JPH08203838A - Manufacture of compound semiconductor - Google Patents

Manufacture of compound semiconductor

Info

Publication number
JPH08203838A
JPH08203838A JP1000395A JP1000395A JPH08203838A JP H08203838 A JPH08203838 A JP H08203838A JP 1000395 A JP1000395 A JP 1000395A JP 1000395 A JP1000395 A JP 1000395A JP H08203838 A JPH08203838 A JP H08203838A
Authority
JP
Japan
Prior art keywords
growth
solution
temperature
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1000395A
Other languages
Japanese (ja)
Inventor
Kazuhisa Matsuda
和久 松田
Haruhiko Oku
治彦 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP1000395A priority Critical patent/JPH08203838A/en
Publication of JPH08203838A publication Critical patent/JPH08203838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To lighten the limitation on the thickness of an epitaxial growth layer, expand a thickness adjusting range of the growth layer, and lessen the decline of a compositional ratio of a salute along with the growth of the layer by raising a temperature at least once during the lowering of the temperature. CONSTITUTION: A solution for growth 9 is heated to an equilibrium temperature of about 920 deg.C and then is maintained at that temperature for about 60 minutes. Then, a slider 3 is operated to supply the solution from a supply vessel 4 to a growth vessel 1. Immediately after a space between substrates 7 and 8 is filled with the solution, the solution is cooled at a cooling speed 1 deg.C/min for about 60 minutes. During the lowering of the temperature, the solution is heated at a heating speed of 5 deg.C/min for about four minutes. This cooling and heating cycle is repeated four times more. When the solution is cooled down at a cooling speed of 1 deg.C/min to about 600 deg.C, a slider 5 is operated to collect the solution for growth 9 in the growth vessel 1 into an exhaust vessel 6, when the crystal growth is finished. By this method, a variation in a compositional ratio of compound semiconductors can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液相エピタキシャル成
長による化合物半導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor by liquid phase epitaxial growth.

【0002】[0002]

【従来の技術】従来、この種の製造方法としては、例え
ばAlGaAs混晶を形成する場合、図3に示すよう
に、GaAs基板11,11をそれぞれ治具12の上下
に対向配置し、該基板11,11間に900℃程度のA
l−Ga−As成長用溶液(Gaを溶媒とし、溶質に単
結晶GaAs、Al等を溶解した溶液)13を介在させ
て上記Al−Ga−As溶液13を700℃程度まで、
途中昇温することなく、一定の冷却速度で降温するか又
は2種の冷却速度で段階的に降温して、上記基板11,
11の対向する表面にAlGaAsエピタキシャル層を
成長させる方法が一般的である。このときエピタキシャ
ル層の成長量(成長膜厚)dは、図4及び図5に示すよ
うに、対向配置する上記基板11,11間に介在する成
長用溶液の厚み(溶液厚)Dと、上記成長用溶液13の
冷却速度Vに依存する。上記溶液厚Dを厚くするにつれ
て成長膜厚dは略直線的に増加し、やがて頭打ちとな
る。また、上記冷却速度Vを高くするに従って成長膜厚
dは減少する。
2. Description of the Related Art Conventionally, as a manufacturing method of this type, for example, when forming an AlGaAs mixed crystal, as shown in FIG. Between 11 and 11, A of about 900 ℃
l-Ga-As growth solution (solution in which Ga is a solvent and single crystal GaAs, Al, etc. are dissolved in a solute) 13 is interposed, and the Al-Ga-As solution 13 is heated to about 700 ° C.
Without raising the temperature on the way, the temperature is lowered at a constant cooling rate, or the temperature is gradually lowered at two types of cooling rates, and the substrate 11,
A common method is to grow AlGaAs epitaxial layers on the 11 facing surfaces. At this time, the growth amount (growth film thickness) d of the epitaxial layer is, as shown in FIG. 4 and FIG. 5, the thickness (solution thickness) D of the growth solution interposed between the substrates 11 and 11 facing each other, and It depends on the cooling rate V of the growth solution 13. As the solution thickness D is increased, the grown film thickness d increases substantially linearly, and eventually reaches the ceiling. Further, as the cooling rate V is increased, the grown film thickness d decreases.

【0003】[0003]

【発明が解決しようとする課題】従って、上記従来の方
法において、成長膜厚を厚くするべく上記溶液厚及び冷
却速度を最良に調整したとしても、上記成長膜厚を大き
くするには限界がある。具体的には、一回の成長工程
で、GaAs成長において膜厚150μm程度、溶解度
の低いAlXGa1ーXAs(x=0.7)成長においては
100μm程度が限界である。
Therefore, in the conventional method described above, even if the solution thickness and the cooling rate are optimally adjusted to increase the grown film thickness, there is a limit to increase the grown film thickness. . Specifically, the film thickness is about 150 μm for GaAs growth and about 100 μm for Al X Ga 1 -X As (x = 0.7) growth with low solubility in one growth step.

【0004】また、例えば上記AlGaAs成長におい
ては、エピタキシャル層の成長に伴いこの層に溶液中の
Alが取り込まれていき、溶液中のAlの濃度が低下し
ていくために、エピタキシャル層の成長に伴い該層中の
Alの混晶比が低くなる。このように成長したエピタキ
シャル層を用いてLEDを製造した場合、ライトエミッ
ションに係るエネルギーバンド領域の幅が狭いものとな
るのである。
Further, for example, in the above AlGaAs growth, the Al in the solution is taken into this layer as the epitaxial layer grows, and the concentration of Al in the solution decreases, so that the epitaxial layer grows. Accordingly, the mixed crystal ratio of Al in the layer becomes low. When an LED is manufactured using the epitaxial layer grown in this way, the width of the energy band region related to light emission becomes narrow.

【0005】本発明は、エピタキシャル成長層の膜厚に
対する制限を軽減し、上記成長層の膜厚の調整の範囲を
広くし得る方法を提供することを目的とする。また、本
発明は液相エピタキシャル成長による化合物半導体の製
造方法において、層成長にともなう溶質の混晶比の低下
を軽減し得る方法を提供することを目的とする。
An object of the present invention is to provide a method capable of reducing the limitation on the thickness of the epitaxial growth layer and widening the range of adjusting the thickness of the growth layer. It is another object of the present invention to provide a method for producing a compound semiconductor by liquid phase epitaxial growth, which can alleviate the decrease in the mixed crystal ratio of the solute accompanying the layer growth.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を重ねた結果、成長用溶液中、溶質
は溶媒に対する浮力により溶液の上層又は下層に移動す
るベクトルを有しており、溶質の濃度が溶液の上層で高
く下層になるにつれて低くなる又はその逆になるという
重力方向における溶質の濃度勾配が生じることに着目
し、基板を、成長用溶液を介して水平に上下配置し、上
記溶液を降温途中に昇温過程を加えながら漸次温度降下
させて基板表面にエピタキシャル層を成長させるとき
は、上記昇温時に溶液中の溶質濃度が低い側の基板表面
及び/又は基板表面に成長した層が溶解し、この溶解物
が溶媒との間の浮力による溶液の上層又は下層へと拡散
するときのベクトルにより、溶液中に存在していた上記
溶質の上方又は下方へのベクトルと相俟って、より大き
なベクトルとなり、溶液中の溶質濃度が高い側の基板へ
のエピタキシャル層の成長を促進し、得られる成長膜厚
を著しく向上できることを見いだしたのである。
As a result of intensive studies to achieve the above object, the present inventor has found that a solute in a growth solution has a vector that moves to an upper layer or a lower layer of the solution due to buoyancy of the solvent. Therefore, paying attention to the fact that there is a solute concentration gradient in the direction of gravity, in which the concentration of solute becomes higher in the upper layer of the solution and becomes lower as it goes to the lower layer, or vice versa, the substrate is moved horizontally up and down through the growth solution. When arranging and growing the epitaxial layer on the substrate surface by gradually lowering the temperature while adding a temperature raising process to the solution while lowering the temperature, the substrate surface on the side where the solute concentration in the solution is low and / or the substrate The layer that has grown on the surface dissolves, and the vector when the dissolved substance diffuses to the upper layer or the lower layer of the solution due to the buoyancy between the solvent and the above-mentioned solute existing in the solution is moved upward or downward. I vector coupled with, becomes larger vector, to promote the growth of epitaxial layers to the substrate of the solute concentration is higher side in the solution, it was found that can significantly improve the growth film thickness obtained.

【0007】即ち、本発明は、以下の製造方法に係るも
のである。 基板を、成長用溶液を介して水平に上下配置し、上
記成長用溶液を温度降下することにより上記基板表面に
エピタキシャル層を成長させる化合物半導体の製造方法
であって、上記温度降下の途中に少なくとも1回は昇温
することを特徴とする化合物半導体の製造方法。 温度降下を、降温及び昇温を繰り返しつつ漸次行う
ことを特徴とする上記に記載の方法。 成長用溶液がGa−As溶液又はAl−Ga−As
溶液であることを特徴とする上記又はに記載の製造
方法。
That is, the present invention relates to the following manufacturing method. A method for producing a compound semiconductor in which a substrate is placed horizontally above and below via a growth solution, and an epitaxial layer is grown on the substrate surface by lowering the temperature of the growth solution, at least during the temperature drop. A method for producing a compound semiconductor, which comprises raising the temperature once. The method according to the above, characterized in that the temperature is gradually decreased while repeating the temperature decrease and the temperature increase. The growth solution is a Ga-As solution or Al-Ga-As
It is a solution, The manufacturing method of the said or above characterized by the above-mentioned.

【0008】本発明において、エピタキシャル層を成長
させる基板及び成長用溶液としては、従来より液相エピ
タキシャル成長法で用いられている組み合わせのものを
特に制限なく用いることができる。具体的には、例えば
単結晶GaAs基板とGa溶媒に多結晶GaAs、Al
等を溶質とした溶液、単結晶Si基板とIn溶媒に多結
晶Siを溶質とした溶液等の組み合わせを挙げることが
できる。
In the present invention, as the substrate for growing the epitaxial layer and the growth solution, a combination conventionally used in the liquid phase epitaxial growth method can be used without particular limitation. Specifically, for example, a single crystal GaAs substrate and a Ga solvent are used for polycrystal GaAs and Al.
And so on, and a combination of a single crystal Si substrate and a solution of polycrystalline Si as a solute in an In solvent.

【0009】本発明における昇温速度としては、適宜選
択すればよいが、昇温速度が速過ぎると溶液濃度が高い
側の基板、即ち高成長させたい側の基板近傍における溶
液中の溶質が急激な温度上昇により未飽和状態となるの
で上記高成長させたい側の基板表面に成長した層の溶解
を生じることとなるので成長効率が低下するおそれがあ
り、一方遅過ぎると成長に長時間を要することになり生
産性の低下を招くこととなるので、1〜10℃/min
程度が好ましく、実用的である。また、昇温時間及び一
連の温度降下(成長操作)における昇温回数としては、
目的とする膜厚に応じて適宜選択すればよく、上記昇温
時間を長く、また昇温回数を多くすれば膜厚を厚くする
ことができる。よって、昇温時間及び昇温回数は、上記
昇温速度との関係で、全体として溶液を漸次温度降下で
きる範囲で、目的とする膜厚と生産性の見合う範囲で適
宜調整すればよい。
The temperature rising rate in the present invention may be appropriately selected. However, if the temperature rising rate is too fast, the solute in the solution near the substrate where the solution concentration is high, that is, the substrate where high growth is desired, is abrupt. Since the temperature rises to an unsaturated state, the growth of the layer grown on the surface of the substrate on which high growth is desired may be dissolved, which may lower the growth efficiency.On the other hand, if it is too slow, it takes a long time to grow. As a result, productivity is lowered, so 1 to 10 ° C./min
The degree is preferable and practical. In addition, the temperature rise time and the number of times of temperature rise in a series of temperature decrease (growth operation) are:
The thickness can be appropriately selected according to the target film thickness, and the film thickness can be increased by increasing the temperature rising time and increasing the number of times of temperature rising. Therefore, the temperature rise time and the number of times of temperature rise may be appropriately adjusted within the range in which the temperature of the solution can be gradually lowered as a whole, in the range of the target film thickness and the productivity, in relation to the above-mentioned temperature rise rate.

【0010】本発明において、上記溶液の降温及び昇温
による温度降下の軌跡パターンについても、適宜決定す
ることができ、例えば降温及び昇温を絶えず繰り返し全
体として温度降下させてもかまわないし、降温及び/又
は昇温後に一定時間一定温度を保持するようにして降温
及び昇温を繰り返し行って温度降下させてもかまわな
い。
In the present invention, the locus pattern of the temperature decrease due to the temperature decrease and the temperature increase of the solution can be appropriately determined. For example, the temperature decrease and the temperature increase may be continuously repeated to decrease the temperature as a whole. Alternatively, the temperature may be lowered by repeatedly lowering and raising the temperature so that the constant temperature is maintained for a certain period after the temperature is raised.

【0011】また、本発明における降温速度としては、
特に制限なく、液相エピタキシャルによる徐冷法におけ
る周知の範囲で行うことができる。更に、本発明により
得られるエピタキシャル成長層の膜厚及び混晶比(組成
比)は、成長用溶液中の溶質の混合比、昇温及び降温速
度、昇温及び降温時間、昇温回数等により適宜調整する
ことができる。
Further, as the temperature decreasing rate in the present invention,
Without particular limitation, it can be carried out within a well-known range in the slow cooling method by liquid phase epitaxial. Further, the film thickness and mixed crystal ratio (composition ratio) of the epitaxial growth layer obtained by the present invention are appropriately determined depending on the mixing ratio of solutes in the growth solution, the rate of temperature increase and decrease, the temperature increase and decrease time, the number of times of temperature increase, etc. Can be adjusted.

【0012】本発明における基板間隔としては、上記図
4に示したように、目的とする膜厚となるよう適当な条
件で行えばよい。
As the substrate interval in the present invention, as shown in FIG. 4, it may be carried out under appropriate conditions so as to obtain a target film thickness.

【0013】[0013]

【作用】基板を、成長用溶液を介して水平に上下配置
し、上記溶液を降温すると基板表面にエピタキシャル層
が成長し始める。このとき溶質の溶解状態における比重
が溶媒よりも小さいとき、例えばGaを溶媒としAl及
びAsを溶質とした場合、溶液の上層ほど溶質の濃度が
高いという濃度勾配が生じるために、下側の基板に比し
て上側の基板における成長量が大となる。そこで、上記
溶液の降温途中に、溶液を昇温すると、成長したエピタ
キシャル層が再び溶解し始めるが、上記溶質の濃度勾配
により溶液の上下層での溶質濃度の低い側の基板(成長
量が小の基板)における溶解量が大となり、一方溶質濃
度の高い側の基板(上記成長量が大の基板)においては
その近傍の溶液が飽和もしくは飽和に近い状態であるた
めに、成長層の溶解を極めて低減できるのである。
The substrate is placed horizontally above and below the growth solution, and when the temperature of the solution is lowered, the epitaxial layer begins to grow on the surface of the substrate. At this time, when the specific gravity of the solute in the dissolved state is smaller than that of the solvent, for example, when Ga is the solvent and Al and As are the solutes, a concentration gradient occurs in which the concentration of the solute is higher in the upper layer of the solution. In comparison with the above, the growth amount on the upper substrate is large. Therefore, when the temperature of the solution is raised while the temperature of the solution is being lowered, the grown epitaxial layer starts to dissolve again, but due to the concentration gradient of the solute, the substrate on the side where the solute concentration in the upper and lower layers of the solution is low (the growth amount is small). Of the growth layer, while the solution in the vicinity of the substrate with a high solute concentration (the above-mentioned substrate with a large growth amount) is saturated or near saturation, the dissolution of the growth layer It can be extremely reduced.

【0014】そして、再び、溶液の降温を始めると、上
記溶質濃度の高い側の基板(上記成長量が大の基板)に
おける成長が他方の基板に比して大となる。従って、上
下に配置した基板のうち溶質濃度の高い側の基板の成長
を効率よく促進させることができるのである。また、昇
温により溶質を追加させつつ、降温して成長を行えるの
で、溶質の成長層中の混晶比の低下を低減し得るのであ
る。
Then, when the temperature of the solution is lowered again, the growth on the substrate with the higher solute concentration (the substrate with the larger growth amount) becomes larger than that on the other substrate. Therefore, it is possible to efficiently promote the growth of the substrate on the higher solute concentration side among the substrates arranged above and below. Further, since the growth can be performed by lowering the temperature while adding the solute by raising the temperature, it is possible to reduce the decrease in the mixed crystal ratio in the growth layer of the solute.

【0015】[0015]

【実施例】以下実施例を示し、本発明の特徴とするとこ
ろをより詳細に説明するが、本発明がこれら実施例に限
定されることはない。第1の実施例では、LED用のA
lGaAs混晶を成長させる場合について説明する。図
1に、本実施例において使用する製造装置の概略を示
す。図中、符号gは重力方向を示す。上記製造装置にお
いて、成長槽1中に治具板2,2は水平に一定距離離間
して上下配置され、上記成長槽1上にはスライダー3を
介して成長用溶液の供給槽4が取り付けられている。上
記スライダー3は、穴3’が設けられており、上記成長
槽1の上板に設けられた穴1’と上記供給槽4の底板に
設けられた穴4’とを連通及び非連通とし得る弁機能を
備えている。また、上記成長槽1下にはスライダー5を
介して排出槽6が取り付けられている。このスライダー
5にも、上記スライダー3と同様に、穴5’により、上
記成長槽1の底板に設けられた穴1”と上記排出槽6の
上板に設けられた穴6’とを連通及び非連通とし得る弁
機能が備えられている。更に、図示しないが、これら全
体の温度を調整し得るヒータが備えられている。
EXAMPLES The features of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the first embodiment, A for LED
The case of growing an lGaAs mixed crystal will be described. FIG. 1 shows an outline of a manufacturing apparatus used in this example. In the figure, the symbol g indicates the direction of gravity. In the above-mentioned manufacturing apparatus, the jig plates 2 and 2 are horizontally arranged in the growth tank 1 at a predetermined distance apart from each other, and a growth solution supply tank 4 is mounted on the growth tank 1 via a slider 3. ing. The slider 3 is provided with a hole 3 ', and the hole 1'provided in the upper plate of the growth tank 1 and the hole 4'provided in the bottom plate of the supply tank 4 can be in communication or non-communication. It has a valve function. A discharge tank 6 is attached below the growth tank 1 via a slider 5. Similar to the slider 3, the slider 5 also has a hole 5 ′ that allows the hole 1 ″ provided in the bottom plate of the growth tank 1 and the hole 6 ′ provided in the upper plate of the discharge tank 6 to communicate with each other. A valve function capable of being disconnected is provided, and a heater (not shown) capable of adjusting the temperature of the whole is provided.

【0016】上記治具板2,2にそれぞれ種結晶となる
直径13mm程度の円盤状単結晶GaAs基板7,8を
4mm程度離間して固定する。そして、Gaを溶媒と
し、溶質としてAl及び多結晶GaAsを用い、これら
重量比Ga:Al:GaAs=100:0.6:5とし
た成長用溶液9を、図2に示すように、平衡温度920
℃程度に加熱し、これを60分程度保持した後、スライ
ダー3を操作することにより供給槽4から成長槽1中へ
供給し、上記基板7,8間を満たし、直ちに冷却速度1
℃/min程度で60分間程度冷却し、続いて加熱速度
5℃/min程度で4分間程度加熱し、この冷却及び加
熱サイクルを更に4回繰り返した。引き続き、冷却速度
1℃/min程度で600℃程度まで冷却し、スライダ
ー5を操作することにより成長槽1中の成長用溶液9を
排出槽6に回収して結晶成長を終えた。
Disc-shaped single crystal GaAs substrates 7 and 8 each having a diameter of about 13 mm and serving as seed crystals are fixed to the jig plates 2 and 2 with a distance of about 4 mm. Then, using Ga as a solvent, Al and polycrystal GaAs as solutes, and a growth solution 9 with a weight ratio of Ga: Al: GaAs = 100: 0.6: 5, an equilibrium temperature was measured as shown in FIG. 920
After heating to about 0 ° C. and holding this for about 60 minutes, the slider 3 is operated to supply the material from the supply tank 4 into the growth tank 1 to fill the space between the substrates 7 and 8 and immediately cool it at a cooling rate of 1
The mixture was cooled at a heating rate of about 5 ° C./min for about 4 minutes, and this cooling and heating cycle was repeated four more times. Subsequently, the temperature was cooled to about 600 ° C. at a cooling rate of about 1 ° C./min, and the slider 5 was operated to collect the growth solution 9 in the growth tank 1 into the discharge tank 6 to complete the crystal growth.

【0017】以上のようにして得られた上側の基板7の
表面には、膜厚200μm程度のAl0.3Ga0.7Asエ
ピタキシャル層が成長していた。また、このエピタキシ
ャル層は、成長方向におけるAlの混晶比の低下が僅か
にしか見られず、LEDの製造として用いた場合にエネ
ルギーバンド領域を広くし得る極めて優れたものであっ
た。
An Al 0.3 Ga 0.7 As epitaxial layer having a film thickness of about 200 μm was grown on the surface of the upper substrate 7 obtained as described above. Further, this epitaxial layer showed only a slight decrease in the mixed crystal ratio of Al in the growth direction, and was extremely excellent in that the energy band region could be widened when it was used for manufacturing an LED.

【0018】次に、第2の実施例としてGaAs結晶の
成長の場合について説明する。成長用溶液9を、Gaを
溶媒とし溶質として単結晶GaAsを用い、これら重量
比Ga:GaAs=20:3とした溶液を用いて、溶液
温度を920℃程度から600℃程度に降温した以外は
上記第1の実施例と同様の条件でエピタキシャル成長を
行った。
Next, the case of growing a GaAs crystal will be described as a second embodiment. The growth solution 9 was prepared by using a solution in which Ga was a solvent, single crystal GaAs was used as a solute, and the weight ratio of Ga: GaAs was 20: 3, and the solution temperature was lowered from about 920 ° C. to about 600 ° C. Epitaxial growth was performed under the same conditions as in the first embodiment.

【0019】その結果得られた上側の基板7の表面に
は、膜厚250μm程度のGaAsエピタキシャル層が
成長していた。上記第1及び第2の実施例では、成長用
溶液に不純物(ドーパント)を加えなかったが、本発明
では、例えばSi、Zn、Ge、Te等の周知のドーパ
ントを上記溶液に適宜加えて、不純物を含有させたエピ
タキシャル成長層を製造することもできる。
On the surface of the upper substrate 7 obtained as a result, a GaAs epitaxial layer having a film thickness of about 250 μm was grown. In the first and second embodiments, no impurities (dopants) were added to the growth solution, but in the present invention, well-known dopants such as Si, Zn, Ge, Te are appropriately added to the solution, It is also possible to manufacture an epitaxial growth layer containing impurities.

【0020】尚、比較例として、冷却速度0.2℃/m
inで600分間冷却し、この温度を60分間維持した
後、冷却速度0.5℃/minとして温度降下を行った
以外は上記第1の実施例と同様の条件でエピタキシャル
成長を行った。得られた上側の基板の表面に成長したA
lGaAsエピタキシャル層の膜厚は90μmでしかな
かった。
As a comparative example, the cooling rate is 0.2 ° C./m.
After cooling in for 600 minutes and maintaining this temperature for 60 minutes, epitaxial growth was performed under the same conditions as in the above-mentioned first example except that the temperature was lowered at a cooling rate of 0.5 ° C./min. A grown on the surface of the obtained upper substrate
The film thickness of the 1GaAs epitaxial layer was only 90 μm.

【0021】[0021]

【発明の効果】本発明によれば、従来の方法では得られ
なかった厚みの化合物半導体のエピタキシャル成長層を
得ることができ、設計できる成長膜厚の幅を極めて広く
し得るのである。また、本発明によれば、従来の液相エ
ピタキシャル成長法により得られる化合物半導体の化合
物の混晶比のばらつきを極めて軽減することができ、結
果得られる化合物半導体は、LED等の半導体装置の製
造において極めて有用なものである。
According to the present invention, it is possible to obtain an epitaxially grown layer of a compound semiconductor having a thickness that cannot be obtained by the conventional method, and it is possible to make the width of the grown film thickness that can be designed extremely wide. Further, according to the present invention, it is possible to significantly reduce the variation in the mixed crystal ratio of the compound of the compound semiconductor obtained by the conventional liquid phase epitaxial growth method, and the resulting compound semiconductor is used in the manufacture of semiconductor devices such as LEDs. It is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1及び第2の実施例において用いた
結晶成長装置を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a crystal growth apparatus used in first and second embodiments of the present invention.

【図2】本発明の第1の実施例における溶液の温度降下
の軌跡パターンを示す温度(T)−時間(t)グラフで
ある。
FIG. 2 is a temperature (T) -time (t) graph showing a trajectory pattern of temperature drop of a solution in the first example of the present invention.

【図3】従来の液相エピタキシャル成長方法を説明する
概略断面図である。
FIG. 3 is a schematic sectional view illustrating a conventional liquid phase epitaxial growth method.

【図4】液相エピタキシャル成長における溶液厚(D)
と成長膜厚(d)との関係を示すグラフである。
FIG. 4 Solution thickness (D) in liquid phase epitaxial growth
5 is a graph showing the relationship between the growth thickness and the grown film thickness (d).

【図5】液相エピタキシャル成長における溶液の冷却速
度(V)と成長膜厚(d)との関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between a cooling rate (V) of a solution and a grown film thickness (d) in liquid phase epitaxial growth.

【符号の説明】[Explanation of symbols]

7,8 GaAs基板 9 Al−Ga−As溶液 g 重力方向 7,8 GaAs substrate 9 Al-Ga-As solution g Gravity direction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板を、成長用溶液を介して水平に上下
配置し、上記成長用溶液を温度降下することにより上記
基板表面にエピタキシャル層を成長させる化合物半導体
の製造方法であって、 上記温度降下の途中に少なくとも1回は昇温することを
特徴とする化合物半導体の製造方法。
1. A method for producing a compound semiconductor, wherein a substrate is placed horizontally above and below via a growth solution, and the temperature of the growth solution is lowered to grow an epitaxial layer on the surface of the substrate. A method for producing a compound semiconductor, characterized in that the temperature is raised at least once during the lowering.
【請求項2】 温度降下を、降温及び昇温を繰り返しつ
つ漸次行うことを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the temperature is gradually decreased by repeating the temperature decrease and the temperature increase.
【請求項3】 成長用溶液がGa−As溶液又はAl−
Ga−As溶液であることを特徴とする請求項1又は2
に記載の製造方法。
3. The growth solution is a Ga-As solution or Al-
It is a Ga-As solution, It is characterized by the above-mentioned.
The manufacturing method described in.
JP1000395A 1995-01-25 1995-01-25 Manufacture of compound semiconductor Pending JPH08203838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1000395A JPH08203838A (en) 1995-01-25 1995-01-25 Manufacture of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1000395A JPH08203838A (en) 1995-01-25 1995-01-25 Manufacture of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH08203838A true JPH08203838A (en) 1996-08-09

Family

ID=11738250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1000395A Pending JPH08203838A (en) 1995-01-25 1995-01-25 Manufacture of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH08203838A (en)

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
US3933538A (en) Method and apparatus for production of liquid phase epitaxial layers of semiconductors
JP4489446B2 (en) Method for producing gallium-containing nitride single crystal
US4088514A (en) Method for epitaxial growth of thin semiconductor layer from solution
JPH11171699A (en) Growth of gallium nitride phosphide single crystal
CN100532658C (en) Method for producing semiconductor crystal
US4063972A (en) Method for growing epitaxial layers on multiple semiconductor wafers from liquid phase
JPH08203838A (en) Manufacture of compound semiconductor
US3981764A (en) III-V Compound semi-conductor crystal growth from a liquid phase on a substract including filtering liquid phase
US4824520A (en) Liquid encapsulated crystal growth
US6951585B2 (en) Liquid-phase growth method and liquid-phase growth apparatus
JP2008300603A (en) Semiconductor production apparatus
JP4211897B2 (en) Liquid phase epitaxial growth method
JPS626338B2 (en)
JP2537322B2 (en) Semiconductor crystal growth method
JPH0369587A (en) Liquid phase epitaxy device
JP2538009B2 (en) Liquid phase epitaxial growth method
JPS60236220A (en) Method for liquid-phase epitaxial growth
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JPH07153708A (en) Liquid phase epitaxial growth method and device
JPH08333193A (en) Production of semiconductor crystal and apparatus therefor
JP2003267794A (en) Method and apparatus for growing crystal
JPH07315984A (en) Vertical liquid phase epitaxy and device therefor
JPH04265293A (en) Method for growing liquid phase epitaxy and production device therefor
JPH0563235A (en) Manufacture of semiconductor element