JPH046896B2 - - Google Patents

Info

Publication number
JPH046896B2
JPH046896B2 JP59211511A JP21151184A JPH046896B2 JP H046896 B2 JPH046896 B2 JP H046896B2 JP 59211511 A JP59211511 A JP 59211511A JP 21151184 A JP21151184 A JP 21151184A JP H046896 B2 JPH046896 B2 JP H046896B2
Authority
JP
Japan
Prior art keywords
gas
excimer laser
oxidizing
concentration
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59211511A
Other languages
Japanese (ja)
Other versions
JPS6190044A (en
Inventor
Kozo Shirata
Shigehiko Mukai
Susumu Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP21151184A priority Critical patent/JPS6190044A/en
Publication of JPS6190044A publication Critical patent/JPS6190044A/en
Publication of JPH046896B2 publication Critical patent/JPH046896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化学工業、機械工業、半導体工業等に
多用されるエキシマーレーザー発生システムにお
けるエキシマーレーザーガス中の酸化性ガスの濃
度を管理、制御するうえで不可欠な酸化性ガスの
濃度を測定する方法および装置に関するものであ
る。 (従来の技術) 従来、エキシマーレーザー発生システムにおけ
るヘリウム、アルゴン、クリプトンガスなどのよ
うな不活性ガスとフツ素、3フツ化窒素、塩化水
素ガスなどのような酸化性ガスとの混合ガスから
なるエキシマーレーザーガスは循環使用すること
なく、酸化性ガスの濃度の減少等に伴うガスの劣
化により、一定時間使用後排出することが多かつ
た。しかし、そのなかには未だ有用ガスが少なか
らず含まれており、コストを低減するうえで、あ
るいはエキシマーレーザーガス中にフツ素ガスな
どの有害ガスが含まれていて排出するうえで公害
処理設備を必要とするような場合は尚更、エキシ
マーレーザーガスを循環使用することが望まれて
いた。 極く一部で循環使用の試みが為されており、こ
の場合、システムで消費した、あるいは減少した
酸化性ガスを補給するためには酸化性ガスの濃度
を測定する必要がある。その手段としては化学分
析やガスクロマトグラフイー等が採用されている
がこれらは次のような問題を有していた。 (本発明が解決しようとする問題点) エキシマーレーザー発生システムにおいて電子
ビーム照射、放電などの励起に伴い酸化性ガス、
たとえばフツ素ガスが低減し、それとともにレー
ザー出力が減少するので、フツ素ガスの補給をし
て常にフツ素ガスの濃度を設定値に維持しておく
のが望ましい。 ところが、化学分析はいうまでもなくガスクロ
マトグラフイーによる場合、分析に長時間、少な
くとも30分以上を要し、ことに腐食性の著しいフ
ツ素ガスの場合はガスクロマトグラフイー装置に
損耗をもたらすので一旦腐食性の少ないフツ化物
に変換し、ガスクロマトグラフイーに供する操作
をも要するため、分析結果が出た時点においては
実際にはフツ素ガスはさらに低減しているのでフ
ツ素ガスの濃度を設定値に維持するのは不可能で
あつた。 また、これらの分析手段は操作が煩雑で熟練を
要し、かつ分析機器の規模が大で高価なものであ
つたりし、非熟練者でも迅速、容易かつ精度良く
測定し得るものではなかつた。 一方、ケミルミネツセンスを利用したガスの測
定方法や装置については、従来から知られてい
る。 たとえば、特開昭48−29492号(以下従来例
という。)には光電倍増管のチユーブに接して透
光板を、該透光板に接してベースプレートをそれ
ぞれ配置し、ベースプレートの透光板に接する面
には浅い曲がりくねつた溝を設けておき、被測定
ガスをその溝に導き、該溝上で固体、液体あるい
はガス状の反応剤と反応させ、生じたケミルミネ
ツセンスを前記透光板を介して光電倍増管で検
知、測定することが、特開昭51−60593号(以下
従来例という。)にはオゾンを用いて有機ガス
を分析するに際してクロマトグラフイーのカラム
を利用して二種類以上の被測定ガスを分離した
り、あるいはさらにそれぞれのガスの反応温度の
差異を利用して適当温度に制御したり、それぞれ
のガスの反応によるケミルミネツセンスの波長の
差異を利用し適当波長を通過するフイルターをも
ちいたりして、それぞれのガスのケミルミネツセ
ンスを検知、測定することが、特開昭57−53646
号(以下従来例という。)には反応室の周囲か
ら被測定ガスおよび反応ガスを取り入れるための
孔を均等に分布させ、また検出のためのフオトダ
イオードの位置を特定したものを、複数個配置さ
せることが開示されている。 これら従来例〜はいずれもエキシマーレー
ザーガス中のフツ素、3フツ化窒素、塩化水素等
の酸化性ガスの測定については何ら言及しておら
ず、またいずれも反応室の一方より被測定ガス、
反応ガスのそれぞれを導入しつつ他方よりより反
応したガスを吸引、排出するシステムであつて、
これらガス導入量を一定に維持するためには導
入、排出を釣合せた精緻なバルブ操作を行わない
と精度のよい測定ができないし、また必然的にガ
スサンプリング量が多くなり、測定のために余分
のガス量を必要とすることになる。 なお、従来例は反応が透光板に近接した場所
で生ずるため反応生成物等による透光板の汚染を
もたらし易くそれは測定精度を悪化させるという
問題がある。従来例においてはカラムによるガ
ス分離に長時間必要とし、加えてカラムや加熱制
御手段、冷却手段、フイルター等を付設すること
は装置を大がかりなものとし、操作を複雑なもの
とする。ことにフツ素ガスのような腐食性の著し
いエキシマーレーザーガスを測定する場合は該ガ
スと接触する部材の腐食を避け得ないが、該部材
を交換するに際して手間がかかり経費も多大なも
のとなる等の問題がある。従来例も前記同様腐
食部材の交換に手間と経費を要することは想像に
難くない。 本発明はこれらの問題点を解決し、エキシマー
レーザーガスの管理上必要とされる迅速、容易か
つ精度のよい測定方法と、加えて構造が簡素でコ
ンパクトな、また部品の交換も迅速、容易にでき
るような測定装置を提供することを目的とする。 (問題点を解決するための手段) 本発明は不活性ガスと、フツ素系または塩素系
ガスのうちの一種類の酸化性ガスとの混合ガスか
らなるエキシマーレーザーガス中の酸化性ガスの
濃度を測定する方法において、水素、メタン、水
素化珪素ガスまたはこれらの混合ガスより選択さ
れる還元性ガスを前記エキシマーレーザーガスに
接触させ、前記酸化性ガスと化学反応する際に生
ずる発光(ケミルミネツセンス)の光強度を測定
すること、および不活性ガスと、フツ素系または
塩素系ガスのうちの一種類の酸化性ガスとの混合
ガスからなるエキシマーレーザーガス中の酸化性
ガスの濃度を測定する装置において、前記エキシ
マーレーザーガスの循環ラインに枝管を設けてそ
の一部を採取する導入管、これに一端を連設し、
水素、メタン、水素化珪素ガスまたはこれらの混
合ガスより選択される還元性ガスを封入した反応
容器、該反応容器に前記還元性ガスを送入する送
入管、前記反応容器のレーザーガス導入側に対向
する他端側において前記酸化性ガスと還元性ガス
との反応により生じたケミルミネツセンスを検知
し電気信号に変換する検出装置、その電気信号を
増幅する増幅器、その増幅信号を記録保存する記
録装置を有することからなる。 本発明において、エキシマーレーザーガス中の
不活性ガスはヘリウム、ネオン、アルゴン、クリ
プトンガス等の主として希ガスをいい、一種類で
も二種類以上存在していてもよい。 酸化性ガスはフツ素、3フツ化窒素、塩化水素
ガス等であつて、エキシマーレーザーガス中に
は、それらのうち一種類を存在せしめる。 還元性ガスは酸化性ガスと反応しケミルミネツ
センスを有効に発現させ、精度よく測定するため
に特定するもので、水素、メタン、水素化珪素、
あるいはこれらの混合ガスを採用する。 本発明の装置は、エキシマーレーザーガスの循
環ラインに該レーザーガスの一部を導く枝管を設
け、さらにこれを採取し反応容器に導入する容積
数c.c.またはそれ以下の導入管を経て、予め送入管
より導いたごく低気圧の特定の還元性ガスを封入
した容積数c.c.〜数百c.c.程度の反応容器たとえば円
筒容器の一端より前記エキシマーレーザーガスを
流入させ、該レーザーガス中の前記した酸化性ガ
スを前記還元性ガスと反応させ、反応の際生ずる
ケミルミネツセンスを反応容器の前記ガス流入端
に対向する他端に設けた窓部を介し、検出装置の
光電変換素子すなわちフオトダイオード等で検出
し、その電気信号を増幅し記録装置で記録保存
し、反応後の残留ガスを排出管より系外に排出す
るようにしたものであり、きわめて簡素かつコン
パクトな構造を呈している。 さらに導入パイプ、反応容器はパイプ継手等に
より着脱自在としたのでこれらが損耗した場合も
迅速容易に交換できる。 (実施例) 以下本発明の実施の一例を詳述する。 フツ素系クリプトンエキシマーレーザーシステ
ムにおいては、電子ビームの照射、放電等による
励起に伴つてフツ素ガスの温度が減少するが、そ
のフツ素ガスを供給するうえで本発明が有効に適
用し得る。 第1図は本発明の装置の一例を示す概略図であ
り、図中5はエキシマーレーザーガス循環ライン
(図示せず)より該レーザーガスを採取する枝パ
イプでバルブ6の操作により例えば容積3c.c.の導
入パイプ1に導かれる。なお、ガス圧は本実施例
においては2気圧である。7は還元性ガス例えば
水素化珪素ガスの導入パイプでガスはバルブ8の
操作により一例として容積50c.c.の反応容器2に封
入される。なお、ガス圧は0.3Torr(4×10-4
圧)程度の極く低圧でよい。9は測定後の廃ガス
の排出パイプであり、排出はバルブ14の操作に
よつて行われる。また、バルブ14は導入パイプ
1及び反応容器2を測定前に10-3Torrの真空下
にするのに用いられる。 混合ガスはバルブ10の操作により反応容器2
の一端より流入し、そこで混合ガス中のフツ素ガ
スと水素化珪素ガスが接触、瞬時に反応する。前
記ガス流入端に対向する他端に設けた窓部11を
介し、窓部11に接して、あるいは近接して配置
したフオトダイオード3により検出され、電気信
号に変換され増幅器13により適宜増幅されて、
第2図に示すような光強度−時間曲線として記録
計4に記録される。このように操作は極めて容易
であり混合ガスを測定に供してから数秒で結果が
判明する。 反応容器2の形状は特定しないが、既述したよ
うにガス流入端に対向する他端に窓部11を設
け、流入ガスの噴出方向を窓部11を形成する面
垂直軸に一致させるようにすることがケミルミネ
ツセンスを検出するために最も効果的である。な
お、前記ガス流入端と窓部11が余りに近接して
いると反応生成物等が窓部11を汚染し、その透
光性を損ね、フオトダイオード3の検出精度を悪
化させる恐れがある。したがつて流入ガス圧力と
水素化珪素ガス圧力の差やそれぞれのガスの容積
にもよるが、ガス流入端と窓部11の間は通常5
cm以上の間隔を保つようにするのが好ましい。 導入パイプ1や反応容器2にはアルミニウムも
しくはニツケルを用いれば、その内表面はフツ素
ガスと反応して堅固なフツ化アルミニウムもしく
はフツ化ニツケルの被膜を形成し、それらはフツ
素ガスの侵食に対しきわめて抵抗の大きなものと
なる。窓部11には同様に侵食抵抗の大きい石英
ガラスを用いるのが好ましい。 第4図はエキシマーレーザーガスの導入部分を
示す一部破断側面図で、枝パイプ5の先はバルブ
6を取付け、その流出側端部と導入パイプ1の始
端を突合せて取外し自在の筒状の継手15で連結
し、同様に導入パイプ1の終端にはバルブ10を
取付け、その流出側端部と反応容器2の流入側パ
イプを突合せて取外し自在の筒状の継手16を取
付ける。図示しないが、さらに同様にバルブ8,
14の反応容器側もパイプを突合せて筒状の継手
を取付けることにより、導入パイプ1、反応容器
2が損耗した場合でも簡単に取替えることができ
る。 フツ素ガスの濃度は、第2図のグラフの光強度
−時間曲線の積分強度に比例しており、第3図の
グラフはフツ素ガスの濃度と前記積分強度の関係
を示したものであるが、0.1〜0.3%の微量域にお
いても濃度変化に対し極めてよい直線性が得られ
る。 第1表はフツ素ガス濃度の測定精度及び測定時
間を比較例、参考例と対比して示したものであり
表中No.1〜No.3は本発明によるもの、No.4,No.5
は還元性ガスとしてアンモニア、一酸化炭素を採
用した場合の比較例、No.6はガスクロマトグラフ
イーにおける参考例である。この結果から比較例
においては測定精度が誤差範囲±6%以上と不充
分であるのに対し、本発明において測定精度は誤
差範囲±2%以下であつてフツ素ガスを管理する
うえで充分な精度を示し、かつ測定時間は10秒以
内と極めて短くエキシマーレーザーガスを管理す
るのに好適である。ことにNo.1の水素化珪素ガス
を用いた場合は低フツ素濃度から高フツ素濃度域
にわたり着火手段を用いることなく高精度で測定
できる。一方水素、メタンガスを用いた場合はフ
ツ素ガスの低濃度域の測定には第1図12に示す
ようなフイラメント等の着火手段(表中*印で示
している。)を採用すればよく、この着火そのも
のの光強度は予めブランクテストをすることによ
り除外できる。 本発明の実施に際しては、エキシマーレーザー
発生システムに常に補給用のフツ素ガスを流しつ
つ定時間おきに該レーザー発生システム中のフツ
素ガス濃度を測定し、その結果より前記補給用フ
ツ素ガス量を調整するようなことも可能である。
このようにすることにより、前記レーザー発生シ
ステム中のフツ素ガス濃度は常に設定値にあり、
最適なレーザー発振条件を維持できる。 なお、記録計4に換え、フオトダイオードから
の電気信号を増幅した後、アナログ−デジタル変
換し、マイクロコンピユーターに入力し、第3図
のフツ素ガス濃度−積分強度の関係を予め記憶さ
せておけば出力結果をフツ素ガス濃度として表示
させることも可能である。 (発明の効果) 以上のように、本発明はエキシマーレーザーガ
スにおける不活性ガスに混合された酸化性ガスの
濃度を迅速、容易かつ高精度で測定できるので酸
化性ガスの濃度を常に設定値に維持でき、したが
つて常に最適状態でのエキシマーレーザー発生シ
ステムの稼働を可能にするという顕著な効果をも
たらすものである。 また、本発明の装置は簡素かつコンパクトでそ
の操作も熟練を要さず、導入パイプや反応容器等
の部品が損耗した場合でも迅速に交換でき、その
費用も軽微であるという利点を有する。 【表】
[Detailed Description of the Invention] (Industrial Application Field) The present invention manages and controls the concentration of oxidizing gas in excimer laser gas in excimer laser generation systems frequently used in the chemical industry, machinery industry, semiconductor industry, etc. The present invention relates to a method and apparatus for measuring the concentration of oxidizing gas, which is essential for this purpose. (Prior art) Conventionally, an excimer laser generation system consists of a mixed gas of an inert gas such as helium, argon, or krypton gas and an oxidizing gas such as fluorine, nitrogen trifluoride, or hydrogen chloride gas. Excimer laser gas is not recycled and is often discharged after a certain period of use due to deterioration of the gas due to a decrease in the concentration of oxidizing gas. However, it still contains a considerable amount of useful gas, and in order to reduce costs, or because the excimer laser gas contains harmful gases such as fluorine gas, pollution treatment equipment is required to discharge them. In such cases, it has been desired to recycle the excimer laser gas. Attempts have been made to recycle the gas in a small number of cases, and in this case, it is necessary to measure the concentration of the oxidizing gas in order to replenish the oxidizing gas that has been consumed or decreased in the system. Chemical analysis, gas chromatography, etc. have been adopted as means for this purpose, but these have the following problems. (Problems to be solved by the present invention) In an excimer laser generation system, oxidizing gas,
For example, since the fluorine gas decreases and the laser output decreases accordingly, it is desirable to always maintain the fluorine gas concentration at the set value by replenishing the fluorine gas. However, when using gas chromatography, let alone chemical analysis, analysis takes a long time, at least 30 minutes, and in the case of fluorine gas, which is extremely corrosive, it causes wear and tear on the gas chromatography equipment. Because it requires an operation to convert it into a less corrosive fluoride and submit it to gas chromatography, the concentration of fluorine gas must be set at the set value because the actual fluorine gas has been reduced even further by the time the analysis results are obtained. It was impossible to maintain it. In addition, these analytical means are complicated to operate and require skill, and the analytical equipment is large and expensive, making it impossible for even unskilled personnel to perform measurements quickly, easily, and accurately. On the other hand, gas measuring methods and devices using chemiluminescence have been known for some time. For example, in Japanese Patent Application Laid-Open No. 48-29492 (hereinafter referred to as the conventional example), a transparent plate is placed in contact with the tube of a photomultiplier tube, and a base plate is placed in contact with the transparent plate. A shallow meandering groove is provided on the contacting surface, and the gas to be measured is introduced into the groove and reacts with a solid, liquid, or gaseous reactant on the groove, and the resulting chemiluminescence is transferred to the translucent plate. In Japanese Patent Application Laid-open No. 51-60593 (hereinafter referred to as the conventional example), two types of chromatography columns are used to analyze organic gases using ozone. It is possible to separate the above-mentioned gases to be measured, or further to control the temperature to an appropriate temperature by utilizing the difference in reaction temperature of each gas, or to adjust the appropriate wavelength by utilizing the difference in chemiluminescence wavelength due to the reaction of each gas. Detecting and measuring the chemiluminescence of each gas by using a filter that passes through it was disclosed in Japanese Patent Application Laid-Open No. 57-53646.
(hereinafter referred to as the conventional example), holes are evenly distributed to take in the gas to be measured and the reaction gas from around the reaction chamber, and multiple photodiodes for detection are located at specified positions. It is disclosed that it allows None of these conventional examples mentions the measurement of oxidizing gases such as fluorine, nitrogen trifluoride, and hydrogen chloride in excimer laser gas, and in all of them, the gas to be measured is measured from one side of the reaction chamber.
A system that introduces each of the reactant gases while sucking in and discharging the more reacted gas from the other,
In order to maintain the amount of these gases introduced at a constant level, accurate measurements cannot be made unless precise valve operations are performed to balance the introduction and discharge.Also, the amount of gas sampling inevitably increases, making it difficult for measurements to be carried out. This will require an extra amount of gas. In the conventional example, since the reaction occurs in the vicinity of the light-transmitting plate, there is a problem in that the light-transmitting plate is likely to be contaminated by reaction products and the like, which deteriorates measurement accuracy. In the conventional method, gas separation using a column requires a long time, and the addition of columns, heating control means, cooling means, filters, etc. makes the apparatus bulky and complicates operation. Particularly when measuring extremely corrosive excimer laser gas such as fluorine gas, corrosion of parts that come into contact with the gas cannot be avoided, but replacing these parts is time consuming and costly. There are other problems. It is not hard to imagine that in the conventional example as well, it takes time and money to replace corroded members. The present invention solves these problems and provides a quick, easy, and accurate measuring method required for managing excimer laser gas.In addition, the structure is simple and compact, and parts can be replaced quickly and easily. The purpose is to provide a measuring device that can (Means for Solving the Problems) The present invention aims to improve the concentration of an oxidizing gas in an excimer laser gas consisting of a mixed gas of an inert gas and one type of oxidizing gas among fluorine-based or chlorine-based gases. In this method, a reducing gas selected from hydrogen, methane, silicon hydride gas, or a mixture thereof is brought into contact with the excimer laser gas, and the luminescence (chemiluminescence) produced when it chemically reacts with the oxidizing gas is detected. (sensor) and the concentration of oxidizing gas in excimer laser gas, which is a mixture of an inert gas and one type of oxidizing gas from fluorine-based or chlorine-based gases. In the apparatus, a branch pipe is provided in the circulation line of the excimer laser gas, an introduction pipe for collecting a part of the branch pipe, and one end is connected to the introduction pipe,
a reaction vessel sealed with a reducing gas selected from hydrogen, methane, silicon hydride gas, or a mixed gas thereof; a feed pipe for feeding the reducing gas into the reaction vessel; a laser gas introduction side of the reaction vessel; A detection device that detects chemiluminescence generated by the reaction between the oxidizing gas and the reducing gas and converts it into an electrical signal at the other end facing the oxidizing gas, an amplifier that amplifies the electrical signal, and records and stores the amplified signal. It consists of having a recording device. In the present invention, the inert gas in the excimer laser gas mainly refers to rare gases such as helium, neon, argon, krypton gas, etc., and one or more types may be present. The oxidizing gas is fluorine, nitrogen trifluoride, hydrogen chloride gas, etc., and one of them is present in the excimer laser gas. Reducing gases react with oxidizing gases to effectively express chemiluminescence, and are specified for accurate measurement. Hydrogen, methane, silicon hydride,
Alternatively, a mixture of these gases may be used. In the apparatus of the present invention, a branch pipe is provided in the excimer laser gas circulation line to introduce a part of the laser gas, and the gas is further collected and sent through an introduction pipe with a volume of several cc or less to be introduced into the reaction vessel. The excimer laser gas is introduced from one end of a cylindrical container, for example, into a reaction vessel with a volume of several cc to several hundred cc, which is filled with a specific reducing gas at very low pressure introduced from an entry pipe, and the above-mentioned oxidation in the laser gas is carried out. The reactive gas is reacted with the reducing gas, and the chemiluminescence generated during the reaction is transmitted to a photoelectric conversion element, ie, a photodiode, etc. of a detection device through a window provided at the other end of the reaction vessel opposite to the gas inflow end. It detects the electrical signal, amplifies it, records it with a recording device, and discharges the residual gas after the reaction out of the system through an exhaust pipe, and has an extremely simple and compact structure. Furthermore, since the introduction pipe and reaction vessel are made detachable using pipe joints, etc., even if they become worn out, they can be quickly and easily replaced. (Example) An example of implementing the present invention will be described in detail below. In a fluorine-based krypton excimer laser system, the temperature of fluorine gas decreases as it is excited by electron beam irradiation, discharge, etc., and the present invention can be effectively applied to supplying the fluorine gas. FIG. 1 is a schematic diagram showing an example of the apparatus of the present invention. In the figure, 5 is a branch pipe for collecting laser gas from an excimer laser gas circulation line (not shown), and by operating a valve 6, a volume of, for example, 3c is extracted. It is led to the introduction pipe 1 of c. Note that the gas pressure is 2 atmospheres in this example. Reference numeral 7 denotes a pipe for introducing a reducing gas such as silicon hydride gas, and the gas is sealed into the reaction vessel 2 having a volume of 50 c.c., for example, by operating a valve 8. Note that the gas pressure may be as extremely low as about 0.3 Torr (4×10 −4 atmospheres). Reference numeral 9 denotes a pipe for discharging waste gas after measurement, and discharge is performed by operating a valve 14. Further, the valve 14 is used to bring the introduction pipe 1 and the reaction vessel 2 under a vacuum of 10 -3 Torr before measurement. The mixed gas is supplied to the reaction vessel 2 by operating the valve 10.
The fluorine gas and silicon hydride gas in the mixed gas come into contact with each other and react instantly. Via the window section 11 provided at the other end opposite to the gas inflow end, the signal is detected by the photodiode 3 disposed in contact with or close to the window section 11, converted into an electrical signal, and appropriately amplified by the amplifier 13. ,
The light intensity is recorded on the recorder 4 as a light intensity-time curve as shown in FIG. As described above, the operation is extremely easy, and the results are known within a few seconds after the mixed gas is subjected to measurement. Although the shape of the reaction vessel 2 is not specified, as described above, the window 11 is provided at the other end opposite to the gas inflow end, and the direction of ejection of the inflow gas is aligned with the axis perpendicular to the plane forming the window 11. is the most effective for detecting chemiluminescence. Note that if the gas inflow end and the window 11 are too close to each other, reaction products and the like may contaminate the window 11, impair its light transmittance, and deteriorate the detection accuracy of the photodiode 3. Therefore, depending on the difference between the inflow gas pressure and the silicon hydride gas pressure and the volume of each gas, the distance between the gas inflow end and the window 11 is usually 5.
It is preferable to maintain a distance of at least cm. If aluminum or nickel is used for the introduction pipe 1 or the reaction vessel 2, the inner surface will react with the fluorine gas to form a hard film of aluminum fluoride or nickel fluoride, which will resist the attack of the fluorine gas. However, there will be an extremely large amount of resistance. Similarly, it is preferable to use quartz glass, which has high erosion resistance, for the window portion 11. FIG. 4 is a partially cutaway side view showing the introduction part of the excimer laser gas, in which a valve 6 is attached to the tip of the branch pipe 5, and a removable cylindrical valve is attached by abutting the outlet end of the branch pipe 5 with the starting end of the introduction pipe 1. Similarly, a valve 10 is attached to the terminal end of the introduction pipe 1, and a removable cylindrical coupling 16 is attached by abutting the outflow side end of the valve 10 against the inflow side pipe of the reaction vessel 2. Although not shown, the valve 8,
By butting the pipes together and attaching a cylindrical joint to the reaction vessel side of 14, even if the introduction pipe 1 and the reaction vessel 2 become worn out, they can be easily replaced. The concentration of fluorine gas is proportional to the integrated intensity of the light intensity-time curve shown in the graph of Fig. 2, and the graph of Fig. 3 shows the relationship between the concentration of fluorine gas and the integrated intensity. However, extremely good linearity with respect to concentration changes can be obtained even in the trace amount range of 0.1 to 0.3%. Table 1 shows the measurement accuracy and measurement time of fluorine gas concentration in comparison with a comparative example and a reference example. In the table, Nos. 1 to 3 are according to the present invention, Nos. 5
No. 6 is a comparative example in which ammonia and carbon monoxide are used as reducing gases, and No. 6 is a reference example in gas chromatography. This result shows that in the comparative example, the measurement accuracy is insufficient with an error range of ±6% or more, whereas in the present invention, the measurement accuracy is within an error range of ±2%, which is sufficient for controlling fluorine gas. It exhibits high accuracy and the measurement time is extremely short, within 10 seconds, making it suitable for managing excimer laser gas. In particular, when No. 1 silicon hydride gas is used, measurements can be made with high precision over a range of low to high fluorine concentrations without using any ignition means. On the other hand, when using hydrogen or methane gas, an ignition means such as a filament (indicated by * in the table) as shown in Fig. 12 may be used to measure the low concentration range of fluorine gas. The light intensity of this ignition itself can be excluded by conducting a blank test in advance. When implementing the present invention, the fluorine gas concentration in the excimer laser generation system is measured at regular intervals while replenishing fluorine gas is constantly flowing through the excimer laser generation system, and the amount of replenishing fluorine gas is determined based on the results. It is also possible to adjust the
By doing so, the fluorine gas concentration in the laser generation system is always at the set value,
Optimal laser oscillation conditions can be maintained. In addition, after amplifying the electrical signal from the photodiode by replacing it with the recorder 4, convert it from analog to digital, input it to the microcomputer, and memorize the relationship between fluorine gas concentration and integrated intensity shown in Figure 3 in advance. For example, it is also possible to display the output results as fluorine gas concentration. (Effects of the Invention) As described above, the present invention allows the concentration of the oxidizing gas mixed with the inert gas in the excimer laser gas to be measured quickly, easily, and with high precision, so that the concentration of the oxidizing gas can always be kept at the set value. This has the remarkable effect of making it possible to maintain the excimer laser generation system in an optimal state at all times. Furthermore, the apparatus of the present invention has the advantage that it is simple and compact, does not require any skill to operate, and even if parts such as the introduction pipe or reaction vessel become worn out, they can be quickly replaced, and the cost is low. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一例を示す概略図、第
2図はフツ素ガスを0.3%含んだアルゴンガスと
水素化珪素ガスとの反応によるケミルミネツセン
スを記録した光強度−時間のグラフ、第3図はフ
ツ素ガスの濃度−光強度(積分強度)の関係を示
したグラフ、第4図はエキシマーレーザーガスの
導入部分を示す一部破断側面図である。 1……導入パイプ、2……反応容器、3……フ
オトダイオード、4……記録計、13……増幅
器。
Figure 1 is a schematic diagram showing an example of the device of the present invention, and Figure 2 is a graph of light intensity versus time recording chemiluminescence due to the reaction between argon gas containing 0.3% fluorine gas and silicon hydride gas. 3 is a graph showing the relationship between the concentration of fluorine gas and the light intensity (integrated intensity), and FIG. 4 is a partially cutaway side view showing the introduction portion of the excimer laser gas. 1...Introduction pipe, 2...Reaction container, 3...Photodiode, 4...Recorder, 13...Amplifier.

Claims (1)

【特許請求の範囲】 1 不活性ガスと、フツ素系または塩素系ガスの
うちの一種類の酸化性ガスとの混合ガスからなる
エキシマーレーザーガス中の酸化性ガスの濃度を
測定する方法において、水素、メタン、水素化珪
素ガスまたはこれらの混合ガスより選択される還
元性ガスを前記エキシマーレーザーガスに接触さ
せ、前記酸化性ガスと化学反応する際に生ずる発
光(ケミルミネツセンス)の光強度を測定するこ
とを特徴とする酸化性ガスの濃度を測定する方
法。 2 不活性ガスと、フツ素系または塩素系ガスの
うちの一種類の酸化性ガスとの混合ガスからなる
エキシマーレーザーガス中の酸化性ガスの濃度を
測定する装置において、前記エキシマーレーザー
ガスの循環ラインに枝管を設けてその一部を採取
する導入管、これに一端を連設し、水素、メタ
ン、水素化珪素ガスまたはこれらの混合ガスより
選択される還元性ガスを封入した反応容器、該反
応容器に前記還元性ガスを送入する送入管、前記
反応容器のレーザーガス導入側に対向する他端側
において前記酸化性ガスと還元性ガスとの反応に
より生じたケミルミネツセンスを検知し電気信号
に変換する検出装置、その電気信号を増幅する増
幅器、その増幅信号を記録保存する記録装置を有
することを特徴とする酸化性ガスの濃度を測定す
る装置。
[Claims] 1. A method for measuring the concentration of an oxidizing gas in an excimer laser gas consisting of a mixed gas of an inert gas and an oxidizing gas of one type of fluorine-based or chlorine-based gas, A reducing gas selected from hydrogen, methane, silicon hydride gas, or a mixture thereof is brought into contact with the excimer laser gas, and the light intensity of luminescence (chemiluminescence) generated when it chemically reacts with the oxidizing gas is measured. A method for measuring the concentration of an oxidizing gas. 2. In an apparatus for measuring the concentration of an oxidizing gas in an excimer laser gas consisting of a mixed gas of an inert gas and an oxidizing gas of one type of fluorine-based or chlorine-based gas, the circulation of the excimer laser gas An inlet pipe is provided with a branch pipe in the line to collect a part of the pipe, and one end is connected to the inlet pipe, and a reaction vessel is sealed with a reducing gas selected from hydrogen, methane, silicon hydride gas, or a mixed gas thereof; Detecting chemiluminescence generated by the reaction between the oxidizing gas and the reducing gas at the feed pipe for feeding the reducing gas into the reaction vessel, and at the other end of the reaction vessel opposite to the laser gas introduction side. 1. A device for measuring the concentration of an oxidizing gas, comprising a detection device for converting the oxidizing gas into an electrical signal, an amplifier for amplifying the electrical signal, and a recording device for recording and storing the amplified signal.
JP21151184A 1984-10-11 1984-10-11 Method and instrument for measuring concentration of oxidative gas Granted JPS6190044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21151184A JPS6190044A (en) 1984-10-11 1984-10-11 Method and instrument for measuring concentration of oxidative gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21151184A JPS6190044A (en) 1984-10-11 1984-10-11 Method and instrument for measuring concentration of oxidative gas

Publications (2)

Publication Number Publication Date
JPS6190044A JPS6190044A (en) 1986-05-08
JPH046896B2 true JPH046896B2 (en) 1992-02-07

Family

ID=16607131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21151184A Granted JPS6190044A (en) 1984-10-11 1984-10-11 Method and instrument for measuring concentration of oxidative gas

Country Status (1)

Country Link
JP (1) JPS6190044A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453137A (en) * 1987-08-24 1989-03-01 Fuaamu Tec Kk Method and apparatus for analyzing silicon hydride
JPH0769264B2 (en) * 1991-07-12 1995-07-26 工業技術院長 Measuring device for organic chlorine compounds
JP4749823B2 (en) * 2005-10-11 2011-08-17 大陽日酸株式会社 Fluorine gas concentration measurement method
JP5112032B2 (en) * 2007-12-07 2013-01-09 大陽日酸株式会社 Fluorine gas measuring method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160850A (en) * 1982-03-18 1983-09-24 Horiba Ltd Chemical luminescence analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100159U (en) * 1978-12-29 1980-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160850A (en) * 1982-03-18 1983-09-24 Horiba Ltd Chemical luminescence analyzer

Also Published As

Publication number Publication date
JPS6190044A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
US5017499A (en) Method for analyzing fluorine containing gases
US4626413A (en) Instrument for measurement of the organic carbon content of water
Parker et al. Some experiments with spectrofluorimeters and filter fluorimeters
KR880002324B1 (en) Instrument for measurement of the organic carbon content of water
US5275957A (en) Instrument and method for measurement of the organic carbon content of water
US5661036A (en) Process for the detection of sulfur
EP0747675A2 (en) Method for measuring the flow rate of a species contained in an exhaust gas stream of a combustion process
EP0260005B1 (en) Gas calibration method and apparatus
US5047212A (en) Instrument for measurement of the organic carbon content of water
JP4024494B2 (en) Method and apparatus for measuring nitrogen in gas
EP0940670A1 (en) Improved sample cell for gaseous emission spectroscopy
KR101030405B1 (en) Analytical sensitivity enhancement by catalytic transformation
Braman Membrane probe-spectral emission type detection system for mercury in water
Stedman et al. Analytical applications of gas phase chemiluminescence
JPH046896B2 (en)
US4891186A (en) Reactor analysis system
US3459938A (en) Method and apparatus for determining the inorganic carbon content in a liquid
JP2009281943A (en) Ozone concentration measuring method and device therefor
NL8000450A (en) METHOD AND APPARATUS FOR MEASURING VOLATILE METAL HYDRIDES
GB2163553A (en) Method and apparatus for chemiluminescence analysis
JP3206870B2 (en) Method and apparatus for measuring nitrogen gas or water vapor in argon gas, method and apparatus for simultaneous measurement of nitrogen gas and water vapor
US3540849A (en) Analysis of aldehydes,unsaturated hydrocarbons and ketones
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JP2006201106A (en) Analytical method and device for impurity in gas mixture
JPH0261140B2 (en)