JPH0820392A - Wing of hydrofoil craft, aircraft, etc. and method of determining optimum shape thereof - Google Patents

Wing of hydrofoil craft, aircraft, etc. and method of determining optimum shape thereof

Info

Publication number
JPH0820392A
JPH0820392A JP7123032A JP12303295A JPH0820392A JP H0820392 A JPH0820392 A JP H0820392A JP 7123032 A JP7123032 A JP 7123032A JP 12303295 A JP12303295 A JP 12303295A JP H0820392 A JPH0820392 A JP H0820392A
Authority
JP
Japan
Prior art keywords
wing
shape
wing body
aircraft
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7123032A
Other languages
Japanese (ja)
Other versions
JP2649785B2 (en
Inventor
Kye-Sik Min
季 植 閔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD Hyundai Heavy Industries Co Ltd
Original Assignee
Hyundai Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Heavy Industries Co Ltd filed Critical Hyundai Heavy Industries Co Ltd
Publication of JPH0820392A publication Critical patent/JPH0820392A/en
Application granted granted Critical
Publication of JP2649785B2 publication Critical patent/JP2649785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • B63B1/248Shape, hydrodynamic features, construction of the foil

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To make a design correction in quick response to a given situation by applying the optimum shape to a wing body by experiment, and forming the wing body into a wing cross sectional shape expressed by specific equations capable of strictly indicating the wing body shape. CONSTITUTION: The tip of a wing body 1 is set as an origin O, a coordinate axis toward the rear end of the wing body 1 is set as the x-axis, a coordinate axis perpendicular to the x-axis through the origin O is set as the y-axis, the x-coordinate and y-coordinate of the position where the thickness of the wing body 1 becomes the maximum are set as (a) and (b) respectively, and the x- coordinate and y-coordinate of the end face rear end of the wing body 1 are set as (c) and (yt ) respectively. Two front section shape factors satisfying the relation (m)×(n)=1 are set as (m) and (n), and the rear section shape factor is set as (p). The wing cross sectional shape is expressed by equations y=(b/ a) a<m> -(a-x)<m> }, where 0<=x<=a and y= (yt -a)/(c-a)}<p> +b, where a<x<=c. A wing with a large lift/drag ratio can be easily obtained by above equations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体中を運動する水中
翼船、航空機などに揚力を発生させるための揚力発生翼
に関する。更に詳しくは、揚力/抗力で定義される比を
大きくするため実験により翼本体に最適形状を与え翼本
体形状の表現を厳密に行うことができるような数式で表
される翼断面形状に形成された水中翼船、航空機等の翼
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lift generating blade for generating a lift on a hydrofoil ship, an aircraft or the like moving in a fluid. More specifically, in order to increase the ratio defined by lift / drag, an optimum shape is given to the wing body through experiments to form a wing cross-sectional shape represented by a mathematical expression so that the wing body shape can be strictly expressed. Wings of hydrofoil ships, aircraft, etc.

【0002】[0002]

【従来の技術】航空機翼、水中船翼、プロペラを構成す
るプロペラ構成翼等の推進翼の翼端面は、回転翼であれ
揚力発生翼であれ、厚さ形状とカンバーとで構成され
る。例えば、プロペラが水や空気のような不完全流体の
中で回転するとき、回転翼の前面(吸入面)とその後面
(圧力面)に対する流体速度は、相互に異なるようにな
っている。このように流体速度が異なると、ベルヌイの
定理により、前面と後面との間で圧力の差が発生する。
2. Description of the Related Art Propeller blades such as aircraft blades, underwater boat blades, and propeller-constituting blades that constitute propellers have a thickness shape and a camber, whether they are rotor blades or lift-generating blades. For example, when the propeller rotates in an imperfect fluid such as water or air, the fluid velocities with respect to the front surface (suction surface) and the rear surface (pressure surface) of the rotor blade are different from each other. When the fluid velocities are different, a pressure difference occurs between the front surface and the rear surface according to Bernui's theorem.

【0003】プロペラ・翼が推力を発生させるために
は、後面の圧力が上面即ち前面の圧力よりも大きくなら
なければならない。すなわち、上面即ち前面に対する流
体速度は下面即ち後面に対する流体速度よりも速くなけ
ればならない。
In order for propellers and blades to generate thrust, the pressure on the rear surface must be greater than the pressure on the upper surface or front surface. That is, the fluid velocity for the top or front surface must be faster than the fluid velocity for the bottom or back surface.

【0004】水平翼、回転翼が大きい揚力、推力を発生
するためには、翼周囲の圧力が下面、後面よりは上面、
前面でできるだけ低くなければならない。水中翼の場
合、このような低い圧力のために水が気化しキャビティ
ーが発生する。このように発生したキャビティーが水中
翼の全面を完全に流れ過ぎた後に崩壊・破裂する場合
は、騒音が発生するだけで翼に腐食損傷は起きないが、
キャビティーが水中翼の全面を完全に流れ過ぎる前に崩
壊・破裂する場合は、崩壊時の破裂の衝撃により翼に腐
食損傷が起きる。
In order for the horizontal blades and rotary blades to generate large lift and thrust, the pressure around the blades is lower than the upper surface, rather than the rear surface.
Must be as low as possible at the front. In the case of a hydrofoil, such low pressure vaporizes water and creates cavities. If the cavity thus generated collapses and ruptures after flowing completely over the entire surface of the hydrofoil, it will only generate noise and will not cause corrosion damage to the wing,
If the cavity collapses and bursts before it completely flows over the entire surface of the hydrofoil, the impact of the burst during the collapse causes corrosion damage to the blade.

【0005】キャビテーションは、腐食損傷を発生させ
るだけでなく推進効率を低下させる。このような弊害を
少なくするための端面形状が各国で開発され知られてい
る。米国で開発されたNACA−Seriesの端面、
オランダで開発されたB−Series端面、日本で開
発されたMAU−Seriesの端面が知られている。
[0005] Cavitation not only causes corrosion damage, but also reduces propulsion efficiency. End face shapes for reducing such adverse effects have been developed and known in various countries. NACA-Series end face developed in the United States,
B-Series end faces developed in the Netherlands and MAU-Series end faces developed in Japan are known.

【0006】[0006]

【発明が解決しようとする課題】前記公知の端面形状は
完全に固定されている。サイズを変えると形状を定める
関数が変わる。このため、翼端面の形状を素早く調整し
て翼周囲の圧力分布を調整することができない。前記公
知の翼の固定形状によれば、翼を設計し製作して剥離現
象、空洞現象が過度に発生すれば設計を修正し製作しな
おさなければならないが、与えられた状況に即時に対応
できる設計のやりなおしができないので、設計の修正、
製作のやりなおしのために時間的、経済的負担が大きい
問題点があった。
The known end face shape is completely fixed. When the size is changed, the function that determines the shape changes. Therefore, the pressure distribution around the blade cannot be adjusted by quickly adjusting the shape of the blade tip surface. According to the known fixed shape of the blade, if the blade is designed and manufactured to cause excessive peeling phenomenon and cavity phenomenon, the design must be modified and remanufactured, but it is possible to immediately respond to a given situation. I can't redo the design, so
There was a problem in that time and economic burdens were great for re-production.

【0007】本発明は、このような技術的背景に基づい
てなされたものであり、下記するような目的を達成す
る。
The present invention has been made based on such a technical background, and achieves the following objects.

【0008】本発明の目的は、与えられた状況に素早く
対応して設計修正できる可変型の数式で表現できる形状
を持った水中翼船、航空機等の翼を提供することにあ
る。
An object of the present invention is to provide a wing of a hydrofoil ship, an aircraft, or the like having a shape that can be represented by a variable mathematical expression that can be designed and modified in response to a given situation quickly.

【0009】本発明の目的は、実験で認められる最適形
状を厳密に表現できる可変型の数式で表される形状を持
った水中翼船、航空機等の翼を提供することにある。
It is an object of the present invention to provide a wing of a hydrofoil ship, an aircraft or the like having a shape represented by a variable mathematical expression capable of rigorously expressing an optimum shape recognized in an experiment.

【0010】本発明のさらに他の目的は、従来の形状と
の比較で最適な形状のパラメータを特定した数式で表さ
れる形状を持った水中翼船、航空機等の翼を提供するこ
とにある。
Still another object of the present invention is to provide a wing of a hydrofoil ship, an aircraft, or the like having a shape represented by a mathematical expression specifying an optimum shape parameter in comparison with a conventional shape. .

【0011】本発明のさらに他の目的は、与えられた状
況に対して最適な可変型の数式で表される形状を決定す
るための水中翼船、航空機等の翼の最適形状決定方法を
提供することにある。
Still another object of the present invention is to provide a method for determining an optimal shape of a wing of a hydrofoil ship, an aircraft, etc., for determining an optimal shape represented by a variable mathematical expression for a given situation. Is to do.

【0012】この最適形状決定方法は、最大厚さb、翼
幅c、最大厚さとなる位置aを変更しないで翼形状を可
変できる数式を用いて行われる。
This optimum shape determination method is performed by using a mathematical formula that can change the blade shape without changing the maximum thickness b, the blade width c, and the position a where the maximum thickness is obtained.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に次のような手段を採る。
[Means for Solving the Problems] To solve the above problems, the following means are adopted.

【0014】この発明1の水中翼船、航空機等の翼は、
翼本体の先端を原点とし翼本体の後端に向かう座標軸を
x軸とし前記原点を通り前記x軸に直交する座標軸をy
軸とし、翼本体の厚さが最大になる位置のx座標及びy
座標をそれぞれにa及びbとし、前記翼本体の後端のx
座標及びy座標をそれぞれにc及びytとし、m*n=
1を満たす2つの前方部形状指数をm、n及び後方部形
状指数をpとすると、
The wing of the hydrofoil ship, aircraft, etc. of the first invention is
The coordinate axis extending from the tip of the wing body to the rear end of the wing body is the x-axis, and the coordinate axis passing through the origin and orthogonal to the x-axis is y.
X-coordinate and y at the position where the thickness of the wing body is the maximum
The coordinates are a and b, respectively, and x at the rear end of the wing body
The coordinates and y coordinates are respectively c and yt, and m * n =
Assuming that the two front part shape indices satisfying 1 are m and n and the rear part shape index is p,

【0015】[0015]

【数1】[Equation 1]

【0016】[0016]

【数3】で表される翼断面形状に形成されている。It is formed in a blade cross-sectional shape represented by the following equation.

【0017】この発明2の水中翼船、航空機等の翼の最
適形状を決定する方法は、前記発明1の水中翼船、航空
機等の翼の最適形状を決定する方法であって、前記定数
a、b、cを固定し前記形状指数p、nの少なくとも一
方を変更して最適形状を与える形状指数p、nを決定す
る。
The method for determining the optimum shape of a wing of a hydrofoil ship, an aircraft, etc. of the invention 2 is the method of determining the optimum shape of a wing of a hydrofoil ship, an aircraft, etc. of the invention 1, wherein the constant a , B, and c are fixed, and at least one of the shape indices p and n is changed to determine the shape indices p and n that give the optimum shape.

【0018】この発明3の水中翼、航空機等の翼の最適
形状決定方法は、前記発明1の水中翼船、航空機等の翼
の最適形状を決定する方法であって、適当な前記形状指
数n、pを与え前記式を再現して翼本体を製作する第1
製作工程と、前記第1製作工程で製作した翼本体を流体
中において前記翼本体の性能試験を行う試験工程と、前
記試験に基づいて新たに前記前記形状指数n、pを定め
直して翼本体を製作する第2製作工程と前記第2製作工
程で製作した翼本体を流体中において前記翼本体の性能
試験を行う第2試験工程とからなる。
The method for determining the optimum shape of a wing of a hydrofoil or an aircraft according to a third aspect of the present invention is the method for determining the optimum shape of a wing of a hydrofoil ship or an aircraft according to the first aspect of the present invention. , The first to produce the wing body by reproducing the above equation
A manufacturing step, a test step of performing a performance test of the wing body in a fluid with the wing body manufactured in the first manufacturing step, and newly defining the shape indices n and p based on the test. And a second test step of performing a performance test of the wing body in a fluid using the wing body manufactured in the second manufacturing step.

【0019】この発明4の水中翼、航空機等の翼の最適
形状決定方法は、前記発明3において、前記定数a、
b、cを変更しないで形状指数n、pの少なくとも一方
を変更する。
The method for determining the optimum shape of a wing of a hydrofoil or an aircraft according to the fourth aspect of the present invention is the method according to the third aspect, wherein the constant a,
At least one of the shape indices n and p is changed without changing b and c.

【0020】[0020]

【作用】本発明の水中翼船、航空機等の翼及びその最適
形状決定方法は、実験で確認できる形状を厳密に再現す
る。サイズ、ディメンジョンを変更しないで最適の翼端
面形状を決定する。そのように決定した端面形状を厳密
に再現する。
The wings of hydrofoils, aircraft, etc. and the method for determining the optimum shape thereof according to the present invention exactly reproduce the shape that can be confirmed by experiments. Determine the optimal wing tip shape without changing the size and dimensions. The end face shape determined in this way is strictly reproduced.

【0021】[0021]

【実施例】【Example】

(実施例1)次に、本発明の実施例について説明する。
図1は、航空機とか水中翼船の本発明の実施例1の翼の
断面を示す断面図である。この断面形状を厳密に数式化
するために、図1に座標系が設定されている。
(Embodiment 1) Next, an embodiment of the present invention will be described.
FIG. 1 is a sectional view showing a section of a wing of an aircraft or a hydrofoil according to the first embodiment of the present invention. In order to strictly formulate this cross-sectional shape, a coordinate system is set in FIG.

【0022】直交系座標x−yの原点をOで表す。原点
Oを翼本体1の先端点とする。x軸方向に正の方向を翼
本体1の尾端方向に一致させる。y軸方向を翼本体1の
厚み方向とする。厚みが最大になる座標(x,y)を
(a,b)とする。定数a、bはともに正である。翼本
体の上面上の尾端の座標を(c、yt)で表す。翼本体
1の上端面をx−y平面で切断した翼形状線2を、一般
的に、 y=f(x) で表す。翼本体1を翼前方部3と翼後方部4とに分けて
翼形状を考察する。まず、翼前方部3について考察す
る。x=0において、翼形状線2の微分係数は発散し、
形状は全体に滑らかであり、厚さが最大になる座標
(a,b)で微分係数が零になる条件を設定する。厚さ
が最大になる位置より前方の翼前方部3の形状のパラメ
ータである形状指数として1より小さい指数nと m*n=1 となるような形状指数mを用いて、前記条件を充足する
関数は、
The origin of the Cartesian coordinates xy is represented by O. The origin O is set as the tip point of the wing body 1. The positive direction in the x-axis direction coincides with the tail end direction of the wing body 1. Let the y-axis direction be the thickness direction of the wing body 1. The coordinates (x, y) at which the thickness becomes maximum are defined as (a, b). Both constants a and b are positive. The coordinates of the tail end on the upper surface of the wing body are represented by (c, yt). The blade shape line 2 obtained by cutting the upper end surface of the blade body 1 in the xy plane is generally represented by y = f (x). The wing body 1 is divided into a wing front part 3 and a wing rear part 4, and the wing shape is considered. First, the wing front portion 3 will be considered. At x = 0, the derivative of the wing shape line 2 diverges,
A condition is set in which the shape is smooth as a whole and the derivative becomes zero at the coordinates (a, b) at which the thickness becomes maximum. The above-mentioned condition is satisfied by using an index n smaller than 1 and a shape index m such that m * n = 1 as a shape index, which is a parameter of the shape of the wing front portion 3 in front of the position where the thickness is maximum. the function is,

【0023】[0023]

【数1】で表現できる。この式を微分すると、It can be expressed by: Differentiating this equation gives

【0024】[0024]

【数2】 ここで、kは定数である。式(1)で、xにaを代入す
るとyは確かにbであり、式(2)のxに零を代入する
と微分係数dy/dxは確かに発散している。また、式
(2)のxにaを代入すると、微分係数は確かに零であ
る。
[Equation 2] Here, k is a constant. In equation (1), when a is substituted for x, y is indeed b, and when zero is substituted for x in equation (2), the differential coefficient dy / dx does diverge. When a is substituted for x in equation (2), the differential coefficient is certainly zero.

【0025】次に、翼後方部4について考察する。厚さ
が最大になる座標(a,b)位置で微分係数が零にな
り、翼前方部3の形状に連続し、尾端点の座標が(c、
yt)になる条件を翼後方部4の形状に与える。この条
件を充足する関数は、1より大きい翼後方部4の形状指
数pを用いて、
Next, the wing rear portion 4 will be considered. At the coordinates (a, b) where the thickness becomes maximum, the derivative becomes zero, the shape is continuous with the shape of the wing front part 3, and the coordinates of the tail end point are (c,
yt) is given to the shape of the wing rear part 4. A function that satisfies this condition is to use a shape index p of the wing rear portion 4 that is greater than 1 to

【0026】[0026]

【数3】で表される。この式を微分すると、It is expressed by Differentiating this equation gives

【0027】[0027]

【数4】 ここでjは定数である。式(3)のxにcを代入すると
yは確かにbであり、式(4)のxにaを代入すると、
微分係数は確かに零である。翼本体1の上端面と下端面
は、x軸に対して対称でよい。
[Equation 4] Here, j is a constant. Substituting c for x in equation (3), y is certainly b, and substituting a for x in equation (4),
The derivative is certainly zero. The upper end surface and the lower end surface of the blade body 1 may be symmetrical with respect to the x axis.

【0028】図2(a)は、n=0.2,0.4,0.
6,0.8について、翼前方部3の形状を示している。
図2のグラフで、横軸はx/cであり、縦軸はy/2b
である。図2(b)は、p=1.25,1.50,1.
75,2.00について翼後方部4の形状を示してい
る。横軸はx/cであり、縦軸はy/2bである。
FIG. 2A shows that n = 0.2, 0.4, 0.
For 6 and 0.8, the shape of the wing front part 3 is shown.
In the graph of FIG. 2, the horizontal axis is x / c, and the vertical axis is y / 2b.
Is. FIG. 2B shows that p = 1.25, 1.50, 1..
The shape of the wing rear part 4 is shown for 75 and 2.00. The horizontal axis is x / c and the vertical axis is y / 2b.

【0029】図3は、従来の翼と本発明の翼とを比較し
て示している。縦軸は、図2と異なりy/cである。横
軸は図2と同様にx/cである。世界的に現在最も多く
使用されている従来の端面形状は、長い線分の点線で示
すNACA00シリーズのNACA009の端面形状と
短い線分の点線で示すNACA66シリーズのNACA
66−009の端面形状の2つが示されている。実線
は、本発明の端面形状を示している。この端面形状は、
n=0.6、p=1.25である。
FIG. 3 shows a comparison between the conventional wing and the wing of the present invention. The vertical axis is y / c unlike FIG. The horizontal axis is x / c as in FIG. The conventional end face shapes that are currently most frequently used worldwide are the end face shape of the NACA00 series of the NACA00 series shown by the dotted line of the long line segment and the NACA66 series of the NACA66 series shown by the dotted line of the short line segment.
Two of the end face shapes 66-009 are shown. The solid line indicates the end face shape of the present invention. This end face shape is
n = 0.6 and p = 1.25.

【0030】図4は、NACA66−009の端面形状
(点線表示)と本発明のHMR1NP−009の端面形
状(実線表示)との性能を比較して示している。この比
較試験は、ドイツ国立船舶研究所HSVA(Hamburug S
hip Model Basin)における模型を用いた試験である。
図4において、左側縦軸は揚力係数(CL)と抗力係数
(10*CD)を示し、右側縦軸は比であるLIFT/
DRAG即ちCL/CDを示している。この比をL/Dと
表記する。横軸は、迎え角を示している。
FIG. 4 shows the comparison between the end face shape of NACA 66-009 (shown by a dotted line) and the end face shape of HMR1NP-009 of the present invention (shown by a solid line). This comparative test is based on the HSVA (Hamburug S
This is a test using a model in the hip model basin.
In FIG. 4, the left vertical axis shows the lift coefficient (CL) and the drag coefficient (10 * CD), and the right vertical axis is the ratio LIFT /
DRAG, that is, CL / CD. This ratio is denoted as L / D. The horizontal axis indicates the angle of attack.

【0031】図4からわかるように、本発明のL/D比
即ち揚力/抗力は、従来のそれに比較して、あらゆる迎
え角について大きい値を示している。このように、前記
研究所による試験結果から、本発明の優秀性が理解でき
る。
As can be seen from FIG. 4, the L / D ratio of the present invention, that is, the lift / drag, shows a large value at all angles of attack as compared with the conventional one. As described above, the superiority of the present invention can be understood from the test results by the laboratory.

【0032】航空機翼、水中翼船翼のサイズ、ディメン
ジョンは、ユーザーからの要望によりあらかたがほぼ自
動的に定まる。たとえば、エンジンの馬力、船体重量、
水中翼の長さ、幅などは、ユーザーの要望から自動的に
ほぼ定まる。従って、幅c、最大厚さb、最大厚さとな
る端面形状位置の座標aを設計仕様の定数とする。適当
な形状指数n及びpを一応定めて、式(1,3)で定義
する端面形状の翼本体(模型翼を含む)をNC多軸工作
機で製作する。
The sizes and dimensions of the aircraft wings and hydrofoil wings are almost automatically determined according to user requests. For example, engine horsepower, hull weight,
The length, width, etc. of the hydrofoil are almost automatically determined from the user's request. Therefore, the width c, the maximum thickness b, and the coordinates a of the end face shape position at which the thickness is the maximum are defined as constants of the design specification. Once the appropriate shape indices n and p are determined, the blade main body (including the model blade) having the end face shape defined by the equations (1, 3) is manufactured by the NC multi-axis machine tool.

【0033】このように製作した翼本体を流体中にお
き、端面状の圧力分布などの性能、図4に示す性能試験
を行う。圧力分布の異常、性能試験結果に対応して形状
指数n、pを変更する。修正後の新しい形状指数により
翼本体を再度製作する。再度製作した翼本体を用いて性
能試験を再度行う。このような再試験を少なくとも1回
行って、最適端面形状の形状指数n、pを決定する。
The wing body manufactured in this manner is placed in a fluid, and the performance such as the pressure distribution on the end face and the performance test shown in FIG. 4 are performed. The shape indices n and p are changed according to the pressure distribution abnormality and the performance test result. The wing body is manufactured again with the new shape index after the correction. A performance test is performed again using the wing body that was manufactured again. Such retesting is performed at least once to determine the shape indices n and p of the optimum end surface shape.

【0034】設計仕様の定数a、b,cを変更した後
で、前記工程即ち第1製作工程と第1試験工程と第2製
作工程と第2試験工程とからなる工程により最適形状を
決定することも最適端面形状の形状指数n、pを決定す
る工程に含まれる。
After changing the constants a, b, and c of the design specification, the optimum shape is determined by the above-mentioned steps, that is, the steps of the first manufacturing step, the first test step, the second manufacturing step, and the second test step. This is also included in the step of determining the shape indexes n and p of the optimum end face shape.

【0035】[0035]

【その他の実施例】本発明による端面形状は、水中翼
船、航空機の翼に限られず、グライダー、模型飛行機、
模型船など揚力を必要とする運動体に適用できる。ま
た、流体に対して相対的な運動体に適用され、整流板に
も適用される。最大厚さの位置を固定しないで、即ち、
数式中のa、b、cの値の1つ又は2つ、3つを変えて
形状指数n、pを決定し最適形状を求めることもでき
る。
Other Embodiments The end face shape according to the present invention is not limited to hydrofoil ships and aircraft wings, but also gliders, model airplanes,
It can be applied to moving bodies that require lift such as model ships. Moreover, it is applied to a moving body relative to a fluid, and is also applied to a current plate. Without fixing the position of the maximum thickness, that is,
It is also possible to determine the shape indices n and p by changing one, two, or three of the values of a, b, and c in the formula, and obtain the optimum shape.

【0036】[0036]

【発明の効果】この発明の水中翼船、航空機等の翼及び
その最適形状決定方法によると、同一条件下で最も大き
い揚力あるいはもっとも大きい比である揚力/抗力を得
る翼の最適形状を決定できる。本発明は、数年間の刻苦
の努力の末に世界初の同一条件下可変型翼形状の翼であ
り、水中翼にも航空機翼の設計に威力を発揮する。圧力
分布を経済的に適切に調整でき、剥離現象、空洞現象を
経済的に制御できると同時に高効率の翼を提供できると
ともに、技術先進国としての技術力を確保する効果があ
る。
According to the method for determining the wing of a hydrofoil ship, an aircraft or the like and the optimum shape thereof according to the present invention, it is possible to determine the optimum shape of the wing which obtains the largest lift or the highest lift / drag under the same conditions. . The present invention is the world's first variable-wing wing under the same conditions after several years of strenuous efforts, and it is very effective for the design of aircraft wings for hydrofoil. The pressure distribution can be adjusted economically and appropriately, the separation and cavitation phenomena can be controlled economically, and at the same time, a highly efficient wing can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の水中翼船、航空機等の翼の翼
端面形状を表現するための座標軸の設定を説明する断面
図である。
FIG. 1 is a cross-sectional view illustrating setting of coordinate axes for expressing a wing tip surface shape of a wing of a hydrofoil ship, an aircraft, or the like according to the present invention.

【図2】図2は、形状指数を変えた場合の翼端面形状を
示し、図2(a)は翼本体の前方部(先頭部)を示す断
面図、図2(b)はであり、翼本体の後方部(尾部)を
示す断面図である。
FIG. 2 is a cross-sectional view showing a front part (leading part) of a wing body when a shape index is changed; FIG. It is sectional drawing which shows the back part (tail part) of a wing main body.

【図3】図3は、本発明の端面形状と既存の端面形状と
を比較するための断面図である。
FIG. 3 is a cross-sectional view for comparing an end face shape of the present invention with an existing end face shape.

【図4】図4は、本発明の端面形状と既存の端面形状と
の特性比較を示すグラフである。
FIG. 4 is a graph showing a characteristic comparison between an end face shape of the present invention and an existing end face shape.

【符号の説明】[Explanation of symbols]

1…翼本体 2…翼形状線 3…翼前方部 4…翼後方部 1 wing body 2 wing shape line 3 wing front part 4 wing rear part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】翼本体の先端を原点とし翼本体の後端に向
かう座標軸をx軸とし前記原点を通り前記x軸に直交す
る座標軸をy軸とし、翼本体の厚さが最大になる位置の
x座標及びy座標をそれぞれにa及びbとし、前記翼本
体の端面後端のx座標及びy座標をそれぞれにc及びy
tとし、m*n=1を満たす2つの前方部形状指数を
m、n及び後方部形状指数をpとすると、 【数1】 【数3】 で表される翼断面形状に形成されている水中翼船、航空
機等の翼。
A position at which the thickness of the wing body is maximized, wherein a coordinate axis extending from the leading end of the wing body to the rear end of the wing body is defined as an x-axis and a coordinate axis passing through the origin and orthogonal to the x-axis is defined as a y-axis. X and y coordinates of the wing body are a and b, respectively, and the x and y coordinates of the rear end of the end surface of the wing body are c and y, respectively.
Assuming that t is t, two front shape indices satisfying m * n = 1 are m, and n and rear shape index are p, (Equation 3) A wing of a hydrofoil ship, aircraft, etc., having a wing cross-sectional shape represented by.
【請求項2】請求項1に記載の水中翼船、航空機等の翼
の最適形状を決定する方法であって、 前記定数a、b、cを固定し前記形状指数p、nの少な
くとも一方を変更して最適形状を与える形状指数p、n
を決定する水中翼船、航空機等の翼の最適形状を決定す
る方法。
2. The method according to claim 1, wherein the constants a, b, and c are fixed and at least one of the shape indices p, n is determined. Shape indices p, n to be changed to give optimal shape
A method for determining the optimal shape of a wing of a hydrofoil ship, aircraft, etc.
【請求項3】請求項1の水中翼船、航空機等の翼の最適
形状を決定する方法であって、 適当な前記形状指数n、pを与え前記式を再現して翼本
体を製作する第1製作工程と、 前記第1製作工程で製作した翼本体を流体中において前
記翼本体の性能試験を行う試験工程と、 前記試験に基づいて新たに前記前記形状指数n、pを定
め直して翼本体を製作する第2製作工程と前記第2製作
工程で製作した翼本体を流体中において前記翼本体の性
能試験を行う第2試験工程とからなる水中翼船、航空機
等の翼の最適形状決定方法。
3. A method for determining an optimum shape of a wing of a hydrofoil ship, an aircraft or the like according to claim 1, further comprising the step of providing said shape indices n and p and reproducing said formula to produce a wing body. 1 manufacturing step; a test step of performing a performance test of the wing body in the fluid with the wing body manufactured in the first manufacturing step; and newly determining the shape indices n and p based on the test. Determination of the optimal shape of a wing of a hydrofoil ship, aircraft, etc., comprising a second manufacturing step of manufacturing a main body and a second test step of performing a performance test of the wing main body in a fluid with the wing main body manufactured in the second manufacturing step. Method.
【請求項4】請求項3において、 前記定数a、b、cを変更しないで形状指数n、pの少
なくとも一方を変更する水中翼船、航空機等の翼の最適
形状決定方法。
4. The method according to claim 3, wherein at least one of the shape indices n and p is changed without changing the constants a, b and c.
JP7123032A 1994-07-07 1995-04-25 Wing of hydrofoil ship, aircraft, etc. and method for determining its optimum shape Expired - Fee Related JP2649785B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019940016334A KR960004160A (en) 1994-07-07 1994-07-07 Hydrofoil and wing of aircraft
KR1994P16334 1994-07-07

Publications (2)

Publication Number Publication Date
JPH0820392A true JPH0820392A (en) 1996-01-23
JP2649785B2 JP2649785B2 (en) 1997-09-03

Family

ID=19387515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123032A Expired - Fee Related JP2649785B2 (en) 1994-07-07 1995-04-25 Wing of hydrofoil ship, aircraft, etc. and method for determining its optimum shape

Country Status (5)

Country Link
JP (1) JP2649785B2 (en)
KR (1) KR960004160A (en)
DE (1) DE4443744C2 (en)
NL (1) NL9401971A (en)
NO (1) NO944347D0 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109495A (en) * 1962-12-18 1963-11-05 Thomas G Laug Base ventilated hydrofoil
DE1247140B (en) * 1963-07-08 1967-08-10 Supramar A G Profile for air and water wings
US3343512A (en) * 1966-05-20 1967-09-26 Francis R Rasmussen Hydrofoil with unsymmetrical nose profile
NL7101712A (en) * 1970-02-16 1971-08-18
DE2337992A1 (en) * 1973-07-24 1975-02-13 Boeing Co HYDRODYNAMIC PROFILES
GB2016397B (en) * 1978-02-02 1982-03-24 Aerospatiale Aerofoil
FR2427249A1 (en) * 1978-05-29 1979-12-28 Aerospatiale SAIL PROFILE FOR AIRCRAFT
US5046444A (en) * 1990-04-10 1991-09-10 Michigan Wheel Corp. Base vented subcavitating hydrofoil section
US5252381A (en) * 1992-06-18 1993-10-12 Adler Alan John Airfoil with thick trailing edge

Also Published As

Publication number Publication date
JP2649785B2 (en) 1997-09-03
DE4443744C2 (en) 2001-03-15
NL9401971A (en) 1996-02-01
DE4443744A1 (en) 1996-01-18
NO944347D0 (en) 1994-11-15
KR960004160A (en) 1996-02-23

Similar Documents

Publication Publication Date Title
EP0236409B1 (en) Foil
EP3507461B1 (en) Biomimetic airfoil bodies and methods of designing and making same
US8122840B2 (en) Transom stern hull form and appendages for improved hydrodynamics
US5551369A (en) Dualcavitating hydrofoil structures
CA1243993A (en) Helicopter rotor blade
US5601047A (en) Dualcavitating hydrofoil structures for multi-speed applications
WO2005082710A1 (en) Lifting foil
US5415122A (en) Twisted rudder for a vessel
US5456200A (en) Rudder for reduced cavitation
US5252381A (en) Airfoil with thick trailing edge
JP2649786B2 (en) Propeller and method for determining its optimum shape
US5022337A (en) Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same
Tulin et al. Theory of high-speed displacement ships with transom sterns
JP2649785B2 (en) Wing of hydrofoil ship, aircraft, etc. and method for determining its optimum shape
Johnson Jr The influence of depth of submersion, aspect ratio, and thickness on supercavitating hydrofoils operating at zero cavitation number
CN116278554A (en) Cross-medium aircraft
EP0459076B1 (en) Stable racing catermaran with hydrofoil qualities
JP4486249B2 (en) High performance airfoil for blades
JPH0541120Y2 (en)
Voros et al. Engineering of power boat propellers
Greenhalgh et al. Aerodynamic characteristics of a flexible membrane wing
van Oossanen A method for minimizing the occurrence of cavitation on propellers in a wake
US6694907B1 (en) Sailboat hull and method for reducing drag caused by leeway
Vacanti Keel and rudder design
JP3241479B2 (en) High-speed ship flap rudder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees