及び裏面に、多孔質の陰電極及び陽電極
を一組ずつ担持した、酸素イオン良導電性を示す固体電
解質板を固着し、それぞれの陰電極にガス制限導入手段
を付与している。この為、ある種類のガスのガス濃度に
比例した限界電流値が得られる電圧を一方の固体電解質
板の陰電極- 陽電極間に印加し、別の種類のガスのガス
濃度に比例した限界電流値が得られる電圧を他方の固体
電解質板の陰電極- 陽電極間に印加することが可能とな
り、ガスセンサは、同時に、二種類のガスのガス濃度が
測定できる。 (請求項2について)酸素イオン絶縁性を示す板状の電
熱ヒータの主端面に、多孔質の陰電極群及び陽電極を担
持した、酸素イオン良導電性を示す固体電解質板を固着
し、それぞれの陰電極にガス制限導入手段を付与してい
る。この為、検出したいガス種のガス濃度に比例した限
界電流値が得られる異なる電圧を固体電解質板の各陰電
極- 陽電極間に印加することが可能となり、ガスセンサ
は、同時に、二種類以上のガスのガス濃度が測定でき
る。
(Claim 1) A solid electrolyte plate having good oxygen ion conductivity, which carries a pair of porous negative electrode and positive electrode, is fixed to the front and back surfaces of a plate-shaped electric heater having oxygen ion insulation. However, a gas restriction introducing means is provided to each negative electrode. Therefore, a voltage that gives a limiting current value proportional to the gas concentration of one type of gas is applied between the negative electrode and the positive electrode of one solid electrolyte plate, and the limiting current proportional to the gas concentration of another type of gas is applied. It becomes possible to apply a voltage for obtaining a value between the negative electrode and the positive electrode of the other solid electrolyte plate, and the gas sensor can simultaneously measure the gas concentrations of two kinds of gases. (Claim 2) A solid electrolyte plate having a good conductivity of oxygen ions, which carries a porous negative electrode group and a positive electrode, is fixed to the main end surface of a plate-shaped electric heater having an oxygen ion insulating property. The negative electrode is provided with a gas restriction introducing means. For this reason, it is possible to apply different voltages that obtain a limiting current value proportional to the gas concentration of the gas type to be detected between each negative electrode and positive electrode of the solid electrolyte plate. The gas concentration of gas can be measured.

【0006】[0006]

【実施例】本発明の第1、第2実施例(請求項1に対
応)を図1〜図5に基づいて説明する。図1、図2に示
す第1実施例のガスセンサAは、酸素イオン絶縁性を示
すセラミックヒータ1と、このセラミックヒータ1の表
面及び裏面に固着される、酸素イオン良導電性を示す固
体電解質板である安定化ジルコニア板2、3と、この安
定化ジルコニア板2、3中に並べて埋設される陽電極2
1、陰電極22及び陽電極31、陰電極32と、ガス導
出手段であるガス出口穴23、33と、ガス制限導入手
段とを備える。また、図3に示す第2実施例のガスセン
サBでは、陽電極21、陰電極22及び陽電極31、陰
電極32が、安定化ジルコニア板2、3の表面に並設し
て配され、酸素イオン絶縁性を示す、アルミナを主体と
するセラミック板4、5中に埋設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention (corresponding to claim 1) will be described with reference to FIGS. The gas sensor A of the first embodiment shown in FIGS. 1 and 2 is a ceramic heater 1 having an oxygen ion insulating property, and a solid electrolyte plate having good oxygen ion conductivity and fixed to the front surface and the back surface of the ceramic heater 1. The stabilized zirconia plates 2 and 3 and the positive electrode 2 embedded side by side in the stabilized zirconia plates 2 and 3.
1, a negative electrode 22, a positive electrode 31, a negative electrode 32, gas outlet holes 23 and 33 which are gas outlet means, and gas restriction introducing means. Further, in the gas sensor B of the second embodiment shown in FIG. 3, the positive electrode 21, the negative electrode 22, the positive electrode 31, and the negative electrode 32 are arranged side by side on the surfaces of the stabilized zirconia plates 2 and 3, and oxygen is provided. It is embedded in ceramic plates 4 and 5 which are mainly composed of alumina and which show ionic insulation.

【0007】セラミックヒータ1は、図4に示す様に、
アルミナを主体とするセラミック11中にタングステン
12を埋設したものであり、白金線13、14をヒータ
ー用電源(図示せず)に接続することに拠り発熱し、陽
電極21、31及び陰電極22、32の電極部21a、
31a、22a、32aを300℃〜700℃に局所加
熱する。尚、121は発熱部、122は電極部、15は
通気口である。
The ceramic heater 1 is, as shown in FIG.
Tungsten 12 is embedded in a ceramic 11 composed mainly of alumina, and heat is generated by connecting platinum wires 13 and 14 to a heater power source (not shown), and positive electrodes 21, 31 and negative electrode 22. , 32 electrode portions 21a,
31a, 22a, and 32a are locally heated to 300 ° C to 700 ° C. In addition, 121 is a heat generating part, 122 is an electrode part, and 15 is a vent.

【0008】安定化ジルコニア板2、3は、酸化ジルコ
ニウムに、安定化剤として酸化イットリウムを添加固溶
させた固体電解質であり、本実施例では、厚さ0.3m
m、縦5mm、横23mmの大きさを呈する。なお、2
0は通気口である。
The stabilized zirconia plates 2 and 3 are solid electrolytes obtained by adding yttrium oxide as a stabilizer to zirconium oxide to form a solid solution. In this embodiment, the thickness is 0.3 m.
It has a size of m, 5 mm in length, and 23 mm in width. 2
0 is a vent.

【0009】陽電極21、31、陰電極22、32は、
多孔質の白金層(厚さ数十μm)であり、一辺約2mm
の電極部21a、31a、22a、32aと、細幅の中
間部21b、22b(以下隠れたものは一部図示しな
い)と、白金線24、25が接続される端部21c、2
2cとを有する。
The positive electrodes 21, 31 and the negative electrodes 22, 32 are
It is a porous platinum layer (thickness of several tens of μm) and is approximately 2 mm on a side.
Electrode parts 21a, 31a, 22a, 32a, narrow intermediate parts 21b, 22b (henceforth, some are not shown), and end parts 21c, 2 to which platinum wires 24, 25 are connected.
2c and.

【0010】ガス出口穴23、33は、電極部21a、
31a位置の安定化ジルコニア板2、3に穿設された穴
であり、電極部21a、31aと外部とを連通する。
尚、ガス出口穴23、33は、電極部21a、31a全
体を露出させる大きなものであっても良い。ガス制限導
入手段は、中間部22bの白金層を安定化ジルコニア板
2の外壁面に露出させたガス導入部26、及び導入した
ガスの拡散を制限するガス拡散制限部27で構成され
る。
The gas outlet holes 23 and 33 are connected to the electrode portion 21a,
It is a hole formed in the stabilized zirconia plates 2 and 3 at the position 31a and connects the electrode portions 21a and 31a to the outside.
The gas outlet holes 23 and 33 may be large so that the entire electrode portions 21a and 31a are exposed. The gas restriction introducing means is composed of a gas introduction section 26 in which the platinum layer of the intermediate section 22b is exposed on the outer wall surface of the stabilized zirconia plate 2, and a gas diffusion restriction section 27 that restricts the diffusion of the introduced gas.

【0011】つぎに、ガスセンサA、Bの製造方法(主
要部)を述べる。セラミックヒータ1は、焼成後に通気
口15となる窓を穿設したアルミナ96重量%のグリー
ンシートの上面に、タングステン製のペーストでヒータ
パターンを印刷し、端部に白金線13、14を載せた
後、同様のグリーンシートを被せ、これを焼成一体化し
て製造される(図4参照)。焼成後に通気口20となる
窓を穿設した固体電解質グリーンシート上に、焼成後、
陽電極21、陰電極22となる様に白金ペーストを印刷
し、端部に白金線24、25を載せた後、別の固体電解
質グリーンシート(ガスセンサAの場合)、又は同形の
アルミナグリーンシート(ガスセンサBの場合)を積層
し、1500℃で一体焼成してセンサ素子(図示手前
側)を製造する。同様に、焼成後に通気口となる窓を穿
設した固体電解質グリーンシート上に、焼成後に陽電極
31、陰電極32となる様に白金ペーストを印刷し、端
部に白金線を載せた後、別の固体電解質グリーンシート
(ガスセンサAの場合)、又は同形のアルミナグリーン
シート(ガスセンサBの場合)を積層し、1500℃で
一体焼成してセンサ素子(図示向こう側)を製造する。
各センサ素子は、封着ガラスを用いてセラミックヒータ
1の裏面及び表面に封着(約800℃)されガスセンサ
A、Bとなる。
Next, a manufacturing method (main part) of the gas sensors A and B will be described. In the ceramic heater 1, a heater pattern was printed with a paste made of tungsten on the upper surface of a 96 wt% alumina green sheet in which a window serving as a ventilation hole 15 was formed after firing, and platinum wires 13 and 14 were placed on the ends. After that, the same green sheet is covered, and this is sintered and integrated (see FIG. 4). After firing on the solid electrolyte green sheet in which a window serving as the vent hole 20 is formed after firing,
Platinum paste is printed so as to form the positive electrode 21 and the negative electrode 22, and the platinum wires 24 and 25 are placed on the ends, and then another solid electrolyte green sheet (in the case of the gas sensor A) or an alumina green sheet of the same shape ( Gas sensor B) is laminated and integrally fired at 1500 ° C. to manufacture a sensor element (front side in the drawing). Similarly, a platinum paste is printed so that the positive electrode 31 and the negative electrode 32 are formed after firing on the solid electrolyte green sheet having a window serving as a vent hole after firing, and platinum wires are placed on the ends, Another solid electrolyte green sheet (in the case of gas sensor A) or an alumina green sheet of the same shape (in the case of gas sensor B) is laminated and integrally fired at 1500 ° C. to manufacture a sensor element (the other side in the drawing).
Each sensor element is sealed (about 800 ° C.) on the back surface and the front surface of the ceramic heater 1 using sealing glass to become gas sensors A and B.

【0012】つぎに、ガスセンサA、Bの動作を説明す
る。ガスセンサA、Bを被測定ガス中に配し、セラミッ
クヒータ1に通電し、陽電極21- 陰電極22間、及び
陽電極31- 陰電極32間に電圧を印加する。陰電極2
2(32)の電極部22a(32a)内部の酸素は、イ
オン化されて酸素イオンとなり、被測定ガス中の酸素
は、印加電圧Vに応じ、陰電極22(32)から陽電極
21(31)にポンピングされる。この時、陰電極22
(32)では電極部22a(32a)のみ局所加熱さ
れ、ガス拡散制限部27は酸素イオン導電性を示す程充
分に加熱されない為、酸素はガス導入部26から陰電極
22(32)内に拡散する。ここで、陽電極21(3
1)- 陰電極22(32)間に流れる電流Iは、図5に
示す様に変化する。印加電圧Vが電圧値V1〜V2にお
いては、陰電極22(32)内への酸素拡散量は、陰電
極22(32)のガス導入部26で制御され、被測定ガ
ス中の酸素濃度に応じて制限される為拡散量が制限さ
れ、それに伴い電流値も制限されて拡散制限電流値IL1
となり、第1の平坦部F1となる。印加電圧Vが拡散制
限電圧値IL1が得られる電圧値V2よりさらに高くなる
(1.2V以上)と、被測定ガス中の水蒸気(水分)が
電気分解され、その分解で生じた酸素イオンが陽電極2
1(31)にポンピングされる為、水蒸気も陰電極22
(32)のガス導入部26から陰電極22(32)内へ
拡散し、拡散量に応じて電流値が増大する。印加電圧V
をさらに高くして電圧値V3〜V4にすると電流値は水
蒸気濃度に応じてさらに増大するが、陰電極22(3
2)のガス導入部26で水蒸気の拡散量が制限され、そ
れに伴い電流値も制限され、水蒸気濃度に応じた拡散制
限電流値IL2となり、第2の平坦部F2を示す。例え
ば、手前側のセンサ素子にV1〜V2の電圧を印加して
拡散制限電流値I L1を測定すれば拡散制限電流値IL1
大きさから酸素濃度が検出できる。また、同時に向こう
側のセンサ素子にV3〜V4の電圧を印加して拡散制限
電流値IL2を測定すれば拡散制限電流値IL2の大きさか
ら湿度が検出できる。
Next, the operation of the gas sensors A and B will be described.
It Place the gas sensors A and B in the gas to be measured and
Power is applied to the quater 1 and between the positive electrode 21 and the negative electrode 22, and
A voltage is applied between the positive electrode 31 and the negative electrode 32. Negative electrode 2
The oxygen inside the electrode portion 22a (32a) of 2 (32) is
Oxygen in the gas to be measured is turned on and becomes oxygen ions.
Depending on the applied voltage V, from the negative electrode 22 (32) to the positive electrode
21 (31) is pumped. At this time, the negative electrode 22
In (32), only the electrode portion 22a (32a) is locally heated.
The gas diffusion limiting portion 27 is filled to the extent that it exhibits oxygen ion conductivity.
Since it is not heated for a minute, oxygen is introduced from the gas introduction part 26 to the negative electrode
It diffuses in 22 (32). Here, the positive electrode 21 (3
1) -The current I flowing between the negative electrodes 22 (32) is shown in FIG.
It changes as shown. The applied voltage V has a voltage value V1 to V2.
Therefore, the amount of oxygen diffused into the negative electrode 22 (32) is
It is controlled by the gas introduction part 26 of the pole 22 (32),
The amount of diffusion is limited because it is limited according to the oxygen concentration in the gas.
As a result, the current value is also limited and the diffusion limit current value IL1
And becomes the first flat portion F1. Applied voltage V is diffusion controlled
Voltage limit value IL1Is higher than the obtained voltage value V2
(1.2 V or more) and the water vapor (moisture) in the measured gas
Electrolyzed and oxygen ions generated by the decomposition are positive electrode 2
Since it is pumped to 1 (31), the water vapor also becomes the negative electrode 22.
From the gas introduction portion 26 of (32) into the negative electrode 22 (32)
The current value increases in accordance with the amount of diffusion. Applied voltage V
If the voltage is further increased to V3 to V4, the current value becomes water.
Although it further increases depending on the vapor concentration, the negative electrode 22 (3
The amount of diffusion of water vapor is limited in the gas introduction section 26 of 2),
Along with this, the current value is also limited, and the diffusion control according to the water vapor concentration
Current limiting value IL2And shows the second flat portion F2. example
For example, apply a voltage of V1 to V2 to the front sensor element.
Diffusion limited current value I L1The diffusion limiting current value IL1of
The oxygen concentration can be detected from the size. Also at the same time
Limit the diffusion by applying a voltage of V3 to V4 to the sensor element on the side
Current value IL2The diffusion limiting current value IL2The size of
Humidity can be detected.

【0013】ガスセンサA、Bは、被測定ガス中の、酸
素濃度と湿度とを同時にリアルタイムで測定することが
できる。
The gas sensors A and B can simultaneously measure oxygen concentration and humidity in the gas to be measured in real time.

【0014】本発明の第3実施例(請求項1に対応)を
図6及び図7に基づいて説明する。ガスセンサCは、酸
素イオン絶縁性を示すセラミックヒータ1と、このセラ
ミックヒータ1の表面及び裏面の一部に固着される、酸
素イオン良導電性を示す固体電解質板である安定化ジル
コニア板2、3と、この安定化ジルコニア板2、3内に
並べて配設される陽電極21、陰電極22(以下、隠れ
たものは一部図示しない)と、ガス導出手段であるガス
出口穴23と、ガス制限導入手段とを備える。尚、第2
実施例の様に、二組の陽電極、陰電極が、安定化ジルコ
ニア板2、3の表面に並設され、且つ酸素イオン絶縁性
を示す、アルミナを主体とするセラミック板中に埋設さ
れている構造であっても良い。
A third embodiment of the present invention (corresponding to claim 1) will be described with reference to FIGS. 6 and 7. The gas sensor C includes a ceramic heater 1 having an oxygen ion insulating property, and stabilized zirconia plates 2 and 3 which are fixed to a part of the front surface and the back surface of the ceramic heater 1 and are solid electrolyte plates having good oxygen ion conductivity. A positive electrode 21 and a negative electrode 22 arranged side by side in the stabilized zirconia plates 2 and 3 (hereinafter, some of the hidden electrodes are not shown), a gas outlet hole 23 serving as a gas outlet, and a gas. And a restriction introducing means. The second
As in the embodiment, two sets of positive electrode and negative electrode are arranged in parallel on the surfaces of the stabilized zirconia plates 2 and 3 and embedded in a ceramic plate mainly composed of alumina and exhibiting oxygen ion insulation. It may have a structure.

【0015】セラミックヒータ1は、白金線13、14
の替わりをセラミック11表面に露出したヒータ通電用
電極131、141で行っている点以外は第1実施例の
構成と同じである。安定化ジルコニア板2、3は、第1
実施例と同一材料の固体電解質であり、本実施例のもの
は、厚さ0.3mm、縦5mm、横7mmの大きさを呈
する。陽電極21、陰電極22は、多孔質の白金層(厚
さ数十μm)であり、一辺約2mmの電極部21a、2
2aと、幅狭の接続部21d、22dとを有する。ガス
出口穴23及びガス制限導入手段の構成は、第1実施例
と同じである。
The ceramic heater 1 comprises platinum wires 13 and 14
The structure is the same as that of the first embodiment except that the heater energizing electrodes 131 and 141 exposed on the surface of the ceramic 11 are replaced. The stabilized zirconia plates 2 and 3 are the first
The solid electrolyte of the same material as that of the example, and the example of this example has a thickness of 0.3 mm, a length of 5 mm, and a width of 7 mm. The positive electrode 21 and the negative electrode 22 are porous platinum layers (thickness of several tens of μm), and the electrode portions 21 a, 2 a having a side of about 2 mm.
2a and narrow connecting portions 21d and 22d. The configurations of the gas outlet hole 23 and the gas restriction introducing means are the same as those in the first embodiment.

【0016】つぎに、ガスセンサCの製造方法(主要
部)を述べる。第1実施例に準じた方法で、タングステ
ン12の埋設、ヒータ通電用電極131、141、及び
センサ電極151、152(酸化ルテニウム)の表面膜
付けを行い、セラミックヒータ1を製造する。固体電解
質グリーンシート上に、焼成後に陽電極21、陰電極2
2となる様に白金ペーストを印刷し1500℃で一体焼
成してセンサ素子本体(図示手前側)を製造する。同様
に、図示向こう側のセンサ素子も製造する。内部の陽電
極21、陰電極22とセンサ電極151、152と電気
的導通を図る為、センサ電極151と接続部21d、及
びセンサ電極152と接続部22dと間に金ペーストを
塗布する。各センサ素子本体を、封着ガラス(図示せ
ず)を用いてセラミックヒータ1の裏面及び表面に封着
(約800℃)しガスセンサCが完成する。
Next, a manufacturing method (main part) of the gas sensor C will be described. By the method according to the first embodiment, the tungsten 12 is embedded, the heater energizing electrodes 131 and 141, and the sensor electrodes 151 and 152 (ruthenium oxide) are surface-coated to manufacture the ceramic heater 1. Positive electrode 21, negative electrode 2 after firing on the solid electrolyte green sheet
The platinum paste is printed so as to be 2, and integrally baked at 1500 ° C. to manufacture the sensor element body (front side in the drawing). Similarly, the sensor element on the other side of the drawing is also manufactured. In order to electrically connect the positive electrode 21, the negative electrode 22 and the sensor electrodes 151, 152 inside, gold paste is applied between the sensor electrode 151 and the connecting portion 21d and between the sensor electrode 152 and the connecting portion 22d. The gas sensor C is completed by sealing each sensor element body to the back surface and the front surface of the ceramic heater 1 (about 800 ° C.) using a sealing glass (not shown).

【0017】本実施例のガスセンサCも、ガスセンサ
A、Bに準じて動作し、被測定ガス中の、酸素濃度と湿
度とを同時にリアルタイムで測定することができる。本
実施例のガスセンサCは、安定化ジルコニア板2、3の
小体格化が図れるので、第1、第2実施例のものより低
コストに製造できる。
The gas sensor C of this embodiment also operates in accordance with the gas sensors A and B, and can simultaneously measure the oxygen concentration and the humidity in the gas to be measured in real time. The gas sensor C of this embodiment can be manufactured at a lower cost than those of the first and second embodiments because the stabilized zirconia plates 2 and 3 can be reduced in size.

【0018】本発明の第4、第5実施例(請求項2に対
応)を図8及び図9に基づいて説明する。図8に示す、
本発明の第4実施例のガスセンサDは、酸素イオン絶縁
性を示すセラミックヒータ1と、このセラミックヒータ
1の表面に固着される、酸素イオン良導電性を示す固体
電解質板である安定化ジルコニア板6と、この安定化ジ
ルコニア板6中に並べて埋設される陽電極61、陰電極
62、陰電極63と、ガス導出手段であるガス出口穴6
4と、ガス制限導入手段とを備える。また、図9に示す
第5実施例のガスセンサEでは、陽電極61、陰電極6
2、63が、安定化ジルコニア板6の表面に並設して配
され、酸素イオン絶縁性を示す、アルミナを主体とする
セラミック板7中に埋設されている。
Fourth and fifth embodiments of the present invention (corresponding to claim 2) will be described with reference to FIGS. 8 and 9. As shown in FIG.
The gas sensor D of the fourth embodiment of the present invention comprises a ceramic heater 1 having an oxygen ion insulating property, and a stabilized zirconia plate which is a solid electrolyte plate fixed to the surface of the ceramic heater 1 and having good oxygen ion conductivity. 6, a positive electrode 61, a negative electrode 62, a negative electrode 63, which are embedded side by side in the stabilized zirconia plate 6, and a gas outlet hole 6 which is a gas outlet means.
4 and a gas restriction introducing means. Further, in the gas sensor E of the fifth embodiment shown in FIG. 9, the positive electrode 61 and the negative electrode 6
2, 63 are arranged side by side on the surface of the stabilized zirconia plate 6, and are embedded in a ceramic plate 7 mainly composed of alumina and exhibiting oxygen ion insulation.

【0019】セラミックヒータ1は、図7品をベースに
し、これにセンサ電極161、162、163(酸化ル
テニウム)を膜付けしている。このセラミックヒータ1
は、電極部61a、62a、63aを局部加熱する。安
定化ジルコニア板6の大きさや材質は図6と同一であ
る。ガスセンサDの陽電極61、陰電極62、63は、
第1実施例に準じた方法を用いて安定化ジルコニア板6
中に埋設されている。また、ガスセンサEの陽電極6
1、陰電極62、63は、第2実施例に準じた方法を用
いてセラミック板7中に埋設されている。ガス出口穴6
4、ガス制限導入手段621、631の構成は、第1実
施例と実質同一である。
The ceramic heater 1 is based on the product shown in FIG. 7, and has sensor electrodes 161, 162, 163 (ruthenium oxide) filmed thereon. This ceramic heater 1
Locally heats the electrode portions 61a, 62a, 63a. The size and material of the stabilized zirconia plate 6 are the same as in FIG. The positive electrode 61 and the negative electrodes 62 and 63 of the gas sensor D are
Stabilized zirconia plate 6 using the method according to the first embodiment
It is buried inside. In addition, the positive electrode 6 of the gas sensor E
1. The negative electrodes 62 and 63 are embedded in the ceramic plate 7 by using the method according to the second embodiment. Gas outlet hole 6
4. The configurations of the gas restriction introducing means 621 and 631 are substantially the same as those of the first embodiment.

【0020】つぎに、ガスセンサD、Eの製造方法(主
要部)を述べる。第3実施例に準じた方法で、タングス
テン12の埋設、ヒータ通電用電極131、141、及
びセンサ電極161、162、163(酸化ルテニウ
ム)の表面膜付けを行いセラミックヒータ1を製造す
る。固体電解質グリーンシート上に、焼成後に陽電極6
1、陰電極62、63となる様に白金ペーストを印刷
し、別の固体電解質グリーンシート(ガスセンサD)、
または同形のアルミナグリーンシート(ガスセンサE)
を積層し、1500℃で一体焼成してセンサ素子を製造
する。内部の陽電極61、陰電極62、63とセンサ電
極161、162、163と電気的導通を図る為、セン
サ電極161と接続部61b、センサ電極162と接続
部62b、及びセンサ電極163と接続部63bと間
に、金ペーストを塗布する。センサ素子本体を、封着ガ
ラス(図示せず)を用いてセラミックヒータ1の表面に
封着(約800℃)しガスセンサD、Eが完成する。
Next, a manufacturing method (main part) of the gas sensors D and E will be described. By the method according to the third embodiment, the ceramic heater 1 is manufactured by embedding the tungsten 12, coating the heater energization electrodes 131, 141, and the sensor electrodes 161, 162, 163 (ruthenium oxide) on the surface. Positive electrode 6 after firing on the solid electrolyte green sheet
1. Platinum paste is printed so as to become the negative electrodes 62 and 63, and another solid electrolyte green sheet (gas sensor D),
Or same shape alumina green sheet (gas sensor E)
Are laminated and integrally fired at 1500 ° C. to manufacture a sensor element. In order to electrically connect the positive electrode 61, the negative electrodes 62, 63 and the sensor electrodes 161, 162, 163 inside, the sensor electrode 161 and the connecting portion 61b, the sensor electrode 162 and the connecting portion 62b, and the sensor electrode 163 and the connecting portion. Gold paste is applied between 63b. The sensor element body is sealed (about 800 ° C.) on the surface of the ceramic heater 1 using sealing glass (not shown), and the gas sensors D and E are completed.

【0021】センサ電極161を基準電極とし、例え
ば、センサ電極161-センサ電極163間に酸素濃度
を測定する為の電圧を印加し、センサ電極161- セン
サ電極162間に湿度を測定する為の電圧を印加するこ
とに拠り、ガスセンサD、Eも、ガスセンサA、B、C
と同様に動作し、被測定ガス中の、酸素濃度と湿度とを
同時にリアルタイムで測定することができる。本実施例
のガスセンサD、Eは、安定化ジルコニア板6の更なる
小体格化が図れる(一枚使用の為)ので、第3実施例の
ものより一層、低コストに製造できる。
The sensor electrode 161 is used as a reference electrode, for example, a voltage for measuring oxygen concentration is applied between the sensor electrode 161 and the sensor electrode 163, and a voltage for measuring humidity between the sensor electrode 161 and the sensor electrode 162. The gas sensors D, E are also connected to the gas sensors A, B, C
The same operation as described above can be performed, and the oxygen concentration and the humidity in the measured gas can be simultaneously measured in real time. The gas sensors D and E of the present embodiment can be manufactured at a lower cost than that of the third embodiment because the stabilized zirconia plate 6 can be further reduced in size (because one sheet is used).

【0022】本発明は、上記実施例以外に、つぎの実施
態様を含む。 a.請求項2の陰電極群を三以上とし、陰電極- 陽電極
間の印加電圧を各々変えて、一つのガスセンサで、三種
類以上(他にCO2 、NO2 )のガス濃度を同時に測定
できる様にしても良い。 b.請求項2において、電熱ヒータの両面に固体電解質
板を固着してガスセンサを製造しても良い。 c.固体電解質板に担持されるとは、固体電解質板の表
面(又は裏面)に密着して配される場合、及び固体電解
質板中に埋設される場合の両方を含む。 d.ガス出口穴23、33、64は、ガス制限導入手段
よりも多い流量が得られれば、大きさ及び形状は任意で
ある。
The present invention includes the following embodiments in addition to the above embodiments. a. The number of negative electrode groups according to claim 2 is three or more, and the voltage applied between the negative electrode and the positive electrode is changed, respectively, and one gas sensor can simultaneously measure the gas concentrations of three or more types (in addition to CO 2 and NO 2 ). You can do it as well. b. In the second aspect, the gas sensor may be manufactured by fixing the solid electrolyte plates on both sides of the electric heater. c. The term “supported on the solid electrolyte plate” includes both a case where the solid electrolyte plate is closely attached to the front surface (or the back surface) and a case where the solid electrolyte plate is embedded in the solid electrolyte plate. d. The gas outlet holes 23, 33, 64 may have any size and shape as long as a flow rate higher than that of the gas restriction introducing means can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るガスセンサの構造説
明図である。
FIG. 1 is a structural explanatory view of a gas sensor according to a first embodiment of the present invention.

【図2】そのガスセンサのH- H’線断面図である。FIG. 2 is a cross-sectional view of the gas sensor taken along the line H-H ′.

【図3】本発明の第2実施例に係るガスセンサの構造説
明図である。
FIG. 3 is a structural explanatory view of a gas sensor according to a second embodiment of the present invention.

【図4】第1、第2実施例に係るガスセンサのセラミッ
クヒータの構造説明図である。
FIG. 4 is a structural explanatory view of a ceramic heater of the gas sensor according to the first and second embodiments.

【図5】それらガスセンサの動作を説明する為のグラフ
である。
FIG. 5 is a graph for explaining the operation of those gas sensors.

【図6】本発明の第3実施例に係るガスセンサの構造説
明図である。
FIG. 6 is a structural explanatory view of a gas sensor according to a third embodiment of the present invention.

【図7】そのガスセンサのセラミックヒータの構造説明
図である。
FIG. 7 is a structural explanatory view of a ceramic heater of the gas sensor.

【図8】本発明の第4実施例に係るガスセンサの構造説
明図である。
FIG. 8 is a structural explanatory view of a gas sensor according to a fourth embodiment of the present invention.

【図9】本発明の第5実施例に係るガスセンサの構造説
明図である。
FIG. 9 is a structural explanatory view of a gas sensor according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A、B、C、D、E ガスセンサ 1 セラミックヒータ(電熱ヒータ) 2、3、6 安定化ジルコニア板(固体電解質板) 21、31、61 陽電極 22、32、62、63 陰電極 621、631 ガス制限導入手段 A, B, C, D, E Gas sensor 1 Ceramic heater (electrothermal heater) 2, 3, 6 Stabilized zirconia plate (solid electrolyte plate) 21, 31, 61 Positive electrode 22, 32, 62, 63 Negative electrode 621, 631 Gas restriction introduction means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン絶縁性を示す板状の電熱ヒー
タと、 酸素イオン良導電性を示すとともに、前記電熱ヒータの
表面及び裏面にそれぞれ固着される固体電解質板と、 これら固体電解質板に一組ずつ担持される、多孔質の陰
電極及び陽電極と、 被測定ガスの拡散を制限する為、上記それぞれの陰電極
に付与されるガス制限導入手段とを備えるガスセンサ。
1. A plate-shaped electrothermal heater exhibiting oxygen ion insulation, a solid electrolyte plate exhibiting good oxygen ion conductivity and fixed to a front surface and a back surface of the electrothermal heater, respectively. A gas sensor comprising a porous negative electrode and a positive electrode, which are carried in pairs, and gas limiting introduction means provided to each of the negative electrodes in order to limit the diffusion of the gas to be measured.
【請求項2】 酸素イオン絶縁性を示す板状の電熱ヒー
タと、 酸素イオン良導電性を示すとともに、前記電熱ヒータの
主端面に固着される固体電解質板と、 該固体電解質板に担持される、多孔質の陰電極群及び陽
電極と、 被測定ガスの拡散を制限する為、上記それぞれの陰電極
に付与されるガス制限導入手段とを備えるガスセンサ。
2. A plate-shaped electric heater which exhibits oxygen ion insulation, a solid electrolyte plate which exhibits good oxygen ion conductivity and is fixed to the main end surface of the electric heater, and a solid electrolyte plate which is carried by the solid electrolyte plate. A gas sensor comprising a porous negative electrode group and a positive electrode, and a gas restriction introducing means provided to each of the negative electrodes in order to restrict diffusion of a gas to be measured.
JP25220291A 1991-09-30 1991-09-30 Gas sensor Expired - Fee Related JP3152698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25220291A JP3152698B2 (en) 1991-09-30 1991-09-30 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25220291A JP3152698B2 (en) 1991-09-30 1991-09-30 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0587773A true JPH0587773A (en) 1993-04-06
JP3152698B2 JP3152698B2 (en) 2001-04-03

Family

ID=17233925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25220291A Expired - Fee Related JP3152698B2 (en) 1991-09-30 1991-09-30 Gas sensor

Country Status (1)

Country Link
JP (1) JP3152698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361258B2 (en) 1998-05-18 2008-04-22 Ngk Spark Plug Co., Ltd. Sensor element and gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361258B2 (en) 1998-05-18 2008-04-22 Ngk Spark Plug Co., Ltd. Sensor element and gas sensor

Also Published As

Publication number Publication date
JP3152698B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JPH07209244A (en) Planar type sensor element on solid electrolyte base body
JPS634660B2 (en)
JPH0684950B2 (en) Electrochemical device
JPH0786498B2 (en) Heating type oxygen sensor
JP2018169329A (en) Sensor element and gas sensor
JPS6126850A (en) Oxygen sensor
JPH09257746A (en) Method for cleaning limit current type gas sensor and gas concentration detector utilizing the same
JPS5965758A (en) Electrochemical device and cell
JP2857229B2 (en) Humidity measurement method using oxygen sensor
US5972200A (en) Method for driving a wide range air to fuel ratio sensor
JPH0587773A (en) Gas sensor
JP2788640B2 (en) Gas concentration detection sensor
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JP3263153B2 (en) Limit current type gas sensor
JP3529567B2 (en) Gas sensor
JP3010752B2 (en) Limit current type oxygen sensor
JPH06265516A (en) Oxygen/humidity sensor
JPH045562A (en) Gas concentration sensor
JPS6326565A (en) Composite gas sensor
JPH03120456A (en) Oxygen sensor
JPH0234605Y2 (en)
JPH0682418A (en) Oxygen sensor
JP3152792B2 (en) Oxygen analyzer and oxygen analysis method using the same
JPH02147854A (en) Method and apparatus for measuring humidity by using oxygen sensor
JPH02186254A (en) Oxygen sensor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees