JPH08203697A - Electromagnet type circularly light-polarizing device - Google Patents

Electromagnet type circularly light-polarizing device

Info

Publication number
JPH08203697A
JPH08203697A JP2880995A JP2880995A JPH08203697A JP H08203697 A JPH08203697 A JP H08203697A JP 2880995 A JP2880995 A JP 2880995A JP 2880995 A JP2880995 A JP 2880995A JP H08203697 A JPH08203697 A JP H08203697A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole portions
pair
leakage
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2880995A
Other languages
Japanese (ja)
Inventor
Nobuhisa Daito
延久 大東
Kunioki Mitsuma
圀興 三間
Kazuo Imazaki
一夫 今崎
Keisho Tsunawaki
恵章 綱脇
Shigeo Hashimoto
重生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2880995A priority Critical patent/JPH08203697A/en
Publication of JPH08203697A publication Critical patent/JPH08203697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Lasers (AREA)

Abstract

PURPOSE: To efficiently form a magnetic field within a prescribed cavity for passing an electron beam, provide a light with higher luminance, and realize the downsizing. CONSTITUTION: In order to reduce the leakage flux generated between different magnetic pole parts (1-1a and 1-2a, and 1-2b and 1-3a) adjacently arranged in the advancing direction of electron beam, and a leakage flux reducing permanent magnet (4-1a, 4-1c, and 5-1a, 5-1c) having a magnetizing direction in the direction opposite to the direction of the leakage flux is effectively arranged within a limited space. Thus, the effective magnetic flux quantity within a prescribed cavity for passing the electron beam is substantially increased, and the improvement in magnetic filed intensity within the prescribed cavity is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、挿入型光源や自由電
子レーザー等に用いられるウイグラーまたはアンジュレ
ーターと呼ばれる電磁石型円偏光装置の改良に係り、特
に、電子ビームが通過する所定空隙内に効率よく磁界を
形成する構成からなる電磁石型円偏光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an electromagnet-type circularly polarizing device called a wiggler or undulator used for an insertion type light source, a free electron laser, etc., and particularly, it is efficient in a predetermined space through which an electron beam passes. The present invention relates to an electromagnet-type circularly polarizing device having a structure that forms a magnetic field well.

【0002】[0002]

【従来の技術】光速に近い電子ビームが磁界中を通過す
ると電磁波、すなわちシンクロトロン放射光を発生する
が、所定ピッチでかつ所定方向に磁界方向が変化する磁
界中にこの電子ビームを通過させると、相互に干渉し合
いより高輝度の光が得られる。
2. Description of the Related Art When an electron beam close to the speed of light passes through a magnetic field, it generates an electromagnetic wave, that is, synchrotron radiation light. When the electron beam is passed through a magnetic field whose magnetic field direction changes at a predetermined pitch and in a predetermined direction. , They interfere with each other to obtain light of higher brightness.

【0003】このようなシンクロトロン放射光発生用の
装置として、図9に示すような磁界発生源として電磁石
を使用した所謂電磁石型円偏光装置が実用化されてい
る。通常、偏光特性に応じて、磁界の周期数(N)の2
N倍の光が得られるタイプのものをウイグラー、これよ
りも磁界が弱く電子軌道の振幅が極めて小さいがN2
強度の光が得られるタイプのものをアンジュレーターと
呼んでいる。
As a device for generating such synchrotron radiation, a so-called electromagnet type circular polarization device using an electromagnet as a magnetic field generation source as shown in FIG. 9 has been put into practical use. Normally, the number of magnetic field periods (N) is 2 depending on the polarization characteristics.
A type that can obtain N times as much light is called a wiggler, and a type that can obtain light with an intensity of N 2 although the magnetic field is weaker than this and the amplitude of the electron orbit is extremely small is called an undulator.

【0004】図9に示す電磁石型円偏光装置は、一周期
3極型の構成であり、所定の空隙を形成して対向配置す
る一対の異磁極部の対向方向が、それぞれ電子ビームの
進行方向に1ピッチ毎で周方向に120度づつ変位する
ようにして配置している。詳述すると、1は磁性体から
なる複数枚のコア(1−1,1−2,1−3・・・・・
1−n)を積層一体化し、全体として6角筒状を構成す
るコア組立体であり、該コア組立体の各々辺部(6箇
所)に励磁コイル2を巻回配置した構成からなってい
る。なお、これらの励磁コイル2は互いに隣り合うコイ
ルの起磁力の極性が逆になるように接続されている。
The electromagnet-type circular polarization device shown in FIG. 9 has a one-period three-pole structure, and the facing directions of a pair of different magnetic pole portions which are opposed to each other with a predetermined gap therebetween are the traveling directions of the electron beam. Further, they are arranged so as to be displaced by 120 degrees in the circumferential direction at every pitch. More specifically, 1 is a plurality of cores (1-1, 1-2, 1-3 ...
1-n) are laminated and integrated to form a hexagonal tubular shape as a whole, and the excitation coil 2 is wound around each side (6 places) of the core assembly. . The exciting coils 2 are connected so that the magnetomotive forces of the coils adjacent to each other have opposite polarities.

【0005】また、各々のコアの内側には、図10の
A,B,Cに示すように所定の空隙3を形成して対向配
置する一対の磁極部(1−1a,1−1b,1−2a,
1−2b,1−3a,1−3b・・・・・1−na,1
−nb)が形成されている。これらのコア(1−1,1
−2,1−3・・・・・1−n)を電子ビームの進行方
向(図9のZ方向)に順次磁極部の対向方向が120度
づつ変位するように積層して前記コア組立体1を構成す
る。図10のA,B,Cに示す3枚のコア(1−1,1
−2,1−3)を積層一体化することによって1周期
(λw)が構成される。
Inside each core, a pair of magnetic pole portions (1-1a, 1-1b, 1) are formed so as to face each other with a predetermined gap 3 as shown in A, B and C of FIG. -2a,
1-2b, 1-3a, 1-3b ... 1-na, 1
-Nb) is formed. These cores (1-1, 1
, 2, 1-3 ... 1-n) are sequentially laminated in the traveling direction of the electron beam (Z direction in FIG. 9) such that the facing directions of the magnetic pole portions are displaced by 120 degrees. Make up 1. Three cores (1-1, 1 shown in A, B, C of FIG. 10)
One cycle (λw) is formed by laminating and integrating −2,1-3).

【0006】このような構成において、励磁コイル2の
各々に電流を印加すると、各々のコア(1−1,1−
2,1−3・・・・・1−n)の辺部には図10のA,
B,C中に矢印で示す方向に磁束が発生し、結果として
各々のコアにおける一対の磁極部(1−1aと1−1
b,1−2aと1−2b,1−3aと1−3b・・・・
・1−naと1−nb)に異磁極が形成され、該異磁極
部間の空隙内に所定方向の磁界を形成することとなる。
In such a structure, when a current is applied to each of the exciting coils 2, each core (1-1, 1-
2, 1-3-3 ... 1-n) has A in FIG.
Magnetic flux is generated in the directions indicated by arrows in B and C, and as a result, a pair of magnetic pole portions (1-1a and 1-1) in each core is generated.
b, 1-2a and 1-2b, 1-3a and 1-3b ...
Different magnetic poles are formed in 1-na and 1-nb), and a magnetic field in a predetermined direction is formed in the space between the different magnetic pole portions.

【0007】従って、コア組立体1の中央部に形成され
る略円形トンネル状の空隙3内には所定ピッチでかつ所
定方向に磁界方向が変化する磁界が形成され、該磁界中
を電子ビームが螺旋状に回転しながら軸方向(図9のZ
方向)に通過し、目的とするシンクロトロン放射光を発
生し、高輝度の光を得ることができるのである。
Therefore, a magnetic field whose magnetic field direction changes in a predetermined pitch and in a predetermined direction is formed in the substantially circular tunnel-shaped void 3 formed in the central portion of the core assembly 1, and the electron beam is generated in the magnetic field. Axial direction while rotating spirally (Z in Fig. 9
Direction) to generate the desired synchrotron radiation and obtain high brightness light.

【0008】[0008]

【発明が解決しようとする課題】図9に示す構成からな
る電磁石型円偏光装置によって、目的とするシンクロト
ロン放射光の発生が実現できるが、図からも明らかなよ
うに各々のコアに形成される一対の異磁極部(1−1a
と1−1b,1−2aと1−2b,1−3aと1−3b
・・・・・1−naと1−nb)は互いに電子ビームの
進行方向に隣接して配置されることから、空隙3を形成
して対向配置する一対の異磁極部間に発生する磁束より
も、電子ビームの進行方向に隣接する異磁極部間に漏洩
する磁束が多く、磁気的に非常に効率が悪いという問題
点を有している。
The electromagnet-type circularly polarizing device having the structure shown in FIG. 9 can realize the generation of the desired synchrotron radiation light. As is clear from the drawing, the synchrotron radiation light is formed in each core. A pair of different magnetic poles (1-1a
And 1-1b, 1-2a and 1-2b, 1-3a and 1-3b
... 1-na and 1-nb) are arranged adjacent to each other in the direction of travel of the electron beam, so that the magnetic flux generated between a pair of different magnetic pole portions facing each other with the gap 3 formed therebetween is generated. However, there is a problem that a large amount of magnetic flux leaks between different magnetic pole portions that are adjacent to each other in the traveling direction of the electron beam, and the efficiency is magnetically very low.

【0009】すなわち、図11に示すように、各々の磁
極部(1−1a,1−1b,1−2a,1−2b,1−
3a,1−3b)の間で発生する磁束について着目する
と、空隙3を形成して対向配置する一対の異磁極部間
(1−1aと1−1b間、1−2aと1−2b間、1−
3aと1−3b間)に発生する磁束以外に、電子ビーム
の進行方向の1ピッチ毎に隣接配置する異磁極部間(例
えば、1−1aと1−2b間及び1−2bと1−3a
間)に発生する漏洩磁束(図中の実線矢印)と電子ビー
ムの進行方向の1ピッチとびに隣接配置する異磁極部間
(例えば、1−1bと1−3a間)に発生する漏洩磁束
(図中の破線矢印)があり、本発明者の実験によれば、
各々の異磁極部間に発生する磁束の95%以上が漏洩磁
束であることが確認できた。
That is, as shown in FIG. 11, each magnetic pole portion (1-1a, 1-1b, 1-2a, 1-2b, 1-).
3a, 1-3b), focusing on the magnetic flux generated between the pair of different magnetic pole portions (1-1a and 1-1b, 1-2a and 1-2b, which are opposed to each other by forming the void 3). 1-
In addition to the magnetic flux generated between 3a and 1-3b), between different magnetic pole portions (for example, between 1-1a and 1-2b and between 1-2a and 1-3a) which are adjacently arranged at every pitch in the traveling direction of the electron beam.
Between the different magnetic pole portions (for example, between 1-1b and 1-3a) adjacent to each other in every pitch in the traveling direction of the electron beam (for example, between 1-1b and 1-3a). There is a broken line arrow in the figure), and according to the experiment of the inventor,
It was confirmed that 95% or more of the magnetic flux generated between the different magnetic pole portions was the leakage magnetic flux.

【0010】図12は、前記図11の説明に対応した各
々の磁極部間の漏洩磁束の発生状況を示す展開図(図1
2は2周期分の配置を示している)であり、図中の実線
矢印は電子ビームの進行方向の1ピッチ毎に隣接配置す
る異磁極部間に発生する漏洩磁束、破線矢印は電子ビー
ムの進行方向の1ピッチとびに隣接配置する異磁極部間
に発生する漏洩磁束を示している。
FIG. 12 is a development view showing a state of generation of leakage magnetic flux between the magnetic pole portions corresponding to the explanation of FIG. 11 (FIG. 1).
2 indicates the arrangement for two cycles), the solid line arrow in the figure is the leakage flux generated between different magnetic pole parts adjacently arranged at every pitch in the traveling direction of the electron beam, and the broken line arrow is the electron beam. It shows a leakage magnetic flux generated between different magnetic pole portions arranged adjacent to each other in every pitch in the traveling direction.

【0011】図12においても明らかなように空隙3を
形成して対向配置する一対の異磁極部間(1−1aと1
−1b間、1−2aと1−2b間、1−3aと1−3b
間)の距離よりも電子ビームの進行方向の1ピッチ毎に
隣接配置する異磁極部間(例えば、1−1aと1−2b
間及び1−2bと1−3a間)の距離及び電子ビームの
進行方向の1ピッチとびに隣接配置する異磁極部間(例
えば、1−1bと1−3a間)の距離ほうが短く、この
間において漏洩磁束が発生し易いことが分かる。
As is apparent from FIG. 12, a gap 3 is formed between a pair of different magnetic pole portions (1-1a and 1a) which are opposed to each other.
-1b, 1-2a and 1-2b, 1-3a and 1-3b
Distance between the different magnetic pole portions adjacent to each other at every pitch in the traveling direction of the electron beam (for example, 1-1a and 1-2b).
And between different magnetic pole portions (for example, between 1-1b and 1-3a) that are adjacently arranged at intervals of one pitch in the traveling direction of the electron beam and between the different magnetic pole portions (1-2b and 1-3a). It can be seen that leakage magnetic flux is easily generated.

【0012】また、単に磁界発生源となる励磁コイル2
の起磁力を大きくしても、コアの材質によってはコア自
体が磁気飽和を起こしてしまい、例えば、コア材に飽和
磁束密度の高いパーメンジュール等を使用しても、空隙
3内の磁界強度を向上することは困難であった。
Further, the exciting coil 2 which simply serves as a magnetic field generating source
Even if the magnetomotive force is increased, the core itself may cause magnetic saturation depending on the material of the core. For example, even if a permendur having a high saturation magnetic flux density is used for the core material, the magnetic field strength in the void 3 is increased. Was difficult to improve.

【0013】以上に説明するように、従来から知られる
電磁石型円偏光装置においては、本質的に磁気的効率が
悪い構成を採用していることから、所定の空隙内に形成
される磁界強度にも限界があり、必然的に得ることがで
きる光の輝度にも限界があった。図9に示す構成におい
ては、コアの材質や寸法、形状等を種々改良しても空隙
3内の磁界強度を効果的に向上させることは不可能であ
った。
As described above, in the conventionally known electromagnet-type circularly polarizing device, since the structure in which the magnetic efficiency is essentially low is adopted, the strength of the magnetic field formed in the predetermined air gap is reduced. However, there is a limit to the brightness of light that can be obtained inevitably. In the configuration shown in FIG. 9, even if the material, size, shape, etc. of the core are variously improved, it is impossible to effectively improve the magnetic field strength in the void 3.

【0014】この発明は、上記の現状に鑑み、従来から
知られる電磁石型円偏光装置の基本的な構成を採用しな
がらも、電子ビームが通過する所定空隙内に効率よく磁
界を形成することを可能とする電磁石型円偏光装置の提
供を目的とするものである。また、従来より高輝度の光
が得られる電磁石型円偏光装置の提供を目的とする。さ
らに電磁石型円偏光装置の小型化を実現する電磁石型円
偏光装置の提供を目的とする。
In view of the above situation, the present invention adopts the basic structure of a conventionally known electromagnet-type circularly polarizing device, while efficiently forming a magnetic field in a predetermined gap through which an electron beam passes. It is an object of the present invention to provide an electromagnet-type circularly polarizing device that can be used. Another object of the present invention is to provide an electromagnet-type circularly polarizing device that can obtain light with higher brightness than before. Further, it is an object of the present invention to provide an electromagnet-type circular polarization device that realizes downsizing of the electromagnet-type circular polarization device.

【0015】[0015]

【課題を解決するための手段】この発明は、上記の目的
を達成するために種々の実験を繰り返した結果、電子ビ
ームの進行方向に隣接配置する異磁極部間に発生する漏
洩磁束を低減するために、該漏洩磁束の方向に相反する
方向に磁化方向を有する漏洩磁束低減用永久磁石を限ら
れたスペース内に効果的に配置することによって、実質
的に電子ビームが通過する所定空隙内の有効磁束量を増
加させ、該所定空隙内の磁界強度の向上を実現すること
が可能であることを知見し、完成したものである。
As a result of repeating various experiments in order to achieve the above object, the present invention reduces the leakage magnetic flux generated between different magnetic pole portions arranged adjacent to each other in the traveling direction of the electron beam. Therefore, by effectively arranging a leakage flux reducing permanent magnet having a magnetization direction in a direction opposite to the direction of the leakage flux in a limited space, it is possible to substantially prevent the leakage of magnetic flux in a predetermined space through which the electron beam passes. It has been completed by finding that it is possible to increase the effective magnetic flux amount and to improve the magnetic field strength in the predetermined air gap.

【0016】すなわち、この発明は、所定の空隙を形成
して対向配置する一対の異磁極部を、電子ビームの進行
方向に所定ピッチで、かつ、一対の異磁極部の対向方向
が各々ピッチ毎で周方向に所定角度づつ変位するように
して複数配置してなる電磁石型円偏光装置において、前
記各々の対向配置する一対の異磁極部の周方向外周部に
該周方向に対して所定角度の方向に磁化方向を有する漏
洩磁束低減用永久磁石を跨設したことを特徴とする電磁
石型円偏光装置である。
That is, according to the present invention, a pair of different magnetic pole portions, which are opposed to each other with a predetermined gap formed therebetween, are arranged at a predetermined pitch in the traveling direction of the electron beam, and the facing direction of the pair of different magnetic pole portions is each pitch. In a plurality of electromagnet-type circularly polarizing devices that are arranged so as to be displaced by a predetermined angle in the circumferential direction, a pair of different magnetic pole portions facing each other are provided with a predetermined angle with respect to the circumferential direction on the circumferential outer circumferential portion. It is an electromagnet-type circularly polarizing device, characterized in that a leakage magnetic flux reducing permanent magnet having a magnetization direction in the direction is straddled.

【0017】また、好ましい構成として、上記の構成に
おいて、漏洩磁束低減用永久磁石が略扇型からなり、か
つ磁化方向が、各々の対向配置する一対の異磁極部の周
方向に対して一定角度の方向であることを特徴とする電
磁石型円偏光装置を併せて提案する。さらに好ましい構
成として、漏洩磁束低減用永久磁石が略扇型からなり、
かつ磁化方向が、各々の対向配置する一対の異磁極部の
周方向に対して一対の異磁極部との当接面近傍部と異磁
極部間中央部とで異なることを特徴とする電磁石型円偏
光装置を併せて提案する。さらにまた、上記の各々の構
成において、各々の対向配置する一対の異磁極部の少な
くとも一方に近接離反可能に漏洩磁束調整用磁性材料を
配置したことを特徴とする電磁石型円偏光装置を提案す
る。
As a preferred configuration, in the above configuration, the leakage flux reducing permanent magnet is substantially fan-shaped, and the magnetization direction is a constant angle with respect to the circumferential direction of each of the pair of different magnetic pole portions arranged to face each other. We also propose an electromagnet-type circularly polarizing device characterized in that As a more preferable configuration, the permanent magnet for reducing the leakage flux is substantially fan-shaped,
Further, the magnetizing direction is different in the vicinity of the contact surface between the pair of different magnetic pole portions and the central portion between the different magnetic pole portions with respect to the circumferential direction of the pair of different magnetic pole portions facing each other. We also propose a circular polarization device. Furthermore, in each of the above-mentioned configurations, an electromagnet-type circularly polarizing device is characterized in that a magnetic flux adjusting magnetic material is arranged in at least one of a pair of different magnetic pole portions arranged to face each other so as to be able to approach and separate from each other. .

【0018】[0018]

【作用】この発明の電磁石型円偏光装置の作用を、図1
から図8に示す一実施例に基づいて説明する。図1は、
この発明の電磁石型円偏光装置における所定の空隙を形
成して対向配置する一対の異磁極部の先端詳細斜視説明
図であり、特に、漏洩磁束低減用永久磁石の配置構成が
明らかになるよう一対の異磁極部のみを図示している。
The operation of the electromagnet type circularly polarizing device of the present invention will be described with reference to FIG.
A description will be given based on an embodiment shown in FIG. Figure 1
FIG. 3 is a detailed perspective perspective view of a pair of different magnetic pole portions facing each other and forming a predetermined gap in the electromagnet type circularly polarizing device of the present invention. Only the different magnetic pole portions of are shown.

【0019】図において、4−1及び5−1は、所定の
空隙3を形成して対向配置する一対の異磁極部(1−1
a・・・N極,1−1b・・・S極)の周方向外周部に
跨設される漏洩磁束低減用永久磁石であり、それぞれ略
扇型からなり、かつ図中矢印方向に磁化方向を有してい
る。6−1及び7−1は各々漏洩磁束低減用永久磁石4
−1及び5−1の外側に配置し、該永久磁石を固定保護
するステンレス等の非磁性材からなる円弧状の固定枠で
ある。このような、一対の異磁極部(1−1a,1−1
b)に漏洩磁束低減用永久磁石(4−1,5−1)及び
固定枠(6−1,7−1)を配置したコアが、電子ビー
ムの進行方向(Z方向)に順次一対の磁極部の対向方向
が120度づつ変位するように積層してコア組立体をな
し、この発明の電磁石型円偏光装置を構成している(図
9参照)。
In the figure, reference numerals 4-1 and 5-1 denote a pair of different magnetic pole portions (1-1) which are opposed to each other with a predetermined gap 3 formed therebetween.
a ... N pole, 1-1b ... S pole), which are permanent magnets for reducing leakage flux, which are provided over the outer circumferential portion in the circumferential direction, each of which is substantially fan-shaped and has a magnetization direction in the direction of the arrow in the figure. have. 6-1 and 7-1 are permanent magnets 4 for reducing the leakage flux.
-1 and 5-1 is an arc-shaped fixed frame made of a non-magnetic material such as stainless steel, which is fixed to the permanent magnets and protects the permanent magnets. Such a pair of different magnetic pole portions (1-1a, 1-1)
The core having the magnetic flux leakage reducing permanent magnets (4-1, 5-1) and the fixed frame (6-1, 7-1) arranged in b) has a pair of magnetic poles sequentially in the traveling direction (Z direction) of the electron beam. The parts are laminated so that the facing directions of the parts are displaced by 120 degrees to form a core assembly, which constitutes the electromagnet-type circularly polarizing device of the present invention (see FIG. 9).

【0020】図2は、前記図1の説明に対応した漏洩磁
束低減用永久磁石を配置した構成の展開図(図2は2周
期分の配置を示している)であり、図中の斜線部が漏洩
磁束低減用永久磁石であり、該永久磁石中に示す実線矢
印がその磁化方向を示している。ここで、上記の本発明
の構成を示す図2の展開図と従来の構成を示す図12の
展開図とを比較すると、図2における各々漏洩磁束低減
用永久磁石の磁化方向(図中実線矢印)と図12におけ
る電子ビームの進行方向の1ピッチ毎に隣接配置する異
磁極部間(例えば、1−1aと1−2b間及び1−2b
と1−3a間)に発生する漏洩磁束の方向(図中実線矢
印)とが相反する方向であることが分かる。
FIG. 2 is a developed view (FIG. 2 shows an arrangement for two cycles) in which the leakage magnetic flux reducing permanent magnets corresponding to the explanation of FIG. 1 are arranged. Is a permanent magnet for reducing magnetic flux leakage, and the solid line arrow in the permanent magnet indicates the magnetization direction. Here, comparing the development view of FIG. 2 showing the configuration of the present invention with the development view of FIG. 12 showing the conventional configuration, the magnetization direction of each permanent magnet for reducing magnetic flux leakage in FIG. ) And between different magnetic pole portions adjacent to each other at every pitch in the traveling direction of the electron beam in FIG. 12 (for example, between 1-1a and 1-2b and 1-2b).
It can be seen that the directions of the leakage magnetic flux generated between (1 and 3a) and (1-3a) are opposite directions.

【0021】従って、図1及び図2に示すような磁化方
向を有する漏洩磁束低減用永久磁石を各々の対向配置す
る一対の異磁極部の所定位置に配置することによって、
電子ビームの進行方向の各ピッチ毎に隣接配置する異磁
極部間(例えば、1−1aと1−2b間及び1−2bと
1−3a間)に発生する漏洩磁束を低減することが可能
となる。
Therefore, by arranging the leakage magnetic flux reducing permanent magnets having the magnetization directions as shown in FIGS. 1 and 2 at the predetermined positions of the pair of different magnetic pole portions arranged to face each other,
It is possible to reduce the leakage flux generated between different magnetic pole portions (for example, between 1-1a and 1-2b and between 1-2b and 1-3a) that are adjacently arranged at each pitch in the traveling direction of the electron beam. Become.

【0022】さらに、電子ビームの進行方向の1ピッチ
とびに隣接配置する異磁極部間に発生する漏洩磁束をも
同様に低減するためには、図3に示すような構成からな
る漏洩磁束低減用永久磁石を配置することが効果的であ
る。なお、図4は図3における漏洩磁束低減用永久磁石
の配置構成を示す展開図(図4は2周期分の配置を示し
ている)であり、図中の斜線部が漏洩磁束低減用永久磁
石であり、該永久磁石中に示す実線矢印がその磁化方向
を示している。すなわち、図1における略扇型からなる
漏洩磁束低減用永久磁石4−1及び5−1を、さらに各
々周方向に3分割し、一対の異磁極部との当接面近傍部
と異磁極部間中央部とで磁化方向を異なるように構成し
たものである。
Further, in order to similarly reduce the leakage magnetic flux generated between the different magnetic pole portions which are adjacently arranged at intervals of one pitch in the traveling direction of the electron beam, in order to reduce the leakage magnetic flux, the leakage magnetic flux reduction structure having the structure shown in FIG. 3 is used. It is effective to arrange a permanent magnet. 4. FIG. 4 is a development view showing the arrangement configuration of the leakage magnetic flux reducing permanent magnets in FIG. 3 (FIG. 4 shows the arrangement for two cycles), and the hatched portion in the drawing shows the leakage magnetic flux reducing permanent magnets. The solid arrow in the permanent magnet indicates the magnetization direction. That is, the substantially fan-shaped leakage flux reducing permanent magnets 4-1 and 5-1 in FIG. 1 are each further divided into three in the circumferential direction, and the vicinity of the contact surface with the pair of different magnetic pole portions and the different magnetic pole portion are divided. The magnetization direction is different from that in the central portion.

【0023】図示の如く、一対の異磁極部との当接面近
傍部には主として電子ビームの進行方向の1ピッチ毎に
隣接配置する異磁極部間(例えば、1−1aと1−2b
間及び1−2bと1−3a間)に発生する漏洩磁束を低
減するために、該漏洩磁束の方向と相反する方向の磁化
方向を有する漏洩磁束低減用永久磁石(4−1a,4−
1c及び5−1a,5−1c)を配置し、一対の異磁極
部間中央部には主として電子ビームの進行方向の1ピッ
チとびに隣接配置する異磁極部間(例えば、1−1bと
1−3a間)に発生する漏洩磁束を低減するために、該
漏洩磁束の方向と相反する方向の磁化方向を有する漏洩
磁束低減用永久磁石(4−1b及び5−1b)を配置す
る構成を採用するものである。
As shown in the drawing, in the vicinity of the contact surface between the pair of different magnetic poles, between the different magnetic poles (for example, 1-1a and 1-2b) which are adjacently arranged mainly at every pitch in the traveling direction of the electron beam.
In order to reduce the leakage magnetic flux generated between the leakage magnetic fluxes (1-2b and 1-3a), the leakage magnetic flux reducing permanent magnets (4-1a, 4-) having a magnetization direction opposite to the direction of the leakage magnetic flux.
1c and 5-1a, 5-1c), and between the pair of different magnetic pole portions, between the different magnetic pole portions that are adjacently arranged mainly at intervals of one pitch in the electron beam traveling direction (for example, 1-1b and 1b). In order to reduce the leakage flux generated in (between -3a), a configuration is adopted in which leakage flux reducing permanent magnets (4-1b and 5-1b) having a magnetization direction opposite to the direction of the leakage flux are arranged. To do.

【0024】従って、図3及び図4に示すような磁化方
向を有する漏洩磁束低減用永久磁石を各々の対向配置す
る一対の異磁極部の所定位置に配置することによって、
電子ビームの進行方向の1ピッチ毎に隣接配置する異磁
極部間(例えば、1−1aと1−2b間及び1−2bと
1−3a間)及び電子ビームの進行方向の1ピッチとび
に隣接配置する異磁極部間(例えば、1−1bと1−3
a間)に発生する漏洩磁束をともに低減することが可能
となり、実質的に電子ビームが通過する所定空隙内の有
効磁束量を増加させ、該所定空隙内の磁界強度の向上を
実現することができるのである。
Therefore, by arranging the leakage magnetic flux reducing permanent magnets having the magnetization directions as shown in FIGS. 3 and 4 at the predetermined positions of the pair of different magnetic pole portions arranged to face each other,
Between different magnetic pole portions (for example, between 1-1a and 1-2b and between 1-2b and 1-3a) that are adjacently arranged at every pitch in the direction of travel of the electron beam, and at intervals of every pitch in the direction of travel of the electron beam. Between different magnetic pole parts to be arranged (for example, 1-1b and 1-3
It is possible to reduce the leakage magnetic flux generated between (a), substantially increase the effective magnetic flux amount in the predetermined air gap through which the electron beam passes, and realize the improvement of the magnetic field strength in the predetermined air gap. You can do it.

【0025】以上に説明したこの発明の電磁石型円偏光
装置においては、従来の電磁石型円偏光装置と同様に励
磁コイル2の各々に電流を印加すると、各々のコア(1
−1,1−2,1−3……1−n)の辺部には図10の
A,B,Cにて矢印で示す方向に磁束が発生し、結果と
して各々のコアにおける一対の磁極部(1−1a,1−
1b,1−2a,1−2b,1−3a,1−3b……1
−na,1−nb)に異磁極が形成(図9参照)される
が、該一対の異磁極部の周方向外周部に周方向に対して
所定角度の方向に磁化方向を有する漏洩磁束低減用永久
磁石を跨設することで、互いの異磁極部間にて発生する
漏洩磁束を低減し、結果としてコア組立体1の中央部に
形成される略円形トンネル状の空隙3内の有効磁束量を
増加させ、該空隙3内に所定ピッチでかつ所定方向に磁
界方向が変化する強い磁界が形成され、該磁界中を電子
ビームが螺旋状に回転しながら軸方向に通過し、目的と
するシンクロトロン放射光を発生し、高輝度の光を得る
ことができるのである。
In the electromagnet-type circular polarization device of the present invention described above, when a current is applied to each of the exciting coils 2 similarly to the conventional electromagnet-type circular polarization device, each core (1
−1, 1-2, 1-3 ... 1-n) generate magnetic flux in the directions indicated by arrows in A, B, and C of FIG. 10, resulting in a pair of magnetic poles in each core. Section (1-1a, 1-
1b, 1-2a, 1-2b, 1-3a, 1-3b ... 1
Different magnetic poles are formed in (-na, 1-nb) (see FIG. 9), but the leakage magnetic flux is reduced in the circumferential direction outer peripheral portion of the pair of different magnetic pole portions in the direction of a predetermined angle with respect to the circumferential direction. The magnetic fluxes generated between the different magnetic pole portions are reduced by straddling the permanent magnets for use, and as a result, the effective magnetic flux in the substantially circular tunnel-shaped void 3 formed in the central portion of the core assembly 1 is reduced. By increasing the amount, a strong magnetic field whose magnetic field direction changes at a predetermined pitch and in a predetermined direction is formed in the void 3, and the electron beam passes through the magnetic field in the axial direction while rotating in a spiral shape. It is possible to generate synchrotron radiation and obtain high-intensity light.

【0026】また、この発明の電磁石型円偏光装置を構
成する漏洩磁束低減用永久磁石は、各々のコアにおける
一対の異磁極部に跨接して配置されることから、該異磁
極部への取付けが容易であり、さらに図1及び図3にて
示すように各々のコアに該漏洩磁束低減用永久磁石、固
定枠等が一体的に固定され、これらを1セットとして取
り扱うことが可能となり、装置全体の組立も容易となる
利点を有する。
Further, since the leakage flux reducing permanent magnets constituting the electromagnet type circularly polarizing device of the present invention are arranged so as to straddle a pair of different magnetic pole portions in each core, the permanent magnets are attached to the different magnetic pole portions. Further, as shown in FIGS. 1 and 3, the leakage flux reducing permanent magnets, the fixing frame, and the like are integrally fixed to each core, and these can be handled as one set. It has an advantage that the whole assembly is easy.

【0027】これらの全体構成を図5によって示す。す
なわち、図5は、図3に示した一対の磁極部(1−1
a,1−1b)に漏洩磁束低減用永久磁石(4−1a,
4−1b,4−1c及び5−1a,5−1b,5−1
c)及び固定枠(6−1,7−1)を一体的に配置した
コアを1セットとし、これらのセットを電子ビームの進
行方向(Z方向)に順次一対の磁極部の対向方向が12
0度づつ変位するように積層し、例えば、固定枠に非磁
性ボルト(図示せず)を貫通させて締付け固定すること
によって、コア組立体を構成したものである。
The overall configuration of these is shown in FIG. That is, FIG. 5 shows a pair of magnetic pole parts (1-1) shown in FIG.
a, 1-1b) is a permanent magnet for reducing magnetic flux leakage (4-1a,
4-1b, 4-1c and 5-1a, 5-1b, 5-1
c) and the fixed frame (6-1, 7-1) are integrally arranged as one set, and these sets are sequentially arranged in the advancing direction (Z direction) of the electron beam so that the facing direction of the pair of magnetic pole parts is 12
The core assembly is constructed by stacking so as to be displaced by 0 degree, and for example, a non-magnetic bolt (not shown) is passed through a fixed frame and tightened and fixed.

【0028】以上の図1から図5においては、所定の空
隙を形成して対向配置する一対の異磁極部の対向方向
が、それぞれ電子ビームの進行方向に1ピッチ毎で周方
向に120度づつ変位するようにして配置した磁性体か
らなる複数枚のコアを積層一体化した6角筒状を構成す
るコア組立体の各々辺部(6箇所)に互いに隣り合うコ
イルの起磁力の極性が逆になるように接続されている励
磁コイルを巻回配置した構成からなる所謂磁束合流型の
一周期3極型の構成からなる電磁石型円偏光装置に基づ
いて説明した。
In FIGS. 1 to 5 described above, the opposing directions of the pair of different magnetic pole portions, which are opposed to each other with a predetermined air gap, are 120 ° in the circumferential direction at every pitch in the traveling direction of the electron beam. The polarities of the magnetomotive forces of the coils adjacent to each other are opposite to each side (six locations) of the core assembly that forms a hexagonal tubular shape by stacking and integrating a plurality of magnetic cores that are arranged so as to be displaced. The description has been given based on the electromagnet-type circular polarization device having a so-called magnetic flux confluence type one-cycle three-pole type configuration in which exciting coils connected to each other are wound and arranged.

【0029】このように、コア組立体の各々のコアを磁
性体のみにて構成し互いに隣り合うコイルの起磁力の極
性が逆になるように巻回配置した磁束合流型の電磁石型
円偏光装置では一周期奇数極型の構成のもののみが得ら
れ、上記の一周期3極型の他、一周期5極型(一対の磁
極部の対向方向が電子ビームの進行方向(Z方向)に順
次72度づつ変位する)等の構成が採用されるが、この
場合も異磁極部の配置関係を展開図に表し、互いの異磁
極部間にて発生する漏洩磁束の方向に対応して漏洩磁束
低減用永久磁石の磁化方向や配置構成を適宜決定するこ
とによって上記に説明したと同様な作用効果を得ること
ができるのである。
As described above, the magnetic flux confluence type electromagnet-type circular polarization device in which each core of the core assembly is made of only a magnetic material and wound so that the polarities of the magnetomotive forces of the coils adjacent to each other are reversed. In this case, only the one-period odd-pole type structure is obtained. In addition to the above-mentioned one-period three-pole type, one-period five-pole type (the facing direction of the pair of magnetic pole portions is sequentially in the electron beam traveling direction (Z direction) However, in this case as well, the positional relationship of the different magnetic pole portions is shown in a developed view, and the leakage magnetic flux is generated according to the direction of the leakage magnetic flux generated between the different magnetic pole portions. By appropriately determining the magnetization direction and arrangement configuration of the reducing permanent magnet, the same operational effect as described above can be obtained.

【0030】また、コア組立体の構成としては、各々コ
アの磁極部以外の外枠部(辺部)を磁性体と非磁性体の
ハイブリット構造とし、これらの複数枚のコアを積層一
体化した多角筒状を構成するコア組立体の各々辺部に起
磁力の極性が同方向になるように接続されている励磁コ
イルを巻回配置した構成からなる所謂磁束環流型の電磁
石型円偏光装置では、一周期奇数極型の構成だけでなく
一周期偶数極型の構成のものも得られる。
As for the structure of the core assembly, each outer frame portion (side portion) other than the magnetic pole portion of the core has a hybrid structure of a magnetic substance and a non-magnetic substance, and a plurality of these cores are laminated and integrated. In a so-called magnetic flux recirculation type electromagnet circularly polarizing device having a configuration in which exciting coils connected to each side of a polygonal cylindrical core assembly so that the polarities of magnetomotive forces are in the same direction are wound and arranged. In addition to the one-cycle odd pole type structure, one-cycle even pole type structure can be obtained.

【0031】例えば、電子ビームの進行方向に1ピッチ
毎で周方向に90度づつ変位するようにして配置してな
る一周期4極型の電磁石型円偏光装置の場合、図6に示
す展開図に基づいて漏洩磁束低減用永久磁石の磁化方向
や配置構成を適宜決定すること(図中斜線部が漏洩磁束
低減用永久磁石であり、該永久磁石内に矢印で示す方向
が磁化方向である)によって上記の一周期3極型の場合
と同様な作用効果を得ることができるのである。
For example, in the case of a one-period quadrupole type electromagnet-type circular polarization device which is arranged so as to be displaced by 90 degrees in the circumferential direction at every pitch in the traveling direction of the electron beam, a development view shown in FIG. Based on the above, the magnetization direction and arrangement of the leakage flux reducing permanent magnet should be appropriately determined (the shaded portion in the figure is the leakage flux reducing permanent magnet, and the direction indicated by the arrow in the permanent magnet is the magnetization direction). Thus, it is possible to obtain the same operational effect as in the case of the one-cycle three-pole type.

【0032】従って、この発明の電磁石型円偏光装置を
構成する漏洩磁束低減用永久磁石としては、電子ビーム
の進行方向に隣接する異磁極部の配置構成(形状、寸法
等を含む)に応じて、一旦それらの配置構成を図12に
示すような展開図に示し、さらに、各々の異磁極部間に
て発生する漏洩磁束の方向を確認し、磁化方向が該漏洩
磁束の方向と相反する方向になるように設定すること
で、目的とする作用効果を得ることができるのである。
Therefore, the permanent magnet for reducing magnetic flux leakage which constitutes the electromagnet-type circularly polarizing device of the present invention depends on the arrangement configuration (including shape, size, etc.) of different magnetic pole portions adjacent to each other in the traveling direction of the electron beam. , Their layout is shown in a developed view as shown in FIG. 12, the direction of the leakage magnetic flux generated between the different magnetic pole portions is confirmed, and the direction of magnetization is opposite to the direction of the leakage magnetic flux. By setting so that, the intended effect can be obtained.

【0033】また、漏洩磁束低減用永久磁石としては、
公知の磁石材料を使用することが可能であるが、実際の
配置スペースがある程度制限されることから、希土類・
コバルト系磁石や希土類・鉄・ほう素系磁石等の磁気特
性に優れた希土類系磁石を使用することが好ましい。特
に、周方向に対して所定角度の方向に磁化方向を有する
漏洩磁束低減用永久磁石は、図7(平面図)に示すよう
に、予め厚さ方向に対して直角方向(図中矢印M方向)
に磁化方向を有する扇型の異方性永久磁石(図において
二点鎖線にて示す)を得た後、該異方性永久磁石の厚さ
方向両端面及び厚さ方向に対して直角方向両端面に所定
角度の研摩加工を施すことによって容易に得ることがで
きる(図において斜線部が周方向に対してθ方向に磁化
方向を有する漏洩磁束低減用永久磁石を示す)。
Further, as the permanent magnet for reducing the leakage magnetic flux,
It is possible to use known magnet materials, but since the actual placement space is limited to some extent, rare earth /
It is preferable to use a rare earth magnet having excellent magnetic properties such as a cobalt magnet or a rare earth / iron / boron magnet. In particular, as shown in FIG. 7 (plan view), a permanent magnet for reducing leakage flux having a magnetizing direction at a predetermined angle with respect to the circumferential direction has a direction perpendicular to the thickness direction (arrow M direction in the drawing) in advance. )
After obtaining a fan-shaped anisotropic permanent magnet (indicated by a chain double-dashed line in the figure) having a magnetization direction at both ends of the anisotropic permanent magnet in the thickness direction and both ends in the direction perpendicular to the thickness direction. It can be easily obtained by subjecting the surface to polishing at a predetermined angle (in the figure, the hatched portion indicates a leakage flux reducing permanent magnet having a magnetization direction in the θ direction with respect to the circumferential direction).

【0034】図1の漏洩磁束低減用永久磁石は一体品に
て示しているが、全体として先に説明した磁化方向を有
すれば良いのであって、加工性等を考慮して複数に分割
したものを組立一体化したものでも良い。同様に図3の
漏洩磁束低減用永久磁石も3分割の構成にて示している
が加工性等を考慮して4分割以上としても良い。
The permanent magnet for reducing magnetic flux leakage in FIG. 1 is shown as an integrated product, but it is sufficient if it has the above-described magnetization direction as a whole, and it is divided into a plurality in consideration of workability and the like. It is also possible to assemble and integrate things. Similarly, the leakage magnetic flux reducing permanent magnet in FIG. 3 is also shown to have a three-divided configuration, but it may be divided into four or more in consideration of workability and the like.

【0035】さらに、この発明の電磁石型円偏光装置を
構成するコアとしては、一周期の極数や組立性等に応じ
て、磁束合流型または磁束還流型を採用することを決定
し、使用する磁性体や非磁性体の材料を選定するが、特
に磁性体としては公知の軟質磁性材料を使用することが
可能であるが、該コア内での磁気飽和を防止するために
は、パーメンジュール等の飽和磁束密度の高い材料を選
定することが望ましい。これらのコアの積層体からなる
コア組立体の構成も図9に示される6角筒状に限定され
ることなく、各々コアの配置構成、磁極部の配置構成、
磁界発生源となる励磁コイルの配置構成等に応じて10
角筒状、14角筒状等の多角筒状を適宜選定することが
できる。
Further, as the core which constitutes the electromagnet type circularly polarizing device of the present invention, it is decided to use the magnetic flux confluence type or the magnetic flux recirculation type depending on the number of poles in one period and the assembling property. A magnetic material or a non-magnetic material is selected. In particular, a known soft magnetic material can be used as the magnetic material, but in order to prevent magnetic saturation in the core, a permendur is used. It is desirable to select a material having a high saturation magnetic flux density such as. The configuration of the core assembly formed of the laminated body of these cores is not limited to the hexagonal tubular shape shown in FIG.
10 depending on the arrangement of the exciting coil that is the magnetic field source
A polygonal tubular shape such as a square tubular shape or a 14-sided tubular shape can be appropriately selected.

【0036】図8に示すこの発明の電磁石型円偏光装置
は、さらに改良を加え、各々の磁極部から発生する磁束
量を制御することによって、各々の磁極部からの磁束発
生量を均一にし、より安定した高輝度の光を得ることを
可能とした一実施例である。
The electromagnet-type circular polarization device of the present invention shown in FIG. 8 is further improved to control the amount of magnetic flux generated from each magnetic pole portion to make the amount of magnetic flux generated from each magnetic pole portion uniform. This is an embodiment capable of obtaining more stable and high-luminance light.

【0037】詳述すると図8は、図5に示す構成の電磁
石型円偏光装置を改良したもので、一対の漏洩磁束低減
用永久磁石(4−1a,4−1b,4−1c及び5−1
a,5−1b,5−1c)の外側に配置する一対の固定
枠(6−1及び7−1)の円周方向の一部に切欠部8を
設け、該切欠部8から各々の対向配置する一対の異磁極
部(1−1a,1−1b)の円周方向端面部に向かって
貫通するめねじ部9を形成し、さらに、該めねじ部9内
に前記一対の異磁極部(1−1a,1−1b)の円周方
向端面部に近接離反可能に移動するボルト部材からなる
漏洩磁束調整用磁性材料10を配置したものである。
More specifically, FIG. 8 shows an improved electromagnet-type circularly polarizing device having the structure shown in FIG. 5, which comprises a pair of permanent magnets (4-1a, 4-1b, 4-1c and 5- for reducing leakage flux). 1
a, 5-1b, 5-1c), a pair of fixed frames (6-1 and 7-1) arranged on the outer side are provided with notches 8 in the circumferential direction, and the notches 8 face each other. A female screw portion 9 is formed so as to penetrate toward the circumferential end surface portion of the pair of different magnetic pole portions (1-1a, 1-1b) to be arranged, and the pair of different magnetic pole portions ( (1-1a, 1-1b), a magnetic flux adjusting magnetic material 10 composed of a bolt member that moves so as to be able to move toward and away from each other is arranged on the circumferential end face portion.

【0038】上記の構成において、例えば、漏洩磁束調
整用磁性材料10を磁極部(1−1a)の円周方向端面
部に近接させると、該磁極部(1−1a)から電子ビー
ムの進行方向に1ピッチの距離にある隣接磁極部(1−
2b)への漏洩磁束量を増やすことができる。
In the above structure, for example, when the leakage magnetic flux adjusting magnetic material 10 is brought close to the circumferential end face portion of the magnetic pole portion (1-1a), the traveling direction of the electron beam from the magnetic pole portion (1-1a). Adjacent magnetic poles (1-
The amount of magnetic flux leaked to 2b) can be increased.

【0039】このような漏洩磁束調整用磁性材料10を
有する制御機構を各々磁極部近傍に設置することによっ
て、各々磁極部からの漏洩磁束量を微調整することが可
能となり、結果として各々の磁極部からの所定空隙3内
への磁束発生量を均一にすることが可能となる。しか
し、これらの制御機構は必ずしも全磁極部に付設する必
要はなく、漏洩磁束量の微調整範囲等に応じて各々の対
向配置する一対の異磁極部の少なくとも一方に配置すれ
ば良い。
By disposing the control mechanism having such magnetic flux adjusting magnetic material 10 near each magnetic pole, it becomes possible to finely adjust the amount of magnetic flux leaking from each magnetic pole, and as a result, each magnetic pole can be adjusted. It is possible to make the amount of magnetic flux generated from the portion into the predetermined gap 3 uniform. However, these control mechanisms do not necessarily have to be attached to all magnetic pole portions, and may be arranged at least on one of a pair of different magnetic pole portions arranged facing each other according to the fine adjustment range of the leakage magnetic flux amount and the like.

【0040】以上に説明するように、この発明の電磁石
型円偏光装置には種々の構成を採用することができ、図
示する実施例に限定されるものではなく、所定の漏洩磁
束低減用永久磁石を効果的に配置することによってこの
発明の目的を達成できるのである。
As described above, various configurations can be adopted for the electromagnet type circularly polarizing device of the present invention, and the present invention is not limited to the illustrated embodiment, and a predetermined permanent magnet for reducing magnetic flux leakage is provided. The object of the present invention can be achieved by arranging effectively.

【0041】[0041]

【実施例】この発明の作用効果を確認するために、図9
に示す従来の1周期3極型の電磁石型円偏光装置と、図
1及び図2に示す所定角度の方向(一定方向)に磁化方
向を有する漏洩磁束低減用永久磁石を配置したこの発明
の電磁石型円偏光装置、さらに図3及び図4に示す磁化
方向が、一対の異磁極部との当接面近傍部と異磁極部間
中央部とで異なる漏洩磁束低減用永久磁石を配置したこ
の発明の電磁石型円偏光装置を作成し、空隙中央部にお
ける磁界強度測定して比較した。なお、コア材料とし
て、厚さ2.6mmのパーメンジュールを用い、対向配
置する一対の異磁極部間の距離を4.6mmとし、周期
数を10周期とした。
EXAMPLE To confirm the operation and effect of the present invention, FIG.
The electromagnet of the present invention in which the conventional one-cycle three-pole type electromagnet type circularly polarizing device shown in FIG. 3 and the leakage magnetic flux reducing permanent magnet having a magnetization direction in a predetermined angle direction (constant direction) shown in FIGS. 1 and 2 are arranged. A circularly polarized light device of the present invention, and further, a leakage magnetic flux reducing permanent magnet in which the magnetization directions shown in FIGS. 3 and 4 are different between the vicinity of the contact surface between the pair of different magnetic pole portions and the central portion between the different magnetic pole portions. The electromagnet-type circularly polarizing device was prepared, and the magnetic field strength at the center of the gap was measured and compared. As the core material, permendur having a thickness of 2.6 mm was used, the distance between the pair of different magnetic pole portions facing each other was 4.6 mm, and the number of cycles was 10.

【0042】また、漏洩磁束低減用永久磁石としては最
大エネルギー積(BH)maxが33MGOeの希土類
・鉄・ほう素系の異方性焼結磁石を用い、厚さ2.6m
m×外径15mm×内径3mm×内角146度の扇型に
加工した。磁化方向については、図1及び図2に示す構
成の場合は周方向に対して12.45度の角度を有し
(図2参照)、図3及び図4に示す構成の場合は周方向
に対して異磁極部当接面近傍部のものが周方向に対して
12.45度の角度を有し異磁極部間中央部のものが周
方向に対して23.82度の角度を有するように加工し
た。
As the permanent magnet for reducing the leakage flux, an anisotropic sintered magnet of rare earth / iron / boron system having a maximum energy product (BH) max of 33 MGOe is used, and the thickness is 2.6 m.
m × outer diameter 15 mm × inner diameter 3 mm × inner angle 146 ° processed into a fan shape. Regarding the magnetization direction, the configuration shown in FIGS. 1 and 2 has an angle of 12.45 degrees with respect to the circumferential direction (see FIG. 2), and the configurations shown in FIGS. On the other hand, the one in the vicinity of the contact surface of the different magnetic poles has an angle of 12.45 degrees with respect to the circumferential direction, and the one in the center between different magnetic poles has an angle of 23.82 degrees with respect to the circumferential direction. Processed into.

【0043】各々の電磁石型円偏光装置における空隙中
央部の磁界強度は、従来の装置の場合は3〜5kGであ
り、図1及び図2に示す構成を採用したこの発明の装置
の場合は3.3〜5.5kG、図3及び図4に示す構成
を採用したこの発明の装置の場合は3.6〜6kGであ
った。以上の結果からも明らかなように、この発明の電
磁石型円偏光装置では従来の装置に比べ、空隙中央部に
おける磁界強度を10%以上、及び20%以上向上する
ことが可能であることが分かる。
The magnetic field strength at the center of the air gap in each electromagnet-type circularly polarizing device is 3 to 5 kG in the case of the conventional device, and 3 in the case of the device of the present invention adopting the configuration shown in FIGS. 1 and 2. In the case of the device of the present invention which employs the configuration shown in FIGS. 3 and 4, it is 3.6 to 6 kG. As is clear from the above results, it is possible to improve the magnetic field strength in the central portion of the air gap by 10% or more and 20% or more in the electromagnet type circularly polarizing device of the present invention as compared with the conventional device. .

【0044】[0044]

【発明の効果】以上に示すように、この発明の電磁石型
円偏光装置は、従来から知られる電磁石型円偏光装置の
基本的な構成を採用しながらも、電子ビームの進行方向
に隣接配置する異磁極部間に発生する漏洩磁束を低減す
るために、該漏洩磁束の方向に相反する方向に磁化方向
を有する漏洩磁束低減用永久磁石を限られたスペース内
に効果的に配置することによって、実質的に電子ビーム
が通過する所定空隙内の有効磁束量を増加させ、結果と
して該空隙内の磁界強度を向上し、従来より高輝度の光
が得られる電磁石型円偏光装置の提供を可能にした。ま
た、従来装置と同程度の磁界強度を得るのであれば、該
装置の小型化を達成することができる。
As described above, the electromagnet-type circular polarization device of the present invention is arranged adjacent to the electron beam traveling direction while adopting the basic structure of the conventionally known electromagnet-type circular polarization device. In order to reduce the leakage magnetic flux generated between the different magnetic pole portions, by effectively disposing the leakage magnetic flux reducing permanent magnet having a magnetization direction in a direction opposite to the direction of the leakage magnetic flux in a limited space, It is possible to provide an electromagnet-type circular polarization device capable of substantially increasing the effective magnetic flux amount in a predetermined air gap through which an electron beam passes, thereby improving the magnetic field strength in the air gap, and obtaining light of higher brightness than before. did. Further, if a magnetic field strength comparable to that of the conventional device is obtained, the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である電磁石型円偏光装置
における所定の空隙を形成して対向配置する一対の異磁
極部の先端詳細斜視説明図であり、特に、漏洩磁束低減
用永久磁石の配置構成が明らかになるよう一対の異磁極
部のみを図示している。
FIG. 1 is a detailed perspective perspective view of a pair of different magnetic pole portions that are arranged to face each other with a predetermined gap formed in an electromagnet-type circularly polarizing device according to an embodiment of the present invention. Only the pair of different magnetic pole portions are shown so that the arrangement configuration of FIG.

【図2】図1に対応した漏洩磁束低減用永久磁石を配置
した構成の展開図(図2は2周期分の配置を示してい
る)である。
FIG. 2 is a development view of a configuration in which a leakage flux reducing permanent magnet corresponding to FIG. 1 is arranged (FIG. 2 shows an arrangement for two cycles).

【図3】この発明の他の実施例である電磁石型円偏光装
置における所定の空隙を形成して対向配置する一対の異
磁極部の先端詳細斜視説明図であり、特に、漏洩磁束低
減用永久磁石の配置構成が明らかになるよう一対の異磁
極部のみを図示している。
FIG. 3 is a detailed perspective view of tips of a pair of different magnetic pole portions which are opposed to each other with a predetermined gap being formed in an electromagnet type circularly polarizing device according to another embodiment of the present invention, and particularly, a permanent magnetic flux leakage reducing permanent magnet. Only the pair of different magnetic pole portions are shown so that the arrangement of the magnets is clear.

【図4】図3に対応した漏洩磁束低減用永久磁石を配置
した構成の展開図(図2は2周期分の配置を示してい
る)である。
FIG. 4 is a development view of a configuration in which a leakage magnetic flux reducing permanent magnet corresponding to FIG. 3 is arranged (FIG. 2 shows an arrangement for two cycles).

【図5】図3の構成からなる電磁石型円偏光装置の組立
斜視説明図である。
5 is an explanatory perspective view for assembling an electromagnet-type circularly polarizing device having the configuration of FIG.

【図6】この発明の他の実施例である電磁石型円偏光装
置における漏洩磁束低減用永久磁石を配置した構成の展
開図(図2は2周期分の配置を示している)である。
FIG. 6 is a development view (FIG. 2 shows an arrangement for two cycles) in which a leakage magnetic flux reducing permanent magnet is arranged in an electromagnet type circularly polarizing device according to another embodiment of the present invention.

【図7】この発明の電磁石型円偏光装置を構成する漏洩
磁束低減用永久磁石の加工方法を示す平面説明図であ
る。
FIG. 7 is an explanatory plan view showing a method of processing a leakage flux reducing permanent magnet that constitutes the electromagnet-type circularly polarizing device of the present invention.

【図8】この発明の他の実施例である電磁石型円偏光装
置を示す組立斜視説明図である。
FIG. 8 is an assembly perspective view showing an electromagnet type circular polarization device which is another embodiment of the present invention.

【図9】従来の電磁石型円偏光装置の全体構成の概要を
示す斜視説明図である。
FIG. 9 is a perspective explanatory view showing the outline of the overall configuration of a conventional electromagnet-type circularly polarizing device.

【図10】図9の電磁石型円偏光装置を構成する各々コ
アの概要を示す説明図である。
10 is an explanatory diagram showing an outline of each core that constitutes the electromagnet-type circularly polarizing device of FIG. 9. FIG.

【図11】図9の電磁石型円偏光装置における各々磁極
部の先端詳細斜視説明図である。
FIG. 11 is a detailed perspective explanatory view of the tip of each magnetic pole portion in the electromagnet-type circularly polarizing device of FIG. 9.

【図12】図11に対応した展開図(図2は2周期分の
配置を示している)である。
FIG. 12 is a development view corresponding to FIG. 11 (FIG. 2 shows an arrangement for two cycles).

【符号の説明】[Explanation of symbols]

1 コア組立体 1−1,1−2,1−3・・・・・1−n コア 1−1a,1−1b,1−2a,1−2b,1−3a,
1−3b・・・・・1−na,1−nb 磁極部 2 コイル 3 空隙 4−1,4−1a,4−1b,4−1c,5−1,5−
1a,5−1b,5−1c 漏洩磁束低減用永久磁石 6−1,7−1 固定枠 8 切欠部 9 めねじ部 10 漏洩磁束調整用磁性材料
1 core assembly 1-1, 1-2, 1-3 ... 1-n core 1-1a, 1-1b, 1-2a, 1-2b, 1-3a,
1-3b ... 1-na, 1-nb Magnetic pole part 2 Coil 3 Air gap 4-1, 4-1a, 4-1b, 4-1c, 5-1 and 5-
1a, 5-1b, 5-1c Leakage magnetic flux reducing permanent magnets 6-1 and 7-1 Fixed frame 8 Notch portion 9 Female screw portion 10 Leakage magnetic flux adjusting magnetic material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 重生 大阪府三島郡島本町江川2丁目15ー17 住 友特殊金属株式会社山崎製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Hashimoto 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の空隙を形成して対向配置する一対
の異磁極部を、電子ビームの進行方向に所定ピッチで、
かつ、一対の異磁極部の対向方向が各々ピッチ毎で周方
向に所定角度づつ変位するようにして複数配置してなる
電磁石型円偏光装置において、前記各々の対向配置する
一対の異磁極部の周方向外周部に該周方向に対して所定
角度の方向に磁化方向を有する漏洩磁束低減用永久磁石
を跨設したことを特徴とする電磁石型円偏光装置。
1. A pair of different magnetic pole portions, which are arranged to face each other with a predetermined gap formed therebetween, at a predetermined pitch in the traveling direction of an electron beam.
Further, in a plurality of electromagnet-type circularly polarizing devices arranged such that the facing directions of the pair of different magnetic pole portions are displaced by a predetermined angle in the circumferential direction at each pitch, the pair of different magnetic pole portions facing each other are provided. An electromagnet-type circularly polarizing device, characterized in that a leakage magnetic flux reducing permanent magnet having a magnetization direction at a predetermined angle with respect to the circumferential direction is provided on the outer circumferential portion in the circumferential direction.
【請求項2】 漏洩磁束低減用永久磁石が略扇型からな
り、かつ磁化方向が、各々の対向配置する一対の異磁極
部の周方向に対して一定角度の方向であることを特徴と
する請求項1の電磁石型円偏光装置。
2. The leakage flux reducing permanent magnet is substantially fan-shaped, and the magnetizing direction is a direction at a constant angle with respect to the circumferential direction of each of the pair of different magnetic pole portions facing each other. The electromagnet-type circularly polarizing device according to claim 1.
【請求項3】 漏洩磁束低減用永久磁石が略扇型からな
り、かつ磁化方向が、各々の対向配置する一対の異磁極
部の周方向に対して一対の異磁極部との当接面近傍部と
異磁極部間中央部とで異なることを特徴とする請求項1
の電磁石型円偏光装置。
3. The leakage magnetic flux reducing permanent magnet is substantially fan-shaped, and has a magnetization direction in the vicinity of the contact surface with the pair of different magnetic pole portions with respect to the circumferential direction of the pair of different magnetic pole portions arranged facing each other. 2. A portion and a central portion between different magnetic pole portions are different from each other.
Electromagnetic circular polarization device.
【請求項4】 各々の対向配置する一対の異磁極部の少
なくとも一方に近接離反可能に漏洩磁束調整用磁性材料
を配置したことを特徴とする請求項1の電磁石型円偏光
装置。
4. An electromagnet-type circular polarization device according to claim 1, wherein a magnetic flux adjusting magnetic material is disposed on at least one of the pair of different magnetic pole portions facing each other so as to be able to approach and separate from each other.
JP2880995A 1995-01-24 1995-01-24 Electromagnet type circularly light-polarizing device Pending JPH08203697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2880995A JPH08203697A (en) 1995-01-24 1995-01-24 Electromagnet type circularly light-polarizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2880995A JPH08203697A (en) 1995-01-24 1995-01-24 Electromagnet type circularly light-polarizing device

Publications (1)

Publication Number Publication Date
JPH08203697A true JPH08203697A (en) 1996-08-09

Family

ID=12258751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2880995A Pending JPH08203697A (en) 1995-01-24 1995-01-24 Electromagnet type circularly light-polarizing device

Country Status (1)

Country Link
JP (1) JPH08203697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030810A1 (en) * 2012-08-24 2014-02-27 한국원자력연구원 Variable-cycle permanent-magnet undulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030810A1 (en) * 2012-08-24 2014-02-27 한국원자력연구원 Variable-cycle permanent-magnet undulator
US9502166B2 (en) 2012-08-24 2016-11-22 Korea Atomic Energy Research Institute Variable-cycle permanent-magnet undulator

Similar Documents

Publication Publication Date Title
US5635889A (en) Dipole permanent magnet structure
US5886609A (en) Single dipole permanent magnet structure with linear gradient magnetic field intensity
JP2978873B2 (en) Electromagnet and accelerator, and accelerator system
US5568109A (en) Normal conducting bending electromagnet
EP0284439B1 (en) Magnetic field generating device
US10290463B2 (en) Compact deflecting magnet
JP3150248B2 (en) Magnetic field generator for MRI
US4761584A (en) Strong permanent magnet-assisted electromagnetic undulator
KR100560601B1 (en) Hybrid wiggler
WO2015072328A1 (en) Magnetic-field generation device and linear motor
JPH08203697A (en) Electromagnet type circularly light-polarizing device
GB1461521A (en) Focusing magnet
US6445130B1 (en) Axially polarized radiation from a toroidal magnetic structure with an equatorial slot
JP3056883B2 (en) Magnetic field generator for MRI
JPH0345886B2 (en)
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
JP3059596B2 (en) Magnetic field generator for MRI
JP2799948B2 (en) Cylindrical permanent magnet magnetic field generator for generating uniform axial magnetic field
JP2004342796A (en) Magnetic field generator
JP3150196B2 (en) Magnetic field generator for MRI
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPH0287505A (en) Magnetic field generating equipment for mri use
JPS6343304A (en) Uniform field magnet of permanent magnet type
JP4030695B2 (en) Insertion light source
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source