JP5112032B2 - Fluorine gas measuring method and apparatus - Google Patents

Fluorine gas measuring method and apparatus Download PDF

Info

Publication number
JP5112032B2
JP5112032B2 JP2007317117A JP2007317117A JP5112032B2 JP 5112032 B2 JP5112032 B2 JP 5112032B2 JP 2007317117 A JP2007317117 A JP 2007317117A JP 2007317117 A JP2007317117 A JP 2007317117A JP 5112032 B2 JP5112032 B2 JP 5112032B2
Authority
JP
Japan
Prior art keywords
gas
fluorine
sample
fluorine gas
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007317117A
Other languages
Japanese (ja)
Other versions
JP2009139276A (en
Inventor
秀俊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2007317117A priority Critical patent/JP5112032B2/en
Publication of JP2009139276A publication Critical patent/JP2009139276A/en
Application granted granted Critical
Publication of JP5112032B2 publication Critical patent/JP5112032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、フッ素ガス測定方法及び装置に関し、詳しくは、プラズマCVD装置や除害装置からの排ガス等に含まれるフッ素ガス濃度を測定するためのフッ素ガス測定方法及び装置に関する。   The present invention relates to a fluorine gas measuring method and apparatus, and more particularly to a fluorine gas measuring method and apparatus for measuring the concentration of fluorine gas contained in exhaust gas from a plasma CVD apparatus or a detoxifying apparatus.

各種ガス中に含まれるフッ素ガスの濃度をリアルタイムに測定することが可能なフッ素ガス濃度計として、特定の物質、例えば有機物とフッ素ガスとの選択的発光反応を利用したフッ素ガス濃度計が市販されている。このフッ素ガス濃度計は、前記発光反応がガス中に含まれるフッ素ガスの濃度に依存することから、発生した光の強度を光電子増倍管等で増幅してフッ素ガス濃度を検知するものであり、フッ素ガスそのものを高感度に測定できる分析器として有望視されている(例えば、非特許文献1参照。)。   As a fluorine gas concentration meter that can measure the concentration of fluorine gas contained in various gases in real time, a fluorine gas concentration meter using a selective luminescence reaction between a specific substance, for example, an organic substance and fluorine gas, is commercially available. ing. This fluorine gas concentration meter detects the fluorine gas concentration by amplifying the intensity of the generated light with a photomultiplier tube or the like because the luminescence reaction depends on the concentration of fluorine gas contained in the gas. It is considered promising as an analyzer that can measure fluorine gas itself with high sensitivity (for example, see Non-Patent Document 1).

また、上述のようなフッ素ガス濃度計を用いてフッ素ガスの濃度を測定する際に、フッ素ガス濃度計の安定性を向上させるとともに、フッ素ガス濃度の変化にも迅速に対応させるため、試料ガス中のフッ素ガス濃度を測定する直前に、標準フッ素ガスやフッ化キセノンを用いて測定部の前処理(試料ガスと接する部分のフッ化及び校正)を実施することも提案されている(例えば、特許文献1参照。)。
三洋貿易株式会社、科学機器事業部、メーカー別製品案内、米 URS Corporation、フッ素ガス濃度計。[平成19年12月6日検索]、インターネット<URL:http://www.sanyo-si.com/product/u_urs_001.html> 特開2007−107904号公報
In addition, when measuring the concentration of fluorine gas using the fluorine gas concentration meter as described above, the sample gas is used to improve the stability of the fluorine gas concentration meter and to respond quickly to changes in the fluorine gas concentration. Immediately before measuring the fluorine gas concentration in the sample, it is also proposed to perform pretreatment of the measurement part (fluorination and calibration of the part in contact with the sample gas) using standard fluorine gas or xenon fluoride (for example, (See Patent Document 1).
Sanyo Trading Co., Ltd., Scientific Instruments Division, Product Information by Manufacturer, URS Corporation, Fluorine Gas Concentration Meter. [Search December 6, 2007], Internet <URL: http: //www.sanyo-si.com/product/u_urs_001.html> JP 2007-107904 A

しかし、前記フッ素ガス濃度計を使用して、フッ素ガスを全く含まない窒素ガス(A)から、フッ素ガスを200ppm含む窒素ガス(B)に切り換えて発光強度を連続的に測定した結果、図7に示すような結果が得られた。すなわち、フッ素ガスを全く含まない窒素ガス(A)からフッ素ガスを含む窒素ガス(B)へ切り換えた直後は、発光強度が瞬時に跳ね上がり、その後、緩やかに減少している。ガスの切り換え直後は、フッ素ガス濃度計への流量変動もあり、その流量が安定するまでに数秒は要するが、以後は流量も安定し、かつ、ガス中のフッ素ガス濃度も一定となっているはずである。正確かつリアルタイムなフッ素ガス濃度を測定するためには、発光強度は、瞬時に一定となることが望ましいが、実際の発光強度は、ガスの切り換えから6時間経過しても一定とはならず、減少傾向のままとなっていた。   However, when the fluorine gas concentration meter was used, the emission intensity was continuously measured by switching from nitrogen gas (A) containing no fluorine gas to nitrogen gas (B) containing 200 ppm of fluorine gas. The results as shown in Fig. 1 were obtained. That is, immediately after switching from nitrogen gas (A) containing no fluorine gas to nitrogen gas (B) containing fluorine gas, the emission intensity jumps up instantaneously and then gradually decreases. Immediately after gas switching, the flow rate to the fluorine gas concentration meter also fluctuates, and it takes a few seconds for the flow rate to stabilize, but thereafter the flow rate is stable and the fluorine gas concentration in the gas is also constant. It should be. In order to measure the accurate and real-time fluorine gas concentration, it is desirable that the emission intensity be instantaneously constant, but the actual emission intensity does not become constant even after 6 hours have passed since gas switching. It remained a decreasing trend.

また、同じフッ素ガス濃度計の検量線データを約1ヶ月にわたって取得したところ、図8に示す結果となった。図8のデータは、最大濃度として200ppmのフッ素ガスを含む窒素ガスを用いたものであるが、同じ濃度における発光強度は日々減少し、約1ヶ月では、約1/2.5にまで低下してしまった。このことから、このフッ素ガス濃度計を使用する場合、正確なフッ素ガス濃度を得るためには、頻繁に校正を行う必要があるといえる。さらに、図8の検量線を見ると、低濃度域では非直線となっていることから、検量線の作成においては、複数濃度のフッ素ガスを含むガスをフッ素ガス濃度計に導入して多点校正を実施する必要があるといえる。   Moreover, when the calibration curve data of the same fluorine gas concentration meter were acquired over about one month, the result shown in FIG. 8 was obtained. The data in FIG. 8 uses nitrogen gas containing 200 ppm of fluorine gas as the maximum concentration, but the emission intensity at the same concentration decreases day by day, and decreases to about 1 / 2.5 in about one month. I have. From this, it can be said that when this fluorine gas concentration meter is used, it is necessary to frequently calibrate in order to obtain an accurate fluorine gas concentration. Furthermore, since the calibration curve in FIG. 8 is non-linear in the low concentration region, a gas containing a plurality of concentrations of fluorine gas is introduced into the fluorine gas concentration meter when creating a calibration curve. It can be said that calibration is necessary.

一定濃度のフッ素ガスを金属配管に流した際、ガス中でのフッ素濃度の変動を抑える方法としては、高濃度のフッ素ガスを、濃度を変化させることなく、その配管に一定の流量、圧力及び温度にて一定時間流すことによる金属配管内面のフッ素不働態化処理が知られている。フッ素ガスと接する部分の材質が単純な系においては、この方法は有効といえるが、フッ素ガスと接する部分にフッ素ガスと選択的発光反応を起こす有機物や発光した光を光電子増倍管へ導くためのサファイヤガラス等の窓材を含むものでは、高濃度のフッ素ガスを長時間流すことは、前記有機物の急激な劣化による発光強度の低下や窓材の劣化による分析感度の低下(発生した光の透過量の低下)を招くことになり、前記フッ化処理は、前述のようなフッ素ガス濃度計の有効な処理方法とはいえない。   As a method of suppressing fluctuations in the fluorine concentration in the gas when flowing a constant concentration of fluorine gas through the metal pipe, a high flow rate of fluorine gas without changing the concentration, a constant flow rate, pressure and Fluorine passivation treatment of the inner surface of a metal pipe by flowing for a certain time at temperature is known. This method is effective in a system where the material in contact with the fluorine gas is simple. However, in order to guide organic substances that cause a selective emission reaction with the fluorine gas in the portion in contact with the fluorine gas and the emitted light to the photomultiplier tube. In the case of including a window material such as sapphire glass, flowing a high concentration of fluorine gas for a long time may cause a decrease in emission intensity due to abrupt deterioration of the organic matter or a decrease in analytical sensitivity due to deterioration of the window material (of the generated light The fluorination treatment is not an effective treatment method for the fluorine gas concentration meter as described above.

また、特許文献1に記載されているように、試料ガス中のフッ素ガス濃度を測定する直前に、標準フッ素ガスを用いて測定部の前処理を行うものでは、標準フッ素ガスを測定現場に持ち込むことが必須となるが、標準フッ素ガスが毒性高圧ガスであることから、輸送手段や使用する設備が整備されている環境では有効であるものの、環境が整備されていない場合、輸送やガスラインの整備に手間やコストがかかるという問題がある。さらに、標準フッ素ガスの代わりに少量のフッ化キセノンを用いて測定部の前処理を行うことも提案されているが、フッ化キセノン(二フッ化キセノン)も有害物質であることから、標準フッ素ガスほどではないものの、やはり、輸送や使用環境の整備に手間やコストをかける必要がある。加えて、測定部の前処理に少なくとも3時間程度の時間が必要であり、この前処理を、試料ガスを測定する直前に毎回実施しなければならない点も踏まえると、前処理に非常に多くの時間を費やす必要があるといった問題も生じていた。   In addition, as described in Patent Document 1, in the case where the pretreatment of the measurement unit is performed using the standard fluorine gas immediately before measuring the fluorine gas concentration in the sample gas, the standard fluorine gas is brought into the measurement site. However, since standard fluorine gas is a toxic high-pressure gas, it is effective in an environment where transportation means and facilities to be used are in place, but if the environment is not in place, transportation and gas line There is a problem that maintenance takes time and cost. In addition, it has been proposed to use a small amount of xenon fluoride instead of standard fluorine gas for pretreatment of the measurement section, but xenon fluoride (xenon difluoride) is also a hazardous substance, so standard fluorine Although it is not as much as gas, it still requires effort and cost to improve the transportation and usage environment. In addition, it takes at least about 3 hours for the pretreatment of the measurement unit, and taking into account that this pretreatment must be performed every time immediately before measuring the sample gas, a very large amount of pretreatment is required. There was also a problem of having to spend time.

そこで本発明は、前述のような光学式のフッ素ガス濃度計における安定性を向上させるとともに、フッ素ガス濃度の変化にも迅速かつ正確に対応することができ、標準フッ素ガスやフッ化キセノンを測定現場に持ち込むことなく、測定部の前処理を簡単かつ確実に行うことができるフッ素ガス測定方法及び装置を提供することを目的としている。   Therefore, the present invention improves the stability of the optical fluorine gas concentration meter as described above, and can quickly and accurately respond to changes in the fluorine gas concentration, and can measure standard fluorine gas and xenon fluoride. It is an object of the present invention to provide a fluorine gas measuring method and apparatus capable of easily and reliably pre-treating a measuring unit without bringing it into the field.

上記目的を達成するため、本発明のフッ素ガス測定方法は、発光式フッ素ガス濃度計を用いて試料ガス中のフッ素ガス濃度を測定するフッ素ガス測定方法において、前記フッ素ガス濃度計に不活性ガスを連続的に導入するとともに、該不活性ガス中に前記試料ガスを断続的に導入して試料ガス中のフッ素ガス濃度を測定することを特徴としている。   In order to achieve the above object, a fluorine gas measuring method of the present invention is a fluorine gas measuring method for measuring a fluorine gas concentration in a sample gas using a light emission type fluorine gas concentration meter. Is continuously introduced, and the sample gas is intermittently introduced into the inert gas to measure the fluorine gas concentration in the sample gas.

さらに、本発明のフッ素ガス測定方法は、前記フッ素ガス濃度計の校正を該フッ素ガス濃度計に校正用のガスを断続的に導入して行うこと、前記試料ガス中のフッ素ガス濃度の測定を前記フッ素ガス濃度計に校正用のガス又は前記試料ガスを断続的に導入した後に行うことを特徴とし、前記校正用のガスがフッ素ガス又はフッ化キセノンガスを含むガスであることを特徴としている。   Furthermore, the fluorine gas measuring method of the present invention is characterized in that the calibration of the fluorine gas concentration meter is performed by intermittently introducing a calibration gas into the fluorine gas concentration meter, and the fluorine gas concentration in the sample gas is measured. The calibration gas or the sample gas is intermittently introduced into the fluorine gas concentration meter, and the calibration gas is a gas containing fluorine gas or xenon fluoride gas. .

また、本発明のフッ素ガス測定装置は、発光式フッ素ガス濃度計を用いて試料ガス中のフッ素ガス濃度を測定するフッ素ガス測定装置において、前記発光式フッ素ガス濃度計に不活性ガスを連続的に導入する不活性ガス導入経路に、前記試料ガスを前記不活性ガス中に断続的に注入するための試料ガス断続注入手段を設けたことを特徴としている。   The fluorine gas measuring device of the present invention is a fluorine gas measuring device that measures the fluorine gas concentration in a sample gas using a light emission type fluorine gas concentration meter, wherein an inert gas is continuously supplied to the light emission type fluorine gas concentration meter. A sample gas intermittent injection means for intermittently injecting the sample gas into the inert gas is provided in the inert gas introduction path to be introduced into the inert gas.

さらに、本発明のフッ素ガス測定装置は、前記試料ガス断続注入手段が、前記不活性ガス導入経路に設けた六方切換弁とガス計量管との組み合わせであって、前記六方切換弁に、前記フッ素ガス濃度計に接続する濃度計入口経路と、試料ガス源に接続する試料ガス導入経路と、不活性ガス供給部に接続する不活性ガス導入経路と、前記ガス計量管の入口部に接続するガス計量管入口経路と、ガス計量管の出口部に接続するガス計量管出口経路と、流量調整手段に接続する試料ガス排出経路とがそれぞれ接続され、弁切換位置として、前記不活性ガス供給部からの不活性ガスが前記不活性ガス導入経路から導入されて前記濃度計入口経路に導出されるとともに、前記試料ガス源からの試料ガスが前記試料ガス導入経路から導入されて前記ガス計量管入口経路、前記ガス計量管、前記ガス計量管出口経路を経て前記試料ガス排出経路に導出される計量位置と、前記不活性ガスが前記不活性ガス導入経路から導入されて前記ガス計量管入口経路、前記ガス計量管、前記ガス計量管出口経路を経て前記濃度計入口経路に導出されるとともに、前記試料ガスが前記試料ガス導入経路から導入されて前記試料ガス排出経路に導出される測定位置とに切換可能に形成された六方切換弁、あるいは、前記不活性ガス導入経路に設けたガス注入口と該ガス注入口から前記試料ガスを注入するためのガスタイトシリンジとの組合せ、のいずれかであることを特徴としている。   Further, in the fluorine gas measuring apparatus of the present invention, the sample gas intermittent injection means is a combination of a six-way switching valve and a gas metering pipe provided in the inert gas introduction path, and the hexagonal switching valve includes the fluorine gas measuring device. A concentration meter inlet path connected to the gas concentration meter, a sample gas introduction path connected to the sample gas source, an inert gas introduction path connected to the inert gas supply unit, and a gas connected to the inlet of the gas metering tube A metering pipe inlet path, a gas metering pipe outlet path connected to the outlet of the gas metering pipe, and a sample gas discharge path connected to the flow rate adjusting means are connected to each other as a valve switching position from the inert gas supply unit. The inert gas is introduced from the inert gas introduction path and led out to the concentration meter inlet path, and the sample gas from the sample gas source is introduced from the sample gas introduction path to the gas meter. A metering position led to the sample gas discharge path through a pipe inlet path, the gas metering pipe, and the gas metering pipe outlet path, and the inert gas introduced from the inert gas introduction path to the gas metering pipe inlet Measurement position where the sample gas is introduced into the concentration meter inlet path through the path, the gas metering pipe, and the gas metering pipe outlet path, and the sample gas is introduced from the sample gas introduction path and led out to the sample gas discharge path Or a combination of a gas injection port provided in the inert gas introduction path and a gas tight syringe for injecting the sample gas from the gas injection port. It is characterized by being.

本発明によれば、フッ素濃度に応じた量の試料ガスを不活性ガスに同伴させて断続的にフッ素ガス濃度計に導入することで、フッ素ガス濃度計における測定部内の発光部と試料ガスとの接触時間が極めて短時間となり、かつ、発光反応部位も非常に薄い極表面だけに抑えることができるため、発光強度の低下を極めて効率よく抑制できる。さらに、発光反応により生成した副産物の除去も容易であるため、少量の不活性ガスを測定部に短時間導入するだけで、迅速に発光面を初期状態(フッ素ガスを含むガスを流す前の状態)に復元することができる。このため、試料ガスを測定部に連続的に導入する場合に見られるような、発光強度の緩やか、かつ、長時間の低下が起こることがなくなり、試料ガス中のフッ素ガス濃度を正確に再現性よく測定することが可能となる。また、発光強度の緩やか、かつ、長時間の低下が起こることないことから、長時間のフッ化処理を行う必要もなく、フッ素標準ガスや二フッ化キセノンを用いた校正時に、校正データを取得するため、フッ素標準ガスやフッ化キセノンをフッ素ガス濃度計へ試料ガスと同じ経路から同じような条件で導入する程度のことで、校正データの取得と同時にフッ素ガスと接する部分のフッ化処理も行える。   According to the present invention, the sample gas in an amount corresponding to the fluorine concentration is intermittently introduced into the fluorine gas concentration meter with the inert gas, so that the light emitting portion and the sample gas in the measurement portion of the fluorine gas concentration meter are The contact time is extremely short, and the light-emitting reaction site can be suppressed to only a very thin pole surface, so that a decrease in light emission intensity can be suppressed extremely efficiently. Furthermore, by-products generated by the luminescence reaction can be easily removed, so that a small amount of inert gas can be introduced into the measurement section for a short time, and the luminescent surface can be quickly brought into the initial state (the state before flowing a gas containing fluorine gas). ) Can be restored. For this reason, the emission intensity is not slowed down for a long time, and the fluorine gas concentration in the sample gas is accurately reproducible, as seen when the sample gas is continuously introduced into the measurement unit. It becomes possible to measure well. In addition, since the emission intensity is gradual and does not decrease for a long time, it is not necessary to perform fluorination treatment for a long time, and calibration data is acquired during calibration using fluorine standard gas or xenon difluoride. Therefore, the fluorine standard gas or xenon fluoride is introduced into the fluorine gas concentration meter through the same route as the sample gas under the same conditions. Yes.

この場合、フッ素ガス濃度計に対して、事前にフッ素標準ガスやフッ化キセノンを用いた校正をする必要はあるものの、これらは試料ガス測定の直前に実施する必要はなく、事前に行えばよいので、試料ガスの測定現場にフッ素標準ガスやフッ化キセノンを持ち込む必要もない。このため、これらの輸送手段や設備の整備に手間とコストをかける必要もなく、極めて低コストにて試料ガス中のフッ素ガス濃度を正確に測定することが可能となる。さらに、測定現場に有害物質であるフッ素標準ガスやフッ化キセノンを持ち込むことがないため、フッ素ガスの現地分析作業を極めて安全に行うことができる。   In this case, although it is necessary to calibrate the fluorine gas concentration meter in advance using a fluorine standard gas or xenon fluoride, these need not be performed immediately before the sample gas measurement, and may be performed in advance. Therefore, there is no need to bring fluorine standard gas or xenon fluoride into the sample gas measurement site. For this reason, it is not necessary to spend time and money on the maintenance of these transportation means and facilities, and the fluorine gas concentration in the sample gas can be accurately measured at a very low cost. In addition, since fluorine standard gas and xenon fluoride, which are harmful substances, are not brought into the measurement site, on-site analysis of fluorine gas can be performed extremely safely.

加えて、本発明のフッ素ガス測定装置には、標準フッ素ガスやフッ化キセノンを供給するための手段や、これらと試料ガスとを切り換える手段等を組み込む必要がないため、測定装置を極めてコンパクトにまとめることが可能となる。   In addition, the fluorine gas measuring device of the present invention does not need to incorporate means for supplying standard fluorine gas or xenon fluoride, or means for switching between these and the sample gas, so the measuring device can be made extremely compact. It becomes possible to summarize.

図1は本発明の一形態例を示すフッ素ガス測定装置の系統図である。このフッ素ガス測定装置は、試料ガス中のフッ素ガス濃度を発光反応によって測定する発光式のフッ素ガス濃度計11と、測定現場のプラズマCVD装置や除害装置からの排ガス等の試料ガス源12と、不活性ガスを供給する不活性ガス供給部13と、フッ素ガス濃度計11に導入するガスを切り換えるための六方切換弁14と、一定量の試料ガスを計量するためのガス計量管15と、試料ガスの流量を調整するための流量調整手段16と、これらを接続する各経路とを備えている。   FIG. 1 is a system diagram of a fluorine gas measuring apparatus showing an embodiment of the present invention. This fluorine gas measuring device includes a light emission type fluorine gas concentration meter 11 that measures a fluorine gas concentration in a sample gas by a light emission reaction, a sample gas source 12 such as exhaust gas from a plasma CVD device or an abatement device at a measurement site, and the like. An inert gas supply unit 13 for supplying an inert gas, a six-way switching valve 14 for switching a gas to be introduced into the fluorine gas concentration meter 11, a gas metering tube 15 for measuring a certain amount of sample gas, A flow rate adjusting means 16 for adjusting the flow rate of the sample gas and each path connecting them are provided.

六方切換弁14及びガス計量管15は、フッ素ガス濃度計11に連続的に導入される不活性ガス中に一定量の試料ガスを断続的に注入する試料ガス断続注入手段として機能するものであって、六方切換弁14の6個のポートには、前記フッ素ガス濃度計11に接続する濃度計入口経路21と、前記試料ガス源12に接続する試料ガス導入経路22と、前記不活性ガス供給部13に接続する不活性ガス導入経路23と、前記ガス計量管15の入口部に接続するガス計量管入口経路24と、ガス計量管15の出口部に接続するガス計量管出口経路25と、前記流量調整手段16に接続する試料ガス排出経路26とがそれぞれ接続されており、各ポートの位置は、試料ガスをガス計量管15で計量する計量位置(内部流路が図1の実線の位置)と、試料ガス中のフッ素ガス濃度をフッ素ガス濃度計11で測定する測定位置(内部流路が図1の破線の位置)とに切換可能に形成されている。   The six-way switching valve 14 and the gas metering tube 15 function as sample gas intermittent injection means for intermittently injecting a predetermined amount of sample gas into the inert gas continuously introduced into the fluorine gas concentration meter 11. The six ports of the six-way switching valve 14 have a concentration meter inlet path 21 connected to the fluorine gas concentration meter 11, a sample gas introduction path 22 connected to the sample gas source 12, and the inert gas supply. An inert gas introduction path 23 connected to the section 13, a gas metering pipe inlet path 24 connected to the inlet of the gas metering pipe 15, a gas metering pipe outlet path 25 connected to the outlet of the gas metering pipe 15, A sample gas discharge path 26 connected to the flow rate adjusting means 16 is connected to each port, and the position of each port is a measuring position at which the sample gas is measured by the gas measuring tube 15 (the internal channel is the position of the solid line in FIG. 1). )When, Charge measurement position for measuring the concentration of fluorine gas in the gas in the fluorine gas concentration meter 11 (internal flow path is broken line position in FIG. 1) is formed to be switchable to the.

前記ガス計量管15は、前後の経路24,25を含めて一定量の試料ガスを計量することができればよく、試料ガス中のフッ素ガス濃度に応じて適当な内容積を有する管体を用いることができる。例えば、試料ガス中のフッ素ガス濃度が低濃度の場合には数十ml程度、高濃度の場合には数十〜数百μl程度の内容積を有する管体を選定すればよい。   The gas metering tube 15 only needs to be able to meter a certain amount of sample gas including the front and rear paths 24 and 25, and a tube having an appropriate internal volume according to the fluorine gas concentration in the sample gas is used. Can do. For example, a tube having an internal volume of about several tens ml when the concentration of fluorine gas in the sample gas is low and about several tens to several hundreds of μl when the concentration is high may be selected.

前記不活性ガス供給部13は、フッ素ガスを含まず、かつ、フッ素ガス濃度計11でのフッ素ガスの測定に悪影響を及ぼす成分を含まない不活性ガス、例えば高純度の窒素ガスやアルゴンガス等を供給できればよく、これらの不活性ガスをボンベに充填したものを利用したり、別の設備で使用している不活性ガスを引き込んで利用したりすることができる。この不活性ガス供給部13における不活性ガスの供給圧力は0.3MPaG以上であることが望ましい。   The inert gas supply unit 13 does not contain a fluorine gas and does not contain a component that adversely affects the measurement of the fluorine gas by the fluorine gas concentration meter 11, such as high-purity nitrogen gas or argon gas. Can be used, and those filled with an inert gas can be used, or an inert gas used in another facility can be drawn in and used. The supply pressure of the inert gas in the inert gas supply unit 13 is desirably 0.3 MPaG or more.

また、前記不活性ガス導入経路23には、導入する不活性ガスの圧力を調整する圧力調整手段17と流量を調整する流量調整手段18とが設けられており、試料ガスの状態等に応じて最適な圧力及び流量で不活性ガスを導入できるように形成されている。圧力調整手段17には、一次側及び二次側の圧力に応じた一般的な圧力調整器を使用することができ、流量調整手段18にも、圧力、流量調整範囲、流量調整精度に応じて、一般的に使用されているマスフローコントローラを使用することができる。   The inert gas introduction path 23 is provided with a pressure adjusting means 17 for adjusting the pressure of the inert gas to be introduced and a flow rate adjusting means 18 for adjusting the flow rate, depending on the state of the sample gas and the like. It is formed so that an inert gas can be introduced at an optimum pressure and flow rate. A general pressure regulator corresponding to the pressure on the primary side and the secondary side can be used for the pressure adjustment means 17, and the flow rate adjustment means 18 can also be used according to the pressure, the flow rate adjustment range, and the flow rate adjustment accuracy. A commonly used mass flow controller can be used.

測定対象となる試料ガスは、流量が前記流量調整手段16で調整されるが、試料ガス源12における試料ガスの圧力が大気圧付近の場合は、試料ガス排出経路26にダイヤフラムポンプ等を配置し、試料ガスを吸引してガス計量管15に導入するように形成することもできる。   The flow rate of the sample gas to be measured is adjusted by the flow rate adjusting means 16, but when the pressure of the sample gas in the sample gas source 12 is near atmospheric pressure, a diaphragm pump or the like is disposed in the sample gas discharge path 26. The sample gas may be sucked and introduced into the gas metering tube 15.

次に、このフッ素ガス測定装置を用いて試料ガス中のフッ素ガス濃度を測定する手順の一例を説明する。まず、試料ガス中のフッ素ガス濃度を測定する前にフッ素ガス測定装置におけるフッ素ガス濃度計11の校正とフッ素ガスと接する部分のフッ化処理とを行う。但し、この作業は事前に行っておけばよく、試料ガスを測定する直前に実施する必要はない。   Next, an example of a procedure for measuring the fluorine gas concentration in the sample gas using this fluorine gas measuring device will be described. First, before measuring the fluorine gas concentration in the sample gas, calibration of the fluorine gas concentration meter 11 in the fluorine gas measuring device and fluorination treatment of the portion in contact with the fluorine gas are performed. However, this operation may be performed in advance, and need not be performed immediately before measuring the sample gas.

フッ素ガス濃度計11の校正は、多点校正を行う必要があるため、複数のフッ素濃度を有するフッ素含有ガスをフッ素ガス濃度計11に導入して行う。このフッ素含有ガスは、異なるフッ素濃度のフッ素標準ガスを複数準備することによって行うこともできるが、一つのフッ素標準ガスをフッ素を含まない不活性ガスで希釈することにより、異なるフッ素濃度のフッ素含有ガスを複数発生させて用いるようにすることもできる。   Since the calibration of the fluorine gas concentration meter 11 requires multipoint calibration, it is performed by introducing a fluorine-containing gas having a plurality of fluorine concentrations into the fluorine gas concentration meter 11. This fluorine-containing gas can be prepared by preparing a plurality of fluorine standard gases with different fluorine concentrations, but by diluting one fluorine standard gas with an inert gas not containing fluorine, A plurality of gases may be generated and used.

フッ素ガス濃度計11の校正及びフッ素ガス測定装置のフッ素ガスと接する部分のフッ化処理は、前記フッ素含有ガスを試料ガス導入経路22から導入して行う。最初に、六方切換弁14の流路を、図1に実線で示す計量位置に切り換えておき、試料ガス導入経路22から導入されるフッ素含有ガスを、六方切換弁14の流路A1,ガス計量管入口経路24,ガス計量管15,ガス計量管出口経路25,六方切換弁14の流路A2,試料ガス排出経路26,流量調整手段16の順で流し、流量調整手段16で流量を調整して排出するとともに、不活性ガス源13から供給される不活性ガス、例えば高純度窒素ガスを、圧力調整手段17で圧力を、流量調整手段18で流量をそれぞれ調整した状態で、不活性ガス導入経路23,六方切換弁14の流路A3,濃度計入口経路21,フッ素ガス濃度計11の順で流す。   The calibration of the fluorine gas concentration meter 11 and the fluorination treatment of the portion in contact with the fluorine gas of the fluorine gas measuring device are performed by introducing the fluorine-containing gas from the sample gas introduction path 22. First, the flow path of the six-way switching valve 14 is switched to the measurement position indicated by the solid line in FIG. 1, and the fluorine-containing gas introduced from the sample gas introduction path 22 is changed to the flow path A1, gas measurement of the six-way switching valve 14. The pipe inlet path 24, the gas metering pipe 15, the gas metering pipe outlet path 25, the flow path A2 of the hexagonal switching valve 14, the sample gas discharge path 26, and the flow rate adjusting means 16 are flowed in this order, and the flow rate adjusting means 16 adjusts the flow rate. The inert gas introduced from the inert gas source 13, such as high purity nitrogen gas, is introduced with the pressure adjusted by the pressure adjusting means 17 and the flow rate adjusted by the flow rate adjusting means 18. The passage 23, the flow path A3 of the six-way switching valve 14, the concentration meter inlet passage 21, and the fluorine gas concentration meter 11 are flowed in this order.

フッ素含有ガス及び不活性ガスの圧力及び流量は、フッ素ガス測定装置の構成、特にフッ素ガス濃度計11の構成に応じて任意に設定することができるが、通常は、フッ素含有ガスの流量を1L/min程度に調整し、不活性ガスは、圧力を0.1〜0.3MPa(ゲージ圧、以下同じ。)、流量を毎分200〜500ml/minの範囲に調整すればよい。   The pressure and flow rate of the fluorine-containing gas and the inert gas can be arbitrarily set according to the configuration of the fluorine gas measuring device, particularly the configuration of the fluorine gas concentration meter 11, but usually the flow rate of the fluorine-containing gas is 1L. The inert gas may be adjusted to a pressure of 0.1 to 0.3 MPa (gauge pressure, the same shall apply hereinafter) and a flow rate of 200 to 500 ml / min.

この状態で所定時間、例えば1分乃至数分間程度保持し、ガス計量管15内がフッ素含有ガスで満たされた状態になった後、六方切換弁14を図1に破線で示す測定位置に切り換える。これにより、試料ガス導入経路22から導入されるフッ素含有ガスは、六方切換弁14の流路B1から試料ガス排出経路26,流量調整手段16の順で流れ、不活性ガスは、不活性ガス導入経路23,六方切換弁14の流路B2,ガス計量管入口経路24,ガス計量管15,ガス計量管出口経路25,六方切換弁14の流路B3,濃度計入口経路21,フッ素ガス濃度計11の順で流れる。   In this state, the gas metering tube 15 is held for a predetermined time, for example, about 1 to several minutes, and after the gas metering tube 15 is filled with the fluorine-containing gas, the six-way switching valve 14 is switched to the measurement position indicated by the broken line in FIG. . Thereby, the fluorine-containing gas introduced from the sample gas introduction path 22 flows in the order of the sample gas discharge path 26 and the flow rate adjusting means 16 from the flow path B1 of the six-way switching valve 14, and the inert gas is introduced into the inert gas. Path 23, flow path B2 of the hexagonal switching valve 14, gas metering pipe inlet path 24, gas metering pipe 15, gas metering pipe outlet path 25, flow path B3 of the hexagonal switching valve 14, densitometer inlet path 21, fluorine gas concentration meter It flows in order of 11.

ガス計量管15で計り取られた所定量のフッ素含有ガスは、ガス計量管入口経路24から流入する不活性ガスによりガス計量管出口経路25に押し出され、不活性ガスに同伴されて六方切換弁14の流路B3から濃度計入口経路21を経てフッ素ガス濃度計11に導入され、フッ素ガス濃度計11でフッ素含有ガス中のフッ素ガス濃度が測定されてフッ素ガス濃度に応じた発光強度のデータが得られる。   A predetermined amount of fluorine-containing gas measured by the gas metering pipe 15 is pushed out to the gas metering pipe outlet path 25 by the inert gas flowing in from the gas metering pipe inlet path 24, and is accompanied by the inert gas to be a six-way switching valve. 14 is introduced into the fluorine gas concentration meter 11 from the channel B3 through the concentration meter inlet passage 21, and the fluorine gas concentration in the fluorine-containing gas is measured by the fluorine gas concentration meter 11, and the emission intensity data according to the fluorine gas concentration is measured. Is obtained.

その後、六方切換弁14を計量位置に切り換えてガス計量管15によるフッ素含有ガスの計量を再開する。六方切換弁14を測定位置から計量位置に切り換える時間は、濃度計入口経路21の長さによって異なるが、通常は数秒から数十秒程度である。そして、安定した発光強度のデータが得られるまで、六方切換弁14を計量位置と測定位置とに切り換え、フッ素ガス濃度計11でフッ素含有ガス中のフッ素ガス濃度を測定する作業を断続的に複数回、例えば3回以上繰り返す。同様の作業をフッ素ガス濃度が異なる3種以上のフッ素含有ガスについて複数回ずつそれぞれ行い、検量線を作成するのに必要なデータを取得し、検量線を作成する。   Thereafter, the hexagonal switching valve 14 is switched to the metering position, and the metering of the fluorine-containing gas by the gas metering tube 15 is resumed. The time for switching the hexagonal switching valve 14 from the measurement position to the measurement position varies depending on the length of the concentration meter inlet path 21, but is usually several seconds to several tens of seconds. Until the stable emission intensity data is obtained, the hexagonal switching valve 14 is switched between the measurement position and the measurement position, and the fluorine gas concentration meter 11 intermittently performs a plurality of operations for measuring the fluorine gas concentration in the fluorine-containing gas. Repeat for example 3 times or more. The same operation is performed a plurality of times for each of three or more kinds of fluorine-containing gases having different fluorine gas concentrations, data necessary for creating a calibration curve is acquired, and a calibration curve is created.

このようにして検量線を作成する作業を行うことにより、フッ素ガス濃度計11や各経路におけるガス接触部分は、校正作業で導入される各種濃度のフッ素含有ガスと十分に接触することから、接触部分がフッ素によりフッ化されてフッ素不働態化処理も完了した状態となる。すなわち、フッ素ガス濃度計11の校正作業を環境が整備された場所であらかじめ行っておくことにより、測定現場でフッ素標準ガスやフッ化キセノンガスを用いて長時間にわたるフッ素不働態化処理を実施する必要がなく、標準フッ素ガスやフッ化キセノンガスを測定現場に持ち込むことが不要となり、輸送や使用環境を考慮せずに様々な場所でのフッ素ガス濃度の測定を容易かつ短時間で行うことができる。   Since the calibration curve is thus created, the fluorine gas concentration meter 11 and the gas contact portion in each path are sufficiently in contact with the fluorine-containing gas having various concentrations introduced in the calibration operation. The portion is fluorinated with fluorine, and the fluorine passivation treatment is completed. That is, by performing calibration work of the fluorine gas concentration meter 11 in advance in a place where the environment is maintained, a fluorine passivation process is performed for a long time using a fluorine standard gas or a xenon fluoride gas at the measurement site. This eliminates the need to bring standard fluorine gas or xenon fluoride gas into the measurement site, making it possible to easily and quickly measure the fluorine gas concentration in various locations without considering transportation and usage environments. it can.

測定現場における試料ガス中のフッ素ガス濃度の測定は、まず、試料ガス導入経路22を試料ガス源12となるプラズマCVD装置や除害装置から排出される排ガス等の経路に接続し、排ガス等を試料ガス導入経路22に導入可能な状態とする。また、不活性ガス導入経路23を不活性ガス供給部13となるガス容器や測定現場の適当な配管に接続して不活性ガスを不活性ガス導入経路23に導入可能な状態とする。なお、不活性ガスの種類は、前記校正作業に用いた不活性ガスと同一のものであってもよく、前記条件を満たしていれば異なるガスであってもよい。   The measurement of the fluorine gas concentration in the sample gas at the measurement site is performed by first connecting the sample gas introduction path 22 to a path such as exhaust gas discharged from a plasma CVD apparatus or a detoxification apparatus serving as the sample gas source 12, and The sample gas introduction path 22 can be introduced. Further, the inert gas introduction path 23 is connected to a gas container serving as the inert gas supply unit 13 or appropriate piping at the measurement site so that the inert gas can be introduced into the inert gas introduction path 23. Note that the type of the inert gas may be the same as the inert gas used in the calibration operation, or may be a different gas as long as the above conditions are satisfied.

六方切換弁14を前記計量位置に切り換えて、不活性ガス源13から供給される不活性ガスを、圧力調整手段17,流量調整手段18を介して不活性ガス導入経路23,六方切換弁14の流路A3,濃度計入口経路21,フッ素ガス濃度計11の順で流すようにするとともに、圧力調整手段17及び流量調整手段18により、不活性ガスの圧力及び流量を、前記校正作業で設定した圧力及び流量と同じ圧力及び流量になるように調整する。また、試料ガス源12からの試料ガスを、六方切換弁14の流路A1,ガス計量管入口経路24,ガス計量管15,ガス計量管出口経路25,六方切換弁14の流路A2,試料ガス排出経路26,流量調整手段16の順で流し、流量調整手段16で試料ガスの流量を1L/min程度に調整して排出する。   The hexagonal switching valve 14 is switched to the metering position, and the inert gas supplied from the inert gas source 13 is supplied to the inert gas introduction path 23 and the hexagonal switching valve 14 via the pressure adjusting means 17 and the flow rate adjusting means 18. The flow was made in the order of the flow path A3, the concentration meter inlet passage 21, and the fluorine gas concentration meter 11, and the pressure and flow rate of the inert gas were set by the pressure adjusting means 17 and the flow rate adjusting means 18 in the calibration operation. Adjust to the same pressure and flow rate as the pressure and flow rate. In addition, the sample gas from the sample gas source 12 is supplied to the flow path A1, the gas metering pipe inlet path 24, the gas metering pipe 15, the gas metering pipe outlet path 25, the flow path A2 of the hexagonal switch valve 14, the sample. The gas is discharged in the order of the gas discharge path 26 and the flow rate adjusting unit 16, and the flow rate adjusting unit 16 adjusts the flow rate of the sample gas to about 1 L / min.

この六方切換弁14が計量位置の状態を1分間乃至数分間保持した後、六方切換弁14を前記測定位置に切り換え、ガス計量管15にて計量した試料ガスを不活性ガスに同伴させてフッ素ガス濃度計11に導入し、フッ素ガス濃度計11で試料ガス中のフッ素ガス濃度を測定する。フッ素ガス濃度計11の測定部に試料ガスが到達する時間が経過した後、六方切換弁14を計量位置に切り換えて試料ガスの計量を再開する。六方切換弁14を測定位置から計量位置に切り換える時間は、前記校正作業と同様に数秒から数十秒程度でよい。試料ガスの計量を所定時間行った後、再び六方切換弁14を計量位置から測定位置に切り換えてフッ素ガス濃度計11で試料ガス中のフッ素ガス濃度を測定する。   After the hexagonal switching valve 14 has held the state of the metering position for 1 to several minutes, the hexagonal switching valve 14 is switched to the measurement position, and the sample gas metered in the gas metering tube 15 is accompanied by an inert gas and fluorine. The gas is introduced into the gas concentration meter 11 and the fluorine gas concentration meter 11 measures the fluorine gas concentration in the sample gas. After the time for the sample gas to reach the measuring part of the fluorine gas concentration meter 11 has elapsed, the six-way switching valve 14 is switched to the measuring position and the measurement of the sample gas is resumed. The time for switching the hexagonal switching valve 14 from the measurement position to the measurement position may be about several seconds to several tens of seconds as in the calibration operation. After measuring the sample gas for a predetermined time, the hexagonal switching valve 14 is switched again from the measuring position to the measuring position, and the fluorine gas concentration meter 11 measures the fluorine gas concentration in the sample gas.

以下、六方切換弁14を計量位置と測定位置とに所定間隔で切り換えることにより、ガス計量管15で計量した試料ガスを断続的にフッ素ガス濃度計11に導入し、試料ガス中のフッ素ガス濃度をフッ素ガス濃度計11で測定する作業を複数回、好ましくは3回以上繰り返す。断続的に繰り返すフッ素ガス濃度測定の時間間隔は、ガス計量管15で計り取る試料ガスの量や試料ガス中のフッ素ガス濃度によって異なるが、少なくとも1分間はあけることが望ましい。   Hereinafter, the sample gas measured by the gas metering tube 15 is intermittently introduced into the fluorine gas concentration meter 11 by switching the hexagonal switching valve 14 between the measurement position and the measurement position at a predetermined interval, and the fluorine gas concentration in the sample gas Is repeated a plurality of times, preferably three times or more. The time interval of the fluorine gas concentration measurement that is repeated intermittently varies depending on the amount of the sample gas measured by the gas metering tube 15 and the fluorine gas concentration in the sample gas, but it is desirable that the interval be at least 1 minute.

また、試料ガスの測定と同様の操作を複数回、例えば3回以上繰り返し、試料ガスと接する分部の前処理を試料ガスを用いて実施した後に、試料ガス中のフッ素ガス濃度を実際に測定する操作を開始することにより、試料ガス中のフッ素ガス濃度をより正確に測定することができる。   In addition, the same operation as the measurement of the sample gas is repeated a plurality of times, for example, three times or more, and after the pretreatment of the portion in contact with the sample gas is performed using the sample gas, the fluorine gas concentration in the sample gas is actually measured. By starting this operation, the fluorine gas concentration in the sample gas can be measured more accurately.

図2は、本発明のフッ素ガス測定装置の他の形態例を示す系統図である。本形態例では、圧力調整手段17及び流量調整手段18を備えた不活性ガス導入経路31における圧力調整手段17及び流量調整手段18の下流側に設けたガス注入口32と、該ガス注入口32から前記試料ガスを注入するためのガスタイトシリンジ33との組合せにより試料ガス断続注入手段を構成している。   FIG. 2 is a system diagram showing another embodiment of the fluorine gas measuring device of the present invention. In this embodiment, a gas inlet 32 provided on the downstream side of the pressure adjusting means 17 and the flow rate adjusting means 18 in the inert gas introduction path 31 including the pressure adjusting means 17 and the flow rate adjusting means 18, and the gas inlet 32. The sample gas intermittent injection means is constituted by a combination with the gas tight syringe 33 for injecting the sample gas from the above.

ガスタイトシリンジ33に所定量が計り取られた試料ガスや校正用のフッ素含有ガスは、不活性ガス供給部13から供給され、圧力調整手段17及び流量調整手段18で圧力及び流量を調整されて不活性ガス導入経路31を流れる不活性ガス中に、ガスタイトシリンジ33からガス注入口32を通して注入され、下流側に接続したフッ素ガス濃度計11に導入される。したがって、適当な時間間隔毎にガスタイトシリンジ33からガス注入口32を通して試料ガスやフッ素含有ガスを注入する作業を繰り返すことにより、試料ガスやフッ素含有ガスを断続的にフッ素ガス濃度計11に導入することができる。なお、ガス注入口32及びガスタイトシリンジ33には周知のものを使用可能である。   The sample gas and the fluorine-containing gas for calibration, which are measured in a predetermined amount in the gas tight syringe 33, are supplied from the inert gas supply unit 13, and the pressure and flow rate are adjusted by the pressure adjusting unit 17 and the flow rate adjusting unit 18. The gas is injected into the inert gas flowing through the inert gas introduction path 31 from the gas tight syringe 33 through the gas inlet 32 and introduced into the fluorine gas concentration meter 11 connected downstream. Therefore, the sample gas and fluorine-containing gas are intermittently introduced into the fluorine gas concentration meter 11 by repeating the operation of injecting the sample gas and fluorine-containing gas from the gas tight syringe 33 through the gas inlet 32 at appropriate time intervals. can do. In addition, a well-known thing can be used for the gas inlet 32 and the gas tight syringe 33. FIG.

このように、試料ガス断続注入手段は、前記不活性ガス導入経路23に設けた六方切換弁14とガス計量管15との組み合わせや、不活性ガス導入経路31に設けたガス注入口32とガスタイトシリンジ33との組合せなど、各種構成を採用することが可能である。   As described above, the sample gas intermittent injection means includes a combination of the six-way switching valve 14 provided in the inert gas introduction path 23 and the gas metering pipe 15, a gas inlet 32 provided in the inert gas introduction path 31, and a gas. Various configurations such as a combination with the tight syringe 33 can be employed.

図1に示した構成のフッ素ガス測定装置を用いて実験を行った。不活性ガスには高純度窒素ガスを使用し、圧力は0.2MPaに、流量は200ml/minにそれぞれ調整した。また、試料ガス及び校正用のフッ素標準ガスの流量は1L/minに調整した。ガス計量管の内容量は10mlとした。   An experiment was performed using the fluorine gas measuring apparatus having the configuration shown in FIG. High purity nitrogen gas was used as the inert gas, the pressure was adjusted to 0.2 MPa, and the flow rate was adjusted to 200 ml / min. The flow rates of the sample gas and the calibration fluorine standard gas were adjusted to 1 L / min. The internal volume of the gas metering tube was 10 ml.

まず、フッ素ガス濃度計の校正作業を行い、4種類のフッ素ガス濃度が異なるフッ素含有ガスを用いて検量線を作成した。そして、同じ校正作業を後日に同様にして行い、検量線の再現性を確認した。その結果を図3に示す。   First, calibration of the fluorine gas concentration meter was performed, and a calibration curve was created using four types of fluorine-containing gases having different fluorine gas concentrations. The same calibration work was performed in the same way at a later date to confirm the reproducibility of the calibration curve. The result is shown in FIG.

図3に示す計量線の経時変化を、前記図8に示したデータと同じ濃度の100ppmで比較してみると、図8に示す従来の場合は5〜10日で約6割に低下しているのに対し、図3に示す本実施例の場合は、5〜7日で1割程度しか低下していない。このことから、検量線の再現性が大幅に向上していることがわかるとともに、試料ガス中のフッ素ガス濃度の測定精度がこの精度範囲で問題がない場合は、あらかじめフッ素標準ガスを断続的にフッ素ガス濃度計に導入する校正作業を設備が整った実験室等で行って検量線を作成しておくことにより、実際の測定現場で試料ガス中のフッ素ガス濃度を測定する直前に校正作業を行わなくてよいことがわかる。   When the time course of the measurement line shown in FIG. 3 is compared at 100 ppm of the same concentration as the data shown in FIG. 8, the conventional case shown in FIG. 8 decreases to about 60% in 5-10 days. On the other hand, in the case of the present embodiment shown in FIG. 3, it decreases only about 10% in 5 to 7 days. From this, it can be seen that the reproducibility of the calibration curve has been greatly improved, and if there is no problem with the measurement accuracy of the fluorine gas concentration in the sample gas within this accuracy range, the fluorine standard gas is intermittently used in advance. Perform calibration work to be introduced into the fluorine gas concentration meter in a laboratory equipped with facilities and create a calibration curve, so that calibration work can be performed immediately before measuring the fluorine gas concentration in the sample gas at the actual measurement site. You can see that you don't have to.

また、前記同様にして検量線を作成してから3日後に、フッ素ガス濃度が47.6ppm,90.9ppm,9.9ppm,24.4ppmの濃度既知の5種類のフッ素含有ガスを使用し、前述のように六方切換弁を切り換えて断続的に各フッ素含有ガスをフッ素ガス濃度計に導入することにより、各フッ素含有ガスのフッ素ガス濃度を測定した。その結果を図4に示す。   Further, three days after preparing the calibration curve in the same manner as described above, five types of fluorine-containing gases with known fluorine gas concentrations of 47.6 ppm, 90.9 ppm, 9.9 ppm, and 24.4 ppm were used, As described above, the fluorine gas concentration of each fluorine-containing gas was measured by switching the six-way switching valve and intermittently introducing each fluorine-containing gas into the fluorine gas concentration meter. The result is shown in FIG.

図4に示す結果から、測定開始直後の数回のデータにおいては、フッ素ガス濃度が低めに表示されたものの、その後はフッ素ガス濃度の変化に応じて再現性よく、かつ、高い応答性でフッ素ガス濃度が表示されていることがわかる。さらに、測定現場で実際の濃度データを取得する前に、試料ガスを断続的にフッ素濃度計に導入する予備作業を行うことにより、精度や応答性を向上できることがわかる。   From the results shown in FIG. 4, in the data several times immediately after the start of the measurement, the fluorine gas concentration was displayed at a low level, but thereafter the fluorine gas was reproducible with high reproducibility according to the change in the fluorine gas concentration and high response. It can be seen that the gas concentration is displayed. Furthermore, it can be seen that accuracy and responsiveness can be improved by performing preliminary work to intermittently introduce the sample gas into the fluorine concentration meter before acquiring actual concentration data at the measurement site.

さらに、前記同様にして検量線を作成した翌日に、フッ素ガス測定装置を実験室から現場の燃焼式除害装置の近くに移し、燃焼式除害装置から排出される排ガス中のフッ素ガス濃度を5分間隔で測定した。その結果を図5に示す。この結果から測定開始直後の3点のデータは低めに表示されたが、それ以降のフッ素ガス濃度は、約1.5ppmで安定した状態となり、長時間にわたって安定した状態でフッ素ガス濃度を測定可能であることがわかる。   Further, the day after the calibration curve is created in the same manner as described above, the fluorine gas measuring device is moved from the laboratory to the vicinity of the on-site combustion-type abatement device, and the fluorine gas concentration in the exhaust gas discharged from the combustion-type abatement device is measured. Measurements were taken at 5 minute intervals. The result is shown in FIG. From this result, the data of 3 points immediately after the start of measurement was displayed lower, but the fluorine gas concentration after that is stable at about 1.5 ppm, and the fluorine gas concentration can be measured in a stable state for a long time. It can be seen that it is.

ガス計量管を内容量が0.05mlのものに交換した以外、他の条件は変更せずに実施例1と同様にして検量線を作成した。その2日後に、フッ素ガス測定装置をプラズマCVD装置の近くに移してプラズマCVD装置から排出される排ガス中のフッ素ガス濃度を測定した。Cガス及び酸素ガスを使用したプラズマクリーニング時における排ガス中のフッ素ガス濃度を1分間隔で測定した結果を図6に示す。この結果から、フッ素ガス濃度が変動しても十分に追従した測定が可能であることがわかる。 A calibration curve was prepared in the same manner as in Example 1 without changing the other conditions except that the gas measuring tube was replaced with one having an internal volume of 0.05 ml. Two days later, the fluorine gas measuring device was moved close to the plasma CVD device, and the fluorine gas concentration in the exhaust gas discharged from the plasma CVD device was measured. FIG. 6 shows the result of measuring the fluorine gas concentration in the exhaust gas at the time of plasma cleaning using C 2 F 6 gas and oxygen gas at intervals of 1 minute. From this result, it can be seen that even if the fluorine gas concentration fluctuates, it is possible to perform measurement that sufficiently follows.

本発明の一形態例を示すフッ素ガス測定装置の系統図である。It is a systematic diagram of a fluorine gas measuring device showing an example of the present invention. 本発明のフッ素ガス測定装置の他の形態例を示す系統図である。It is a systematic diagram which shows the other example of a form of the fluorine gas measuring apparatus of this invention. 実施例1における検量線の経時変化を示す図である。FIG. 3 is a graph showing a change over time of a calibration curve in Example 1. 濃度既知の4種類のフッ素含有ガス中のフッ素ガス濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the fluorine gas density | concentration in four types of fluorine-containing gas of known density | concentration. 燃焼式除害装置から排出される排ガス中のフッ素ガス濃度を5分間隔で測定した結果を示す図である。It is a figure which shows the result of having measured the fluorine gas density | concentration in the waste gas discharged | emitted from a combustion type abatement apparatus at intervals of 5 minutes. プラズマCVD装置から排出される排ガス中のフッ素ガス濃度を1分間隔で測定した結果を示す図である。It is a figure which shows the result of having measured the fluorine gas density | concentration in the waste gas discharged | emitted from a plasma CVD apparatus at a 1-minute space | interval. フッ素ガス濃度計を従来法で使用したときの測定結果を示す図である。It is a figure which shows a measurement result when using a fluorine gas concentration meter by the conventional method. フッ素ガス濃度計を従来法で使用したときの検量線の経時変化を示す図である。It is a figure which shows the time-dependent change of a calibration curve when a fluorine gas concentration meter is used by the conventional method.

符号の説明Explanation of symbols

11…フッ素ガス濃度計、12…試料ガス源、13…不活性ガス供給部、14…六方切換弁、15…ガス計量管、16…流量調整手段、17…圧力調整手段、18…流量調整手段、21…濃度計入口経路、22…試料ガス導入経路、23…不活性ガス導入経路、24…ガス計量管入口経路、25…ガス計量管出口経路、26…試料ガス排出経路、31…不活性ガス導入経路、32…ガス注入口、33…ガスタイトシリンジ   DESCRIPTION OF SYMBOLS 11 ... Fluorine gas concentration meter, 12 ... Sample gas source, 13 ... Inert gas supply part, 14 ... Six-way selector valve, 15 ... Gas metering pipe, 16 ... Flow rate adjustment means, 17 ... Pressure adjustment means, 18 ... Flow rate adjustment means 21 ... Densitometer inlet path, 22 ... Sample gas introduction path, 23 ... Inert gas introduction path, 24 ... Gas metering pipe inlet path, 25 ... Gas metering pipe outlet path, 26 ... Sample gas discharge path, 31 ... Inert Gas introduction path, 32 ... gas inlet, 33 ... gas tight syringe

Claims (6)

発光式フッ素ガス濃度計を用いて試料ガス中のフッ素ガス濃度を測定するフッ素ガス測定方法において、前記フッ素ガス濃度計に不活性ガスを連続的に導入するとともに、該不活性ガス中に前記試料ガスを断続的に導入して試料ガス中のフッ素ガス濃度を測定することを特徴とするフッ素ガス測定方法。   In a fluorine gas measurement method for measuring a fluorine gas concentration in a sample gas using a luminescent fluorine gas concentration meter, an inert gas is continuously introduced into the fluorine gas concentration meter, and the sample is introduced into the inert gas. A method for measuring fluorine gas, which comprises intermittently introducing gas and measuring the concentration of fluorine gas in the sample gas. 前記フッ素ガス濃度計の校正は、該フッ素ガス濃度計に校正用のガスを断続的に導入して行うことを特徴とする請求項1記載のフッ素ガス測定方法。   2. The fluorine gas measuring method according to claim 1, wherein the calibration of the fluorine gas concentration meter is performed by intermittently introducing a calibration gas into the fluorine gas concentration meter. 前記試料ガス中のフッ素ガス濃度の測定は、前記フッ素ガス濃度計に校正用のガス又は前記試料ガスを断続的に導入した後に行うことを特徴とする請求項1又は2記載のフッ素ガス測定方法。   3. The fluorine gas measurement method according to claim 1, wherein the measurement of the fluorine gas concentration in the sample gas is performed after intermittently introducing a calibration gas or the sample gas into the fluorine gas concentration meter. . 前記校正用のガスは、フッ素ガス又はフッ化キセノンガスを含むガスであることを特徴とする請求項2又は3記載のフッ素ガス測定方法。   4. The fluorine gas measuring method according to claim 2, wherein the calibration gas is a gas containing fluorine gas or xenon fluoride gas. 発光式フッ素ガス濃度計を用いて試料ガス中のフッ素ガス濃度を測定するフッ素ガス測定装置において、前記発光式フッ素ガス濃度計に不活性ガスを連続的に導入する不活性ガス導入経路に、前記試料ガスを前記不活性ガス中に断続的に注入するための試料ガス断続注入手段を設けたことを特徴とするフッ素ガス測定装置。   In the fluorine gas measuring apparatus for measuring the fluorine gas concentration in the sample gas using a light emission type fluorine gas concentration meter, the inert gas introduction path for continuously introducing the inert gas into the light emission type fluorine gas concentration meter, A fluorine gas measuring apparatus comprising a sample gas intermittent injection means for intermittently injecting a sample gas into the inert gas. 前記試料ガス断続注入手段は、前記不活性ガス導入経路に設けた六方切換弁とガス計量管との組み合わせであって、前記六方切換弁に、前記フッ素ガス濃度計に接続する濃度計入口経路と、試料ガス源に接続する試料ガス導入経路と、不活性ガス供給部に接続する不活性ガス導入経路と、前記ガス計量管の入口部に接続するガス計量管入口経路と、ガス計量管の出口部に接続するガス計量管出口経路と、流量調整手段に接続する試料ガス排出経路とがそれぞれ接続され、弁切換位置として、前記不活性ガス供給部からの不活性ガスが前記不活性ガス導入経路から導入されて前記濃度計入口経路に導出されるとともに、前記試料ガス源からの試料ガスが前記試料ガス導入経路から導入されて前記ガス計量管入口経路、前記ガス計量管、前記ガス計量管出口経路を経て前記試料ガス排出経路に導出される計量位置と、前記不活性ガスが前記不活性ガス導入経路から導入されて前記ガス計量管入口経路、前記ガス計量管、前記ガス計量管出口経路を経て前記濃度計入口経路に導出されるとともに、前記試料ガスが前記試料ガス導入経路から導入されて前記試料ガス排出経路に導出される測定位置とに切換可能に形成された六方切換弁、あるいは、前記不活性ガス導入経路に設けたガス注入口と該ガス注入口から前記試料ガスを注入するためのガスタイトシリンジとの組合せ、のいずれかであることを特徴とする請求項記載のフッ素ガス測定装置。 The sample gas intermittent injection means is a combination of a six-way switching valve and a gas metering pipe provided in the inert gas introduction path, and a concentration meter inlet path connected to the fluorine gas concentration meter is connected to the six-way switching valve. A sample gas introduction path connected to the sample gas source, an inert gas introduction path connected to the inert gas supply unit, a gas metering pipe inlet path connected to the inlet of the gas metering pipe, and an outlet of the gas metering pipe A gas metering tube outlet path connected to the gas supply section and a sample gas discharge path connected to the flow rate adjusting means are connected to each other, and the inert gas from the inert gas supply section serves as the inert gas introduction path as a valve switching position. And the sample gas from the sample gas source is introduced from the sample gas introduction path to be introduced into the gas metering pipe inlet path, the gas metering pipe, and the gas. A metering position led out to the sample gas discharge path via a metering pipe outlet path, and the inert gas introduced from the inert gas introduction path to the gas metering pipe inlet path, the gas metering pipe, and the gas metering pipe A six-way switching valve formed so as to be switched to a measurement position that is led out to the concentration meter inlet path via the outlet path, and the sample gas is introduced from the sample gas introduction path and led to the sample gas discharge path. , or claim 5, wherein the from the gas inlet and the gas inlet provided in the inert gas introduction path combination with gas-tight syringe for injecting the sample gas, which is either Fluorine gas measuring device.
JP2007317117A 2007-12-07 2007-12-07 Fluorine gas measuring method and apparatus Expired - Fee Related JP5112032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317117A JP5112032B2 (en) 2007-12-07 2007-12-07 Fluorine gas measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317117A JP5112032B2 (en) 2007-12-07 2007-12-07 Fluorine gas measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2009139276A JP2009139276A (en) 2009-06-25
JP5112032B2 true JP5112032B2 (en) 2013-01-09

Family

ID=40870019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317117A Expired - Fee Related JP5112032B2 (en) 2007-12-07 2007-12-07 Fluorine gas measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP5112032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158181A (en) * 2015-08-27 2015-12-16 晋江尚京富本环保科技有限公司 Kit for detecting fluoride ions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211802A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Method for analyzing sulfur compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190044A (en) * 1984-10-11 1986-05-08 Central Glass Co Ltd Method and instrument for measuring concentration of oxidative gas
JPS62245151A (en) * 1986-04-16 1987-10-26 Koumiyou Rikagaku Kogyo Kk Method for measuring concentration of halogen
JP2000283922A (en) * 1999-03-31 2000-10-13 Toshiba Corp Gas component concentration measuring device and gas component concentration measuring method
JP4749823B2 (en) * 2005-10-11 2011-08-17 大陽日酸株式会社 Fluorine gas concentration measurement method
JP4767033B2 (en) * 2006-02-13 2011-09-07 大陽日酸株式会社 Measuring method of fluorine gas concentration
JP5096081B2 (en) * 2007-08-31 2012-12-12 大陽日酸株式会社 Fluorine gas measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158181A (en) * 2015-08-27 2015-12-16 晋江尚京富本环保科技有限公司 Kit for detecting fluoride ions
CN105158181B (en) * 2015-08-27 2017-11-07 晋江尚京富本环保科技有限公司 Detect the kit of fluorine ion

Also Published As

Publication number Publication date
JP2009139276A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP6461254B2 (en) Gas injection system for isotope ratio analyzer and method for determining isotope ratio
KR101367575B1 (en) System for producing primary standard gas mixtures
AU2013234971A1 (en) Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
JP6297161B2 (en) Measurement method of isotope ratio
US6067842A (en) Computer-controlled olfactometer
EP0684470A2 (en) Method and apparatus for gas analysis
Pascale et al. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels
JP5112032B2 (en) Fluorine gas measuring method and apparatus
JP4749823B2 (en) Fluorine gas concentration measurement method
CN111638263B (en) Gas sampling analysis device and method
JP5084395B2 (en) Gas measuring instrument
KR20010067371A (en) Method for analyzing impurities contained in gas and apparatus therefor
JP5096081B2 (en) Fluorine gas measuring method and apparatus
JP2008196882A (en) Gas analyzer
JP2020527239A (en) Equipment and methods for partial conversion of fluid samples containing multiple components, and methods for online determination and analysis of these components
JP2003166965A (en) Method for analyzing oxygen concentration in gas and oxygen concentration analyzer
EP0883049A1 (en) Olfactometer
JP2006145383A (en) Atmospheric pressure chemical ionization mass spectrograph, and calibration method therefor
JP7342607B2 (en) Gas generator and gas generation method
JP6342096B1 (en) Equipment for evaluating gas responsiveness of test specimens
JP2003035635A (en) Pipe and apparatus for preparing gas
Vimal Laboratory investigations of the hydroxyl radical-initiated oxidation of atmospheric volatile organic compounds
JP2005091297A (en) Total hydrocarbon analyzing system
JPH11295196A (en) Component concentration stabilizng method for supplied gas, and supplied gas containing microquantity of moisture used in this method
JP2001153856A (en) Measuring method and measuring device for nitrogen compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees