JPH0820356B2 - Particle counter - Google Patents

Particle counter

Info

Publication number
JPH0820356B2
JPH0820356B2 JP2109239A JP10923990A JPH0820356B2 JP H0820356 B2 JPH0820356 B2 JP H0820356B2 JP 2109239 A JP2109239 A JP 2109239A JP 10923990 A JP10923990 A JP 10923990A JP H0820356 B2 JPH0820356 B2 JP H0820356B2
Authority
JP
Japan
Prior art keywords
gas
optical cell
holding member
optical
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2109239A
Other languages
Japanese (ja)
Other versions
JPH046438A (en
Inventor
郁 近藤
和夫 一条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP2109239A priority Critical patent/JPH0820356B2/en
Publication of JPH046438A publication Critical patent/JPH046438A/en
Publication of JPH0820356B2 publication Critical patent/JPH0820356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粒子計に関し、特に気体中の微粒子を検出
する微粒子計に適用し得る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine particle meter, and is particularly applicable to a fine particle meter for detecting fine particles in a gas.

〔発明の概要〕[Outline of Invention]

本発明は、微粒子計において、流路部をベーキング可
能な部材で形成し、光ビーム照射部及び計測部と別体に
着脱可能に保持することにより、必要に応じて流路部を
ベーキングし得、測定精度を向上することができる。
INDUSTRIAL APPLICABILITY The present invention is capable of baking the flow path part as needed by forming the flow path part with a bakeable member and detachably holding it separately from the light beam irradiation part and the measurement part in the fine particle meter. The measurement accuracy can be improved.

〔従来の技術〕[Conventional technology]

従来、この種の微粒子計においては、透明部材で流体
の流路(以下光学セルと呼ぶ)を形成し、当該光学セル
内を流れる流体中の微粒子の濃度及び粒径を光学的手法
を用いて得るようになされたものがある。
Conventionally, in this type of fine particle meter, a fluid channel (hereinafter referred to as an optical cell) is formed by a transparent member, and the concentration and particle diameter of fine particles in the fluid flowing in the optical cell are measured by an optical method. There is something made to get you.

すなわち光学セル内に流体を流した状態で、当該光学
セルに光ビームを照射する。
That is, the optical cell is irradiated with a light beam while the fluid is flowing in the optical cell.

このようにすれば、光学セルの透過光及び散乱光にお
いては、流体中の微粒子濃度及び粒径に応じて光量が変
化する。
By doing so, the amount of light transmitted through the optical cell and scattered light changes depending on the concentration and particle size of the fine particles in the fluid.

従つて当該透過光又は散乱光の変化を検出することに
より、高い精度で気体又は液体中の微粒子濃度及び粒径
を測定することができる。
Therefore, by detecting the change in the transmitted light or the scattered light, it is possible to measure the particle concentration and particle diameter in the gas or liquid with high accuracy.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、この種の微粒子計で気体中の微粒子を検出
する場合、微粒子計の流路内壁に当該気体分子が吸着、
吸蔵されることを避け得ない。
By the way, when detecting fine particles in a gas with this type of fine particle meter, the gas molecules are adsorbed on the inner wall of the flow path of the fine particle meter,
It is unavoidable to be stored.

さらに、吸着、吸蔵された気体分子は脱ガスとして流
路内に放出される。
Further, the adsorbed and occluded gas molecules are released as degas into the flow channel.

従つて、例えば脱ガスとして水分を放出する流路内に
モノシラン(SiH4)ガスを流すと、当該モノシランガス
が水分と反応して微粒子が生成され、モノシランガス中
の微粒子を正確に検出し得なくなる。
Therefore, for example, when a monosilane (SiH 4 ) gas is caused to flow in a channel that releases moisture as degassing, the monosilane gas reacts with moisture to generate fine particles, which makes it impossible to accurately detect fine particles in the monosilane gas.

また、脱ガスとして酸素を放出する流路内に反応性の
高いガスを流すと、爆発等の事故を引き起こす虞れもあ
る。
In addition, if a highly reactive gas is flown in the flow path that releases oxygen as degassed, there is a risk of causing an accident such as an explosion.

このため従来の光学セルを用いた微粒子計において
は、反応性の高い気体等は測定し得ない問題があつた。
Therefore, the conventional fine particle meter using an optical cell has a problem that a highly reactive gas or the like cannot be measured.

本発明は以上の点を考慮してなされたもので、反応性
の高い気体等を精度良く測定することができる微粒子計
を提案しようとするものである。
The present invention has been made in consideration of the above points, and an object thereof is to propose a fine particle meter capable of accurately measuring a highly reactive gas or the like.

〔課題を解決するための手段〕[Means for solving the problem]

かかる課題を解決するため本発明においては、測定対
象である気体を通過させる光学セル6を有し、当該気体
に照射光学系2、4により光ビームを照射し、光ビーム
の透過光又は当該気体中の微粒子が発する散乱光を受光
光学系10、12により受光し、当該受光光学系10、12の検
出出力に基づいて気体中の微粒子を検出する微粒子計に
おいて、気体を導入部16を通して光学セル6に導入する
ように導入部16を第1のシール部材27を介して光学セル
6の導入側端に気密状態を維持するように結合すると共
に、当該光学セル6に導入された気体を光学セル6から
排出部18を通して排出するように排出部18を第2のシー
ル部材を介して光学セル6の排出側端に気密状態を維持
するように結合する第1の保持部材20と、光学セル6を
照射光学系2、4及び受光光学系10、12間に位置決めす
るように第1の保持部材20を保持する第2の保持部材26
とを具え、第1の保持部材20並びに当該第1の保持部材
20によつて保持される導入部16、第1のシール部材27、
光学セル6、第2のシール部材及び排出部18は第1の保
持部材20上に保持された状態でベーキング処理できるよ
うな耐熱材料によつて構成されることにより、第1の保
持部材20を第2の保持部材26から取りはずしてベーキン
グ処理できるようにする。
In order to solve such a problem, the present invention has an optical cell 6 that allows a gas to be measured to pass therethrough, irradiates the gas with a light beam by the irradiation optical systems 2 and 4, and transmits the light beam or the gas. In the fine particle meter that receives scattered light emitted by the fine particles in the light receiving optical systems 10 and 12, and detects the fine particles in the gas based on the detection output of the light receiving optical systems 10 and 12, the gas is introduced through the introduction unit 16 into the optical cell. 6 is connected to the end of the optical cell 6 through the first seal member 27 so as to maintain an airtight state, and the gas introduced into the optical cell 6 is introduced into the optical cell 6. 6, a first holding member 20 for connecting the discharge portion 18 to the discharge side end of the optical cell 6 via the second seal member so as to maintain the airtight state, and the optical cell 6 Illumination optical system 2, 4 and light receiving The second holding member 26 for holding the first holding member 20 so as to position between Manabu system 10, 12
And a first holding member 20 and the first holding member.
An inlet 16, held by 20; a first seal member 27,
The optical cell 6, the second seal member, and the discharge part 18 are made of a heat-resistant material that can be baked while being held on the first holding member 20, so that the first holding member 20 can be fixed. It is removed from the second holding member 26 so that it can be baked.

〔作用〕[Action]

光学セル6、導入部16、排出部18、第1のシール部材
27、第2のシール部材及び第1の保持部材20をベーキン
グ可能な耐熱部材で形成すると共に全体を第1の保持部
材20で一体に保持し、当該第1の保持部材20を第2の保
持部材26に脱着可能に保持すれば、必要に応じて気体流
路全体を取りはずしてベーキングし得、脱ガスを防止す
ることができる。
Optical cell 6, introduction part 16, discharge part 18, first seal member
27, the second seal member and the first holding member 20 are formed of a heat-resistant member capable of baking, and the whole is integrally held by the first holding member 20, and the first holding member 20 is held by the second holding member 20. If the member 26 is detachably held, the entire gas flow path can be removed and baked if necessary, and degassing can be prevented.

〔実施例〕〔Example〕

以下図面について、本発明の一実施例を詳述する。 An embodiment of the present invention will be described in detail with reference to the drawings.

第1図において、1は全体として微粒子計を示し、所
定の駆動回路でレーザ光源2を駆動することにより、レ
ンズ4を介して光学セル6に光ビームLA1を照射する。
In FIG. 1, reference numeral 1 denotes a particle meter as a whole, and a laser beam source 2 is driven by a predetermined driving circuit to irradiate an optical cell 6 with a light beam LA1 via a lens 4.

かくしてレーザ光源2及びレンズ4は、駆動回路と共
に光ビームLA1を射出する光ビーム照射部を構成する。
Thus, the laser light source 2 and the lens 4 together with the drive circuit constitute a light beam irradiation unit that emits the light beam LA1.

光ビームLA1の光軸上には、光学セル6を間に挟んで
遮光板でなる光トラツプ8が配置され、これにより光学
セル6を直進する透過光を遮光する。
On the optical axis of the light beam LA1, an optical trap 8 made of a light shielding plate is arranged with the optical cell 6 sandwiched between them, so that the transmitted light traveling straight through the optical cell 6 is shielded.

これにより微粒子計1においては、光学セル6で散乱
された散乱光LA2のみ選択的にレンズ10を介して受光素
子12に集光し、受光素子12の出力信号を所定の信号処理
回路で処理することにより、散乱光LA2に基づいて光学
セル6を流れる気体流中の微粒子を検出し得るようにな
されている。
As a result, in the fine particle meter 1, only the scattered light LA2 scattered by the optical cell 6 is selectively condensed on the light receiving element 12 via the lens 10, and the output signal of the light receiving element 12 is processed by a predetermined signal processing circuit. Thereby, the fine particles in the gas flow flowing through the optical cell 6 can be detected based on the scattered light LA2.

かくして光トラツプ8、レンズ10及び受光素子12は、
信号処理回路と共に散乱光に基づいて、気体中に微粒子
を検出する計測部を構成する。
Thus, the optical trap 8, the lens 10 and the light receiving element 12 are
A measurement unit that detects fine particles in the gas based on the scattered light together with the signal processing circuit is configured.

ここで光学セル6は、内面を鏡面仕上げされた円管形
状の石英ガラスで形成され、酸及び有機溶剤を用いた洗
浄処理の後、例えば150〔℃〕で数時間加熱するベーキ
ング処理により、内壁面に吸着、吸蔵した気体分子を放
出し得るようになされている。
Here, the optical cell 6 is made of quartz glass in the shape of a circular tube whose inner surface is mirror-finished, and is washed by using an acid and an organic solvent, and then baked by heating at 150 [° C.] for several hours. The gas molecules adsorbed and occluded on the wall surface can be released.

さらに光学セル6は、導入部16及び排出部18と共に被
測定対象の流路部を形成する。
Further, the optical cell 6 forms a flow path part to be measured together with the introduction part 16 and the discharge part 18.

すなわち第2図に一部断面を取つて示すように流路部
は、光学セル6を両端から押圧した状態で、導入部16及
び排出部18を金属ベース20にねじ22で固定することによ
り、光学セル6、導入部16及び排出部18を金属ベース20
上に一体に保持して形成される。
That is, as shown in FIG. 2 by taking a partial cross section, the flow path portion is fixed to the metal base 20 with the screw 22 while the optical cell 6 is being pressed from both ends. The optical cell 6, the introduction part 16 and the discharge part 18 are connected to the metal base 20.
It is formed by being integrally held on the top.

さらに流路部は、光学セル6、導入部16及び排出部18
を金属ベース20に一体に保持した状態で、当該金属ベー
ス20をねじ24で筐体26の所定位置に固定されるようにな
されている。
Further, the flow path portion includes the optical cell 6, the introduction portion 16, and the discharge portion 18.
While the metal base 20 is held integrally with the metal base 20, the metal base 20 is fixed to a predetermined position of the housing 26 with a screw 24.

これに対して筐体26は、別途光ビーム照射部及び計測
部を支持するようになされ、これにより当該微粒子計1
においては、光ビーム照射部及び計測部と別体に流路部
を保持し、ねじ24をゆるめて流路部だけ取り外し得るよ
うになされている。
On the other hand, the housing 26 is configured to separately support the light beam irradiation unit and the measurement unit.
In (1), the flow path section is held separately from the light beam irradiation section and the measurement section, and the screw 24 can be loosened to remove only the flow path section.

導入部16は、ステンレス製の管状部材でなり、内壁面
が鏡面仕上された後、当該内壁面に不動体膜が形成され
るようになされている。
The introduction part 16 is made of a stainless steel tubular member, and after the inner wall surface is mirror-finished, a passive film is formed on the inner wall surface.

これにより導入部16は、光学セル6と同様の洗浄処理
及びベーキング処理により、内壁面に吸着、吸蔵した気
体分子を放出し得るようになされている。
As a result, the introduction unit 16 can release the gas molecules adsorbed and occluded on the inner wall surface by the same cleaning process and baking process as the optical cell 6.

さらに導入部16は、両端に光学セル6及び配管の接続
部16A及び16Bが一体に形成され、これにより微粒子計に
おいては、接続部16Bのジョイントと接続し得る配管に
のみ接続し得るようになされている。
Further, the introduction part 16 is formed so that the optical cell 6 and the connection parts 16A and 16B of the pipe are integrally formed at both ends thereof, so that in the fine particle meter, it can be connected only to the pipe which can be connected to the joint of the connection part 16B. ing.

すなわち一般に配管の接続部分には、気体の性質、流
量等に応じて大きさ形状の異なるVCRジヨイント、スエ
ージロツクジヨイント(商品名)等が用いられる。
That is, in general, a VCR joint, a swage lock joint (trade name), etc., which have different sizes and shapes depending on the nature of the gas, the flow rate, etc., are used in the connecting portion of the pipe.

このため第3図及び第4図に示すように従来の微粒子
計においては、接続部16A側及び接続部16B側を別体に形
成した後、例えばOリング19や溶接により一体化して導
入部を形成し、種々の配管に微粒子計を接続し得るよう
になされていた。
Therefore, as shown in FIGS. 3 and 4, in the conventional fine particle meter, after the connecting portion 16A side and the connecting portion 16B side are separately formed, the introducing portion is integrated by, for example, an O-ring 19 or welding. It was formed so that a fine particle meter could be connected to various pipes.

ところがこの方法の場合、Oリング19や溶接部分で気
体が漏れる虞れがある他、当該部分で気体分子が滞留し
たり、吸着、吸蔵が激しくなる欠点がある。
However, in the case of this method, there is a possibility that gas may leak at the O-ring 19 or the welded portion, and gas molecules may accumulate at that portion, or adsorption and occlusion may become violent.

このためこの実施例においては、導入部16を一体に形
成し、配管毎に専用の導入部16を設けるようになされ、
これにより気体の漏れ、気体分子の滞留、吸着、吸蔵を
低減するようになされている。
Therefore, in this embodiment, the introduction portion 16 is integrally formed, and a dedicated introduction portion 16 is provided for each pipe.
This reduces gas leakage, gas molecule retention, adsorption, and occlusion.

さらに導入部16は、接続部16B近傍の外形にねじ山が
形成され、筐体26の側板26Aに形成されたU字溝に差し
込んだ後、当該ねじ山にねじ込んだ1組のナツト28で側
板26Aを締めつけ、これにより接続部16Bを筐体26の側板
26Aに固定するようになされている。
Further, the introduction portion 16 has a thread formed on the outer shape in the vicinity of the connection portion 16B, and is inserted into a U-shaped groove formed on the side plate 26A of the housing 26, and then a side plate with a set of nuts 28 screwed into the thread. Tighten 26A so that connection 16B is
It is designed to be fixed to 26A.

排出部18は、ステンレス制の管状部材でなり、導入部
16と同様に内壁面が鏡面仕上された後、当該内壁面に不
動体膜が形成されるようになされている。
The discharge part 18 is made of a stainless steel tubular member, and the introduction part
Similar to 16, after the inner wall surface is mirror-finished, the immovable body film is formed on the inner wall surface.

これにより排出部18は、導入部16及び光学セル6と同
様の洗浄処理及びベーキング処理により、内壁面に吸
着、吸蔵した気体分子を放出し得るようになされてい
る。
As a result, the discharge section 18 can release the gas molecules adsorbed and occluded on the inner wall surface by the same cleaning process and baking process as the introducing unit 16 and the optical cell 6.

さらに排出部18は、両端に光学セル6及び配管の接続
部18A及び18Bが一体に形成され、これにより導入部16と
同様に配管毎に専用の排出部18を用いて、気体の漏れ、
気体分子の滞留、吸着、吸蔵を低減するようになされて
いる。
Further, the discharge part 18 is integrally formed with the optical cell 6 and the connection parts 18A and 18B of the pipes at both ends thereof, so that the discharge part 18 dedicated to each pipe is used like the introduction part 16 to leak gas,
It is designed to reduce retention, adsorption, and occlusion of gas molecules.

さらに排出部18は、導入部16と同様に、接続部18B近
傍の外形に形成されたねじ山を介して、接続部18Bを筐
体26の側板26Bに固定する。
Further, like the introduction part 16, the discharge part 18 fixes the connection part 18B to the side plate 26B of the housing 26 via the screw thread formed on the outer shape near the connection part 18B.

これにより当該粒子計1においては、接続部16B及び1
8Bを配管に接続した後、導入部16を介して被測定対象の
気体を光学セル6に導入すると共に、導入した気体を排
出部18を介して排出し得るようになされ、光学セル6内
に被測定対象の気体流を形成して、当該気体中の微粒子
を測定し得るようになされている。
As a result, in the particle meter 1, the connection parts 16B and 1
After connecting 8B to the pipe, the gas to be measured can be introduced into the optical cell 6 through the introduction part 16 and the introduced gas can be discharged through the discharge part 18, so that the gas inside the optical cell 6 can be discharged. A gas flow to be measured is formed so that fine particles in the gas can be measured.

さらに接続部16A及び18Aにおいては、導入部16、排出
部18及び光学セル6と同様の洗浄処理及びベーキング処
理に耐え得るふつ素ゴム製のOリング27を間に挟んだ状
態で光学セル6を両側から押圧するようになされてい
る。
Further, at the connecting portions 16A and 18A, the optical cell 6 is sandwiched with an O-ring 27 made of fluorine rubber capable of withstanding the same cleaning treatment and baking treatment as the introducing portion 16, the discharging portion 18 and the optical cell 6. It is designed to be pressed from both sides.

従つて、光学セル6においては、導入部16及び排出部
18で両端から押圧された状態で支持されることにより、
Oリング27を押し漬し、これによりそれぞれ光学セル6
及び導入部16の接続部分、光学セル6及び排出部18の接
続部分をシールするようになされている。
Therefore, in the optical cell 6, the introduction unit 16 and the discharge unit
By being supported while being pressed from both ends at 18,
The O-ring 27 is dipped into the optical cell 6
Also, the connection part of the introduction part 16 and the connection part of the optical cell 6 and the discharge part 18 are sealed.

かくして、Oリング27を用いて接続部分をシールする
ことにより、簡易に接続部分をシールし得、その分当該
微粒子計1全体の構成を簡略化することができる。
Thus, by sealing the connection portion using the O-ring 27, the connection portion can be easily sealed, and the entire structure of the fine particle meter 1 can be simplified accordingly.

さらにこのとき、光学セル6を両端から押圧するよう
に導入部16及び排出部18を保持し、Oリング27を押し漬
してシールすることにより、光学セル6の両端面を均一
に押圧し得、これにより当該光学セル6の破損を有効に
回避して接続部分をシールすることができる。
Further, at this time, both ends of the optical cell 6 can be uniformly pressed by holding the introduction part 16 and the discharge part 18 so as to press the optical cell 6 from both ends, and pressing and sealing the O-ring 27. As a result, it is possible to effectively avoid damage to the optical cell 6 and seal the connection portion.

さらにこの実施例においては、光学セル6、導入部16
及び排出部18を金属ベース20に一体に支持した状態で、
当該金属ベース20をねじ24で筐体26の所定位置に固定す
ることにより、必要に応じてねじ24を弛めて流路部だけ
を取り外すことができる。
Further, in this embodiment, the optical cell 6 and the introduction part 16 are provided.
With the discharge unit 18 integrally supported by the metal base 20,
By fixing the metal base 20 at a predetermined position of the housing 26 with the screw 24, it is possible to loosen the screw 24 and remove only the flow path portion if necessary.

このとき流路部を形成する光学セル6、導入部16、排
出部18、Oリング27をベーキング可能な耐熱部材で形成
したことから、必要に応じて取り外した流路部全体を酸
及び有機溶剤を用いて洗浄処理した後、ベーキング処理
することができ、これにより流路部内壁面に吸着、吸蔵
した気体分子を放出させることができる。
At this time, since the optical cell 6, the introduction part 16, the discharge part 18, and the O-ring 27 that form the flow path part were formed of a heat-resistant material capable of baking, the entire flow path part removed as needed was treated with an acid and an organic solvent. After performing a cleaning process using, the baking process can be performed, whereby the gas molecules adsorbed and occluded on the inner wall surface of the flow path can be released.

従つてベーキング後、改めて筐体26に流路部を固定し
た後、被測定対象の気体を流して微粒子を測定すれば、
脱ガスの放出を未然に防止し得、反応性の高い気体等の
微粒子を精度良く測定することができる。
Therefore, after baking, after fixing the flow path portion to the housing 26 again, if the gas to be measured is flowed to measure the fine particles,
It is possible to prevent release of degas, and it is possible to accurately measure fine particles such as highly reactive gas.

さらに管状の光学セル6を同様に管状の導入部16、排
出部18で両側から押圧するように保持したことにより、
流路部を直線的に形成し得、残留ガスを除去することが
できる。
Further, by holding the tubular optical cell 6 so as to be pressed from both sides by the tubular introducing portion 16 and the discharging portion 18, similarly,
The flow path portion can be formed linearly and residual gas can be removed.

すなわち第5図に示すように、導入部45又は排出部47
に曲がりくねつた部分があると、当該部分で気体がスム
ーズに流れず、気体の溜まりが形成される。
That is, as shown in FIG. 5, the introduction part 45 or the discharge part 47.
If there is a tortuous part, the gas does not flow smoothly in the part and a gas pool is formed.

このため当該気体の溜まりにそれまで測定していた気
体が残留するようになり、例えば続いて被測定対象を切
り換えて測定する場合等、脱ガスが発生した場合と同様
に、この部分で被測定対象と残留ガスが反応するように
なり、結局安全かつ精度の高い測定が困難になる虞れが
あつた。
For this reason, the gas that has been measured up to that point will remain in the gas reservoir, and for example, when degassing occurs, such as when the measurement target is subsequently switched and measured, the measurement target is measured at this portion. The target and the residual gas may react with each other, which may result in difficulty in safe and accurate measurement.

ところがこの実施例のように、流路部を直線的に形成
すれば、気体をスムーズに流して気体溜まりの形成を防
止し得、その分安全かつ高い精度で種々の気体の微粒子
を測定することができる。
However, as in this embodiment, if the flow path portion is formed linearly, the gas can be smoothly flowed to prevent the formation of a gas pool, and accordingly, the fine particles of various gases can be measured safely and with high accuracy. You can

以上の構成において、被測定対象の気体を導入部16か
ら導入した後、光学セル6を介して排出部18から排出す
る。
In the above configuration, the gas to be measured is introduced from the introduction part 16 and then discharged from the discharge part 18 via the optical cell 6.

これにより気体流に光ビームLA1を照射して気体中の
微粒子を高い精度で検出することができる。
This makes it possible to irradiate the gas flow with the light beam LA1 and detect fine particles in the gas with high accuracy.

これに対して測定後においては、必要に応じてねじ24
を弛めて筐体26から流路部全体を取り外し、ここでベー
キング可能な耐熱部材で形成された流路部全体を洗浄処
理の後、ベーキング処理することにより、流路部に吸
着、吸蔵された気体分子を放出させることができる。
On the other hand, after measurement, screw 24
To remove the entire flow path portion from the housing 26, and after the entire flow path portion formed of a heat-resistant member that can be baked is washed, is baked to be adsorbed and occluded in the flow path portion. Gas molecules can be released.

かくしてベーキング処理した後、改めて筐体26に流路
部を固定して測定することにより、脱ガスの放出を未然
に防止し得、反応性の高い気体等の微粒子を精度良く測
定することができる。
Thus, after the baking process, by again fixing the flow path portion to the housing 26 for measurement, it is possible to prevent the release of degas, and it is possible to accurately measure fine particles such as highly reactive gas. .

以上の構成によれば、流路部をベーキング可能な耐熱
部材で形成し、流路部全体を筐体から取り外し得るよう
に一体に支持したことにより、必要に応じてベーキング
処理し得、かくして脱ガスの放出を未然に防止して、反
応性の高い気体等の微粒子を精度良く測定することがで
きる。
According to the above configuration, the flow path portion is formed of a heat-resistant member that can be baked, and the whole flow path portion is integrally supported so that it can be removed from the housing. The release of gas can be prevented in advance, and fine particles such as highly reactive gas can be accurately measured.

なお上述の実施例においては、光学セル6を石英ガラ
スで形成する場合について述べたが、光学セルの材質は
これに限らず、コランダム、サフアイア等の透明部材を
用いるようにしてもよい。
In the above-mentioned embodiment, the case where the optical cell 6 is made of quartz glass has been described, but the material of the optical cell is not limited to this, and a transparent member such as corundum or sapphire may be used.

さらに形状も円筒形状に限らず、必要に応じて各筒形
状等種々の形状の光学セルを広く適用することができ
る。
Further, the shape is not limited to the cylindrical shape, and optical cells having various shapes such as each cylindrical shape can be widely applied as needed.

さらに上述の実施例においては、ステンレス製の導入
部16及び排出部18を用いる場合について述べたが、本発
明はこれに限らず、要はベーキングに耐え得る材質であ
れば良く、例えばアルミ合金、インコネル等種々の材質
を広く適用することができる。
Furthermore, in the above-mentioned embodiment, the case where the introduction part 16 and the discharge part 18 made of stainless steel are used is described, but the present invention is not limited to this, and the point is that the material can withstand baking, for example, an aluminum alloy, Various materials such as Inconel can be widely applied.

さらに上述の実施例においては、接続部分のシール部
材としてフツ素ゴム性のOリングを用いる場合について
述べたが、本発明はこれに限らず、必要に応じて種々の
シール部材を広く適用することができる。
Further, in the above-described embodiment, the case where the fluorine rubber O-ring is used as the sealing member of the connecting portion is described, but the present invention is not limited to this, and various sealing members can be widely applied as necessary. You can

さらに上述の実施例においては、散乱光LA2に基づい
て微粒子を検出する微粒子計に本発明を適用した場合に
ついて述べたが、本発明はこれに限らず、透過光に基づ
いて微粒子を検出する微粒子計、さらには回折光に基づ
いて微粒子を検出する微粒子にも広く適用することがで
きる。
Further, in the above-mentioned embodiment, the case where the present invention is applied to a fine particle meter that detects fine particles based on scattered light LA2 has been described, but the present invention is not limited to this, and fine particles that detect fine particles based on transmitted light. It can be widely applied to a total number of particles, and further to fine particles for detecting fine particles based on diffracted light.

〔発明の効果〕〔The invention's effect〕

上述のように本発明によれば、流路部をベーキング可
能な耐熱部材で形成し、流路部全体を筐体から取り外し
得るように一体に保持したことにより、必要に応じて流
路部を筐体から取り外してベーキング処理することがで
きる。
As described above, according to the present invention, the flow passage portion is formed of a heat-resistant member capable of being baked, and the whole flow passage portion is integrally held so that it can be removed from the housing. It can be removed from the housing and baked.

これにより脱ガスの放出を未然に防止し得、反応性の
高い気体等の微粒子濃度を精度良く測定することができ
る微粒子計を得ることができる。
As a result, it is possible to obtain a fine particle meter capable of preventing degassing from being released and capable of accurately measuring the fine particle concentration of highly reactive gas or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による微粒子計を示す略線
図、第2図はその流路部の一部断面を取つて示す正面
図、第3図及び第4図は従来の導入部を示す断面図、第
5図は従来の流路部を示す略線図である。 1……微粒子計、6……光学セル、16、45……導入部、
18、47……排出部、26……Oリング。
FIG. 1 is a schematic diagram showing a fine particle meter according to an embodiment of the present invention, FIG. 2 is a front view showing a partial cross section of a flow path portion thereof, and FIGS. 3 and 4 are conventional introducing portions. And FIG. 5 is a schematic diagram showing a conventional flow path section. 1 ... Particle meter, 6 ... Optical cell, 16, 45 ... Introduction part,
18, 47 ... Ejection section, 26 ... O-ring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象である気体を通過させる光学セル
を有し、当該気体に照射光学系により光ビームを照射
し、上記光ビームの透過光又は当該気体中の微粒子が発
する散乱光を受光光学系により受光し、当該受光光学系
の検出出力に基づいて気体中の微粒子を検出する微粒子
計において、 上記気体を導入部を通して上記光学セルに導入するよう
に上記導入部を第1のシール部材を介して上記光学セル
の導入側端に気密状態を維持するように結合すると共
に、当該光学セルに導入された気体を上記光学セルから
排出部を通して排出するように上記排出部を第2のシー
ル部材を介して上記光学セルの排出側端に気密状態を維
持するように結合する第1の保持部材と、 上記光学セルを上記照射光学系及び上記受光光学系間に
位置決めするように上記第1の保持部材を保持する第2
の保持部材と を具え、 上記第1の保持部材並びに当該第1の保持部材によつて
保持される上記導入部、上記第1のシール部材、上記光
学セル、上記第2のシール部材及び上記排出部は上記第
1の保持部材上に保持された状態でベーキング処理でき
るような耐熱材料によつて構成されることにより、上記
第1の保持部材を上記第2の保持部材から取りはずして
ベーキング処理できるようにした ことを特徴とする微粒子計。
1. An optical cell that allows a gas to be measured to pass therethrough, wherein the gas is irradiated with a light beam by an irradiation optical system, and the transmitted light of the light beam or the scattered light emitted by fine particles in the gas is received. In a fine particle meter that receives light by an optical system and detects fine particles in a gas based on a detection output of the light receiving optical system, the introduction part is a first seal member so that the gas is introduced into the optical cell through the introduction part. And a second seal for discharging the gas introduced into the optical cell from the optical cell through the discharging portion while being coupled to the introduction side end of the optical cell so as to maintain the airtight state. A first holding member which is coupled to the discharge side end of the optical cell via a member so as to maintain an airtight state; and the optical cell is positioned between the irradiation optical system and the light receiving optical system. Second for holding the serial first holding member
And a holding member of the first holding member and the introduction portion held by the first holding member, the first seal member, the optical cell, the second seal member, and the discharge. Since the part is made of a heat-resistant material that can be baked while being held on the first holding member, the first holding member can be removed from the second holding member and baked. A fine particle meter characterized in that
JP2109239A 1990-04-25 1990-04-25 Particle counter Expired - Fee Related JPH0820356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109239A JPH0820356B2 (en) 1990-04-25 1990-04-25 Particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109239A JPH0820356B2 (en) 1990-04-25 1990-04-25 Particle counter

Publications (2)

Publication Number Publication Date
JPH046438A JPH046438A (en) 1992-01-10
JPH0820356B2 true JPH0820356B2 (en) 1996-03-04

Family

ID=14505142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109239A Expired - Fee Related JPH0820356B2 (en) 1990-04-25 1990-04-25 Particle counter

Country Status (1)

Country Link
JP (1) JPH0820356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731938B2 (en) 2011-04-14 2017-08-15 Otis Elevator Company Coated rope or belt for elevator systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758838B (en) * 2020-06-03 2024-05-10 研能科技股份有限公司 Gas detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912594Y2 (en) * 1979-06-01 1984-04-16 日本分光工業株式会社 Micro flow cell mounting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731938B2 (en) 2011-04-14 2017-08-15 Otis Elevator Company Coated rope or belt for elevator systems

Also Published As

Publication number Publication date
JPH046438A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US6108096A (en) Light absorption measurement apparatus and methods
JP2016223880A (en) Analyzer and exhaust gas processing system
US3826577A (en) Gas analyzing apparatus
JP2003139744A5 (en)
JPH0820356B2 (en) Particle counter
JP5239053B2 (en) Method and apparatus for measuring ozone concentration
JP3360097B2 (en) Vacuum ultraviolet optical device
JPH08159964A (en) Determination method of moisture in gas, and sample vessel
CN209979488U (en) Detection of SO by ultraviolet fluorescence2Device for the preparation of
RU2672156C2 (en) Device and method for measuring liquid level in pressurised apparatus, in particular apparatus of urea plant
EP0924508A2 (en) Light absorption measurement apparatus and method
US5918793A (en) Weld test apparatus and method
JPH04303738A (en) Particulate meter
AU556689B2 (en) System and process for measuring the concentration of a gas in a flowing stream of gases
CN111337400A (en) Particulate matter measuring chamber structure of forward scattering method
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JPH0431741A (en) Particulate meter
JP2004037409A (en) Cell for optical absorption spectrum analysis, and measuring method for silanol group concentration using it
JPS60259933A (en) Gas leakage detector
JP2004309154A (en) Infrared analyzer
JPH11153506A (en) On-service inspection method for joint
JP2923068B2 (en) Hot gas purification method and apparatus
JPH046896B2 (en)
JP2016057320A (en) Infrared gas analysis device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees