JP2012211802A - Method for analyzing sulfur compound - Google Patents

Method for analyzing sulfur compound Download PDF

Info

Publication number
JP2012211802A
JP2012211802A JP2011077158A JP2011077158A JP2012211802A JP 2012211802 A JP2012211802 A JP 2012211802A JP 2011077158 A JP2011077158 A JP 2011077158A JP 2011077158 A JP2011077158 A JP 2011077158A JP 2012211802 A JP2012211802 A JP 2012211802A
Authority
JP
Japan
Prior art keywords
gas
sulfur compound
carrier gas
flame photometric
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011077158A
Other languages
Japanese (ja)
Inventor
Yusuke Miki
雄輔 三木
Tsutomu Kikuchi
勉 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011077158A priority Critical patent/JP2012211802A/en
Publication of JP2012211802A publication Critical patent/JP2012211802A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing a sulfur compound that is capable of measuring the concentration of the sulfur compound contained in a sample gas quickly and accurately by using a flame photometric detector.SOLUTION: In a method for analyzing a sulfur compound that measures the concentration of the sulfur compound contained in a sample gas by using a flame photometric detector, a gas with the highest component concentration in the sample gas is used as a carrier gas. The carrier gas with the sample gas is directly introduced into the flame photometric detector 19 through a resistance tube 17 provided instead of a conventional separation column. The flow channel resistance of the resistance tube 17 is set higher than that of tubes located in front and back of a measuring tube and an introduction tube of the flame photometric detector 19.

Description

本発明は、硫黄化合物の分析方法に関し、詳しくは、試料ガス中に不純物として微量に含まれる硫黄化合物の濃度を炎光光度検出器を使用して測定する硫黄化合物の分析方法に関する。   The present invention relates to a method for analyzing a sulfur compound, and more particularly, to a method for analyzing a sulfur compound in which the concentration of a sulfur compound contained in a trace amount as an impurity in a sample gas is measured using a flame photometric detector.

ガス製造分野や半導体製造分野では、多成分混合ガス中に含まれる各種不純物の濃度を短時間かつ高感度に測定する必要性が増している。従来使用されている炎光光度検出器は、硫黄化合物やリン化合物を選択的に検出する検出器であり、硫化水素、メチルメルカプタンなどの悪臭成分の分析、薬品中の微量硫黄分の検出、残留農薬の分析、生化学成分の分析などに、広く利用されている。混合ガス中に不純物として含まれる数ppbレベルの硫黄化合物については、液体窒素による濃縮システムを組み合わせた炎光光度検出器で分析を行っている(例えば、特許文献1参照。)。   In the gas manufacturing field and semiconductor manufacturing field, there is an increasing need to measure the concentration of various impurities contained in a multicomponent mixed gas in a short time with high sensitivity. Conventional flame photometric detectors are detectors that selectively detect sulfur compounds and phosphorus compounds. Analysis of malodorous components such as hydrogen sulfide and methyl mercaptan, detection of trace sulfur in chemicals, residual It is widely used for the analysis of agricultural chemicals and biochemical components. A sulfur compound of several ppb level contained as an impurity in the mixed gas is analyzed with a flame photometric detector combined with a liquid nitrogen concentration system (see, for example, Patent Document 1).

特開2002−250722号公報JP 2002-250722 A

しかし、炎光光度検出器を用いて純ガス中の硫黄不純物をppbレベルで測定する際に、試料ガスとキャリアガスとが異なる場合、キャリアガス由来のピークが出現する。例えば、酸素又はアルゴン中の硫黄不純物を測定するときに、キャリアガスとして窒素を使用すると、クロマトグラフのチャートに酸素やアルゴンのピークが硫黄化合物のピークと重なって現れるため、正確な測定が困難になり、また、両ピークを分離するためにキャリアガスの流速を低くすると、測定に要する時間が長くなるという問題があった。   However, when the sulfur gas in the pure gas is measured at the ppb level using the flame photometric detector, if the sample gas and the carrier gas are different, a peak derived from the carrier gas appears. For example, when measuring sulfur impurities in oxygen or argon, if nitrogen is used as the carrier gas, the peak of oxygen or argon appears on the chromatographic chart overlapping the peak of sulfur compounds, making accurate measurement difficult. In addition, if the flow rate of the carrier gas is lowered in order to separate both peaks, there is a problem that the time required for measurement becomes longer.

そこで本発明は、試料ガス中に含まれる硫黄化合物の濃度を炎光光度検出器を使用して迅速かつ正確に測定することができる硫黄化合物の分析方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for analyzing a sulfur compound, which can quickly and accurately measure the concentration of a sulfur compound contained in a sample gas using a flame photometric detector.

上記目的を達成するため、本発明の硫黄化合物の分析方法は、試料ガス中に含まれる硫黄化合物の濃度を炎光光度検出器を使用して測定する硫黄化合物の分析方法において、前記試料ガスにおける最も成分濃度が高いガスをキャリアガスとして用いることを特徴としている。   In order to achieve the above object, the sulfur compound analysis method of the present invention is a sulfur compound analysis method in which the concentration of a sulfur compound contained in a sample gas is measured using a flame photometric detector. A gas having the highest component concentration is used as a carrier gas.

さらに、本発明の硫黄化合物の分析方法は、前記試料ガスを計量管に導入して計量後、該計量管に前記キャリアガスを導入して計量した試料ガスをキャリアガスに同伴させた状態で、前記計量管前後の配管及び前記炎光光度検出器の導入配管よりも流路抵抗が大きい抵抗管を介して前記炎光光度検出器に導入することを特徴としている。また、前記キャリアガスは、試料ガスの種類及び前記炎光光度検出器の状態に応じて複数種のガスのいずれかを切り替えて導入することを特徴としている。   Furthermore, in the method for analyzing a sulfur compound of the present invention, after the sample gas is introduced into the measuring tube and measured, the carrier gas is introduced into the measuring tube and the measured sample gas is entrained in the carrier gas. It is characterized in that it is introduced into the flame photometric detector through a resistance pipe having a larger flow path resistance than pipes before and after the measuring pipe and an introduction pipe of the flame photometric detector. Further, the carrier gas is characterized in that one of a plurality of types of gases is switched and introduced in accordance with the type of sample gas and the state of the flame photometric detector.

本発明の硫黄化合物の分析方法によれば、試料ガス中の最も成分濃度が高いガス、すなわち、主成分ガスをキャリアガスとして用いるので、主成分ガスとは異なるガスをキャリアガスとして使用したときの問題を解消できるとともに、主成分ガスの影響も排除することができ、従来の分析操作では必須だった分離カラムによる成分分離を必要とせずに炎光光度検出器で硫黄化合物の濃度を測定することができる。成分分離を行わないことから操作時間を大幅に短縮することができるだけでなく、硫黄化合物のピークを高くすることができ、かつ、半値幅を小さくできるので、検出下限の向上を図ることができる。   According to the sulfur compound analysis method of the present invention, the gas having the highest component concentration in the sample gas, that is, the main component gas is used as the carrier gas, and therefore when a gas different from the main component gas is used as the carrier gas. The problem can be solved and the influence of the main component gas can be eliminated, and the concentration of sulfur compounds can be measured with a flame photometric detector without the need for component separation using a separation column, which was essential in conventional analytical operations. Can do. Since the component separation is not performed, not only the operation time can be greatly shortened, but also the peak of the sulfur compound can be increased and the half-value width can be reduced, so that the detection lower limit can be improved.

本発明の硫黄化合物の分析方法を実施可能な分析装置の一例を示す説明図である。It is explanatory drawing which shows an example of the analyzer which can implement the analysis method of the sulfur compound of this invention. 炎光光度検出器を使用した従来の分析装置の一例を示す説明図である。It is explanatory drawing which shows an example of the conventional analyzer which uses a flame photometric detector. 実験例1の結果を示す図である。It is a figure which shows the result of Experimental example 1. FIG. 実験例2の結果を示す図である。It is a figure which shows the result of Experimental example 2. 実験例3の結果を示す図である。It is a figure which shows the result of Experimental example 3.

まず、図1に示すように、本発明の硫黄化合物の分析方法を実施可能な分析装置は、試料ガス導入経路11と、圧力調整器12a,12bをそれぞれ備えた第1キャリアガス導入経路13a及び第2キャリアガス導入経路13bと、装置に導入するキャリアガスを切り替えるキャリアガス切替器14と、試料ガスを計量するための計量管15と、試料ガス及びキャリアガスの流路を切り替えるための六方切替弁16と、抵抗管17を備えた分析経路18と、分析経路18から導入されたガスの分析を行う炎光光度検出器19及び測定手段20と、流量計21を備えた排気経路22とを有している。   First, as shown in FIG. 1, an analyzer capable of performing the sulfur compound analysis method of the present invention includes a sample gas introduction path 11, a first carrier gas introduction path 13 a and pressure regulators 12 a and 12 b, respectively. Second carrier gas introduction path 13b, carrier gas switch 14 for switching the carrier gas introduced into the apparatus, measuring tube 15 for measuring the sample gas, and hexagonal switching for switching the flow path of the sample gas and the carrier gas An analysis path 18 having a valve 16, a resistance tube 17, a flame photometric detector 19 and a measuring means 20 for analyzing a gas introduced from the analysis path 18, and an exhaust path 22 having a flow meter 21. Have.

試料ガス中に含まれる硫黄化合物の濃度を炎光光度検出器を使用して測定する際には、各ガスの圧力や流量をあらかじめ設定された値に調整し、所定の前処理(パージ、温度調整等)を行った状態で、最初に試料ガスの計量を行う。六方切替弁16は、図1において実線で示す経路に切り替えられ、試料ガス導入経路11から分析装置に導入された試料ガスは、六方切替弁16の実線で示す経路を通り、計量管15を通って再び六方切替弁16を通り、流量計21を通って排気経路22から排出される。このとき、キャリアガス切替器14によって選択されたキャリアガスは、第1キャリアガス導入経路13a又は第2キャリアガス導入経路13bから六方切替弁16に入り、分析経路18に流出して抵抗管17を通り、炎光光度検出器19に導入されている。   When measuring the concentration of sulfur compounds in the sample gas using a flame photometric detector, the pressure and flow rate of each gas are adjusted to preset values, and predetermined pretreatment (purging, temperature First, measure the sample gas in the state of adjustment. The six-way switching valve 16 is switched to the path indicated by the solid line in FIG. 1, and the sample gas introduced from the sample gas introduction path 11 to the analyzer passes through the path indicated by the solid line of the six-way switching valve 16 and passes through the measuring tube 15. Then, the gas again passes through the six-way switching valve 16, passes through the flow meter 21, and is discharged from the exhaust path 22. At this time, the carrier gas selected by the carrier gas switch 14 enters the six-way switching valve 16 from the first carrier gas introduction path 13a or the second carrier gas introduction path 13b, flows out into the analysis path 18 and flows through the resistance tube 17. As described above, it is introduced into the flame photometric detector 19.

計量管15に十分に試料ガスを流通させて計量管15内を試料ガスに置換した後、六方切替弁16を図1において破線で示す経路に切り替え、計量管15で計量した試料ガスを、キャリアガスに同伴させて炎光光度検出器19に導入する。すなわち、キャリアガス切替器14を通って六方切替弁16に導入されたキャリアガスは、六方切替弁16の破線で示す経路を通り、計量管15を通って試料ガスを同伴し、再び六方切替弁16を通り、分析経路18の抵抗管17を通って炎光光度検出器19に導入される。一方、試料ガス導入経路11から導入された試料ガスは、六方切替弁16の破線で示す経路を通り、流量計21を通って排気経路22から排出される。   After sufficiently flowing the sample gas through the measuring tube 15 and replacing the inside of the measuring tube 15 with the sample gas, the hexagonal switching valve 16 is switched to the path indicated by the broken line in FIG. 1, and the sample gas measured by the measuring tube 15 is transferred to the carrier. The gas is introduced into the flame photometric detector 19 along with the gas. That is, the carrier gas introduced into the six-way switching valve 16 through the carrier gas switching device 14 passes through the path indicated by the broken line of the six-way switching valve 16, accompanies the sample gas through the measuring tube 15, and again is the six-way switching valve. 16 through the resistance tube 17 of the analysis path 18 and introduced into the flame photometric detector 19. On the other hand, the sample gas introduced from the sample gas introduction path 11 passes through the path indicated by the broken line of the six-way switching valve 16 and is discharged from the exhaust path 22 through the flow meter 21.

このとき、試料ガスを同伴するキャリアガスには、試料ガス中の成分のなかで最も成分濃度が高いガス、即ち主成分ガスを使用する。例えば、試料ガスの主成分がアルゴンの場合は、アルゴンをキャリアガスとして使用し、試料ガスの主成分が酸素の場合は、酸素をキャリアガスとして使用する。また、複数種のガスが混合した混合ガスの場合も、該混合ガス中の成分のなかで最も成分濃度が高いガスをキャリアガスとして選択する。   At this time, a gas having the highest component concentration among the components in the sample gas, that is, a main component gas is used as the carrier gas accompanying the sample gas. For example, when the main component of the sample gas is argon, argon is used as the carrier gas, and when the main component of the sample gas is oxygen, oxygen is used as the carrier gas. In the case of a mixed gas in which a plurality of types of gases are mixed, the gas having the highest component concentration among the components in the mixed gas is selected as the carrier gas.

抵抗管17は、前記計量管15の前後の配管や前記炎光光度検出器19の導入配管、即ち分析経路18の配管よりも流路抵抗を大きく設定したものであって、例えば、オリフィスのようなものや、適度な長さの細管を用いることができる。計量管15で計量されてキャリアガスに同伴された試料ガスは、流路抵抗が大きな抵抗管17を通ることにより、ガス流れが安定化した状態で炎光光度検出器19に導入される。すなわち、キャリアガスに同伴された試料ガスは、従来のような成分分離を行うことなく、抵抗管17でガス流れを安定化させるだけで計量管15から直接的に炎光光度検出器19に導入される。   The resistance pipe 17 has a flow resistance set larger than that of the pipe before and after the measuring pipe 15 and the introduction pipe of the flame photometric detector 19, that is, the pipe of the analysis path 18, and is, for example, an orifice. Or a moderately long tubule can be used. The sample gas measured by the measuring tube 15 and entrained by the carrier gas passes through the resistance tube 17 having a large flow path resistance, and is introduced into the flame photometric detector 19 in a state where the gas flow is stabilized. That is, the sample gas entrained by the carrier gas is introduced directly from the measuring tube 15 into the flame photometric detector 19 by stabilizing the gas flow with the resistance tube 17 without performing conventional component separation. Is done.

また、前記キャリアガス切替器14には、例えば、特開2001−4100号公報に記載されているようなマルチポジションバルブを使用することが好ましい。すなわち、マルチポジションバルブは、バルブ内の各切替流路のガスを滞留させずに、僅かな流量で連続して流しておくことができるので、種類が異なる複数のキャリアガスを使用して切替供給する場合に、バルブ周りにキャリアガスが滞留することを防ぐことができ、ガスの滞留による悪影響を回避することができる。さらに、マルチポジションバルブは、10種類以上のキャリアガスを切替供給することも可能であり、各種試料ガスの分析を行う際に、各試料ガスに合わせたキャリアガスを効率よく供給することができる。   Further, it is preferable to use a multi-position valve as described in JP-A-2001-4100, for example, as the carrier gas switch 14. In other words, the multi-position valve can continuously flow at a small flow rate without retaining the gas in each switching channel in the valve, so it can be switched using multiple carrier gases of different types. In this case, it is possible to prevent the carrier gas from staying around the valve, and to avoid adverse effects due to the staying of the gas. Furthermore, the multi-position valve can also switch and supply 10 or more types of carrier gas, and can efficiently supply a carrier gas suitable for each sample gas when analyzing various sample gases.

一方、図2に示す従来の分析装置は、分析経路18に、前記抵抗管ではなく、通過するガス中の成分分離を行う分離カラム(キャピラリーカラム)31が設けられている。また、キャリアガスは、圧力調整器12を備えたキャリアガス導入経路13の1系統のみが設けられている。なお、図2において、前記図1に示した分析装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   On the other hand, in the conventional analyzer shown in FIG. 2, a separation column (capillary column) 31 for separating components in the passing gas is provided in the analysis path 18 instead of the resistance tube. Further, the carrier gas is provided with only one system of the carrier gas introduction path 13 provided with the pressure regulator 12. In FIG. 2, the same components as those of the analyzer shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

分離カラム31は、試料ガス中の各成分を分離するものであって、測定対象となる硫黄化合物と他の成分、特に、硫黄化合物と主成分ガスとを分離するための充填剤を充填した長い流路を有している。一般的に、分離カラム31で成分分離を行う際には、キャリアガスの流速が早いと十分な成分分離を行うことが困難で、成分分離を十分に行うためにはキャリアガスの流速を遅くする必要がある。したがって、測定時間を短くするためにキャリアガスの流速を早くすると成分分離を十分に行えず、成分分離を十分に行うためにキャリアガスの流速を遅くすると測定時間が長くなるという問題がある。   The separation column 31 separates each component in the sample gas, and is a long column filled with a sulfur compound to be measured and other components, particularly a filler for separating the sulfur compound and the main component gas. It has a flow path. Generally, when component separation is performed in the separation column 31, it is difficult to perform sufficient component separation if the flow rate of the carrier gas is high. To sufficiently perform component separation, the flow rate of the carrier gas is decreased. There is a need. Therefore, if the carrier gas flow rate is increased in order to shorten the measurement time, the component separation cannot be sufficiently performed, and if the carrier gas flow rate is decreased in order to sufficiently perform the component separation, there is a problem that the measurement time becomes longer.

実験例1
図2に示した従来の分析装置を用いてアルゴン中に含まれる硫黄化合物(濃度1ppm)を分析する実験を行った。キャリアガスに窒素を使用し、キャリアガスの流速を毎分40mlとした。その結果、図3に示すように、キャリアガスである窒素のピークと硫黄化合物のピークとが重なって正確な分析を行うことができなかった。
Experimental example 1
An experiment was conducted to analyze a sulfur compound (concentration 1 ppm) contained in argon using the conventional analyzer shown in FIG. Nitrogen was used as the carrier gas, and the flow rate of the carrier gas was 40 ml / min. As a result, as shown in FIG. 3, the peak of nitrogen as the carrier gas and the peak of the sulfur compound overlapped and accurate analysis could not be performed.

実験例2
キャリアガスの流速を毎分20mlとした以外は実験例1と同様にした。その結果、図4に示すように、キャリアガスである窒素のピークと硫黄化合物のピークとは分離したが、測定時間が約2倍に延びてしまった。
Experimental example 2
The same procedure as in Experimental Example 1 was performed except that the flow rate of the carrier gas was 20 ml / min. As a result, as shown in FIG. 4, the peak of nitrogen as the carrier gas and the peak of the sulfur compound were separated, but the measurement time was extended about twice.

実験例3(本発明の実施例)
図1に示した装置を使用し、キャリアガスにアルゴンを使用して流速を毎分40mlとした。その結果、図5に示すように、硫黄化合物のピークのみを得ることができた。また、測定時間は、実験例2に比べて半分程度に短縮することができた。
Experimental Example 3 (Example of the present invention)
The apparatus shown in FIG. 1 was used, argon was used as the carrier gas, and the flow rate was 40 ml / min. As a result, as shown in FIG. 5, only the peak of the sulfur compound could be obtained. Moreover, the measurement time could be shortened to about a half compared with Experimental Example 2.

11…試料ガス導入経路、12,12a,12b…圧力調整器、13,13a,13b…キャリアガス導入経路、14…キャリアガス切替器、15…計量管、16…六方切替弁、17…抵抗管、18…分析経路、19…炎光光度検出器、20…測定手段、21…流量計、22…排気経路、31…分離カラム   DESCRIPTION OF SYMBOLS 11 ... Sample gas introduction path, 12, 12a, 12b ... Pressure regulator, 13, 13a, 13b ... Carrier gas introduction path, 14 ... Carrier gas switch, 15 ... Metering pipe, 16 ... Six-way switch valve, 17 ... Resistance pipe , 18 ... analysis path, 19 ... flame photometric detector, 20 ... measuring means, 21 ... flow meter, 22 ... exhaust path, 31 ... separation column

Claims (3)

試料ガス中に含まれる硫黄化合物の濃度を、炎光光度検出器を使用して測定する硫黄化合物の分析方法において、前記試料ガスにおける最も成分濃度が高いガスをキャリアガスとして用いる硫黄化合物の分析方法。   In a sulfur compound analysis method for measuring the concentration of a sulfur compound contained in a sample gas using a flame photometric detector, the sulfur compound analysis method using a gas having the highest component concentration in the sample gas as a carrier gas . 前記試料ガスを計量管に導入して計量後、該計量管に前記キャリアガスを導入して計量した試料ガスをキャリアガスに同伴させた状態で、前記計量管前後の配管及び前記炎光光度検出器の導入配管よりも流路抵抗が大きい抵抗管を介して前記炎光光度検出器に導入する請求項1記載の硫黄化合物の分析方法。   After the sample gas is introduced into the metering tube and weighed, the carrier gas is introduced into the metering tube and the sample gas measured is entrained with the carrier gas, and the pipes before and after the metering tube and the flame photometric detection The sulfur compound analysis method according to claim 1, wherein the flame photometric detector is introduced into the flame photometric detector through a resistance pipe having a flow passage resistance larger than that of the introduction pipe of the vessel. 前記キャリアガスは、試料ガスの種類及び前記炎光光度検出器の状態に応じて複数種のガスのいずれかを切り替えて導入する請求項1又は2記載の硫黄化合物の分析方法。   The sulfur carrier analysis method according to claim 1 or 2, wherein the carrier gas is introduced by switching one of a plurality of types of gases according to the type of sample gas and the state of the flame photometric detector.
JP2011077158A 2011-03-31 2011-03-31 Method for analyzing sulfur compound Pending JP2012211802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077158A JP2012211802A (en) 2011-03-31 2011-03-31 Method for analyzing sulfur compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077158A JP2012211802A (en) 2011-03-31 2011-03-31 Method for analyzing sulfur compound

Publications (1)

Publication Number Publication Date
JP2012211802A true JP2012211802A (en) 2012-11-01

Family

ID=47265882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077158A Pending JP2012211802A (en) 2011-03-31 2011-03-31 Method for analyzing sulfur compound

Country Status (1)

Country Link
JP (1) JP2012211802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965094A (en) * 2015-07-03 2015-10-07 贵州省环境科学研究设计院 Automatic release and absorption device for liquid-solid sample sulfides
WO2022190466A1 (en) * 2021-03-12 2022-09-15 株式会社堀場製作所 Element analysis device, operation method for element analysis device, and work program for element analysis device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57548A (en) * 1980-06-02 1982-01-05 Osaka Gas Co Ltd Measuring method for content of impurity in fuel gas
JPS6165154A (en) * 1984-09-07 1986-04-03 Nippon Steel Corp Method and instrument for quick analysis of carbon and sulfur components in metallic sample
JPS6224143A (en) * 1985-07-24 1987-02-02 Kaken:Kk Analysis method and apparatus for phosphorus and sulfur
JPH038760U (en) * 1989-06-14 1991-01-28
JPH07159409A (en) * 1993-12-02 1995-06-23 Hitachi Ltd Automatic analyzer for trace metal in blood
JPH10227725A (en) * 1997-02-12 1998-08-25 Suzuki Motor Corp Expiration analysis device
JP2002250722A (en) * 2001-02-27 2002-09-06 Taiyo Toyo Sanso Co Ltd Method and equipment for analyzing extremely low concentration hydrogen sulfide
JP2009139276A (en) * 2007-12-07 2009-06-25 Taiyo Nippon Sanso Corp Method and apparatus for measuring fluorine gas
JP2010066048A (en) * 2008-09-09 2010-03-25 Taiyo Nippon Sanso Corp Method for analyzing bromine-containing high-molecular compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57548A (en) * 1980-06-02 1982-01-05 Osaka Gas Co Ltd Measuring method for content of impurity in fuel gas
JPS6165154A (en) * 1984-09-07 1986-04-03 Nippon Steel Corp Method and instrument for quick analysis of carbon and sulfur components in metallic sample
JPS6224143A (en) * 1985-07-24 1987-02-02 Kaken:Kk Analysis method and apparatus for phosphorus and sulfur
JPH038760U (en) * 1989-06-14 1991-01-28
JPH07159409A (en) * 1993-12-02 1995-06-23 Hitachi Ltd Automatic analyzer for trace metal in blood
JPH10227725A (en) * 1997-02-12 1998-08-25 Suzuki Motor Corp Expiration analysis device
JP2002250722A (en) * 2001-02-27 2002-09-06 Taiyo Toyo Sanso Co Ltd Method and equipment for analyzing extremely low concentration hydrogen sulfide
JP2009139276A (en) * 2007-12-07 2009-06-25 Taiyo Nippon Sanso Corp Method and apparatus for measuring fluorine gas
JP2010066048A (en) * 2008-09-09 2010-03-25 Taiyo Nippon Sanso Corp Method for analyzing bromine-containing high-molecular compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965094A (en) * 2015-07-03 2015-10-07 贵州省环境科学研究设计院 Automatic release and absorption device for liquid-solid sample sulfides
WO2022190466A1 (en) * 2021-03-12 2022-09-15 株式会社堀場製作所 Element analysis device, operation method for element analysis device, and work program for element analysis device

Similar Documents

Publication Publication Date Title
US20090150087A1 (en) Chromatography using multiple detectors
JP3607997B2 (en) Analyzer for trace impurities in gas
CN105911158A (en) Gas chromatograph and detection method for determining total content of sulfides in natural gas
Trubyanov et al. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia
JP5123152B2 (en) Gas-in-oil analyzer and gas-in-oil analysis method
CN109115919B (en) Gas chromatography analysis device and analysis method for trace hydrogen, oxygen and nitrogen in gas
CN205719955U (en) The continuous monitoring device of NMHC
JP2012211802A (en) Method for analyzing sulfur compound
CN110895266B (en) Analysis device and method for measuring content of hydrogen sulfide and phosphine
KR20010067371A (en) Method for analyzing impurities contained in gas and apparatus therefor
KR20110139968A (en) Sample analyzing apparatus and sample analyzing method
JP2002250722A (en) Method and equipment for analyzing extremely low concentration hydrogen sulfide
Ruzsanyi et al. Detection of sulfur-free odorants in natural gas using ion mobility spectrometry
JPS5949532B2 (en) Gas concentration analyzer
JPH04278458A (en) Method and apparatus for concentration analysis
JPH0755780A (en) High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph
JP2017181349A (en) Method for measuring impurity component in hydrogen gas
RU2468363C1 (en) Flow chromatograph
RU89238U1 (en) STREAM ANALYZER
RU2302630C1 (en) Capillary gas chromatograph for analyzing organic and inorganic substances
CN205210031U (en) Can increase substantially analysis sensitivity's gas chromatograph device
CN114965724B (en) Sulfide element content measuring device
CN215866549U (en) Sulfur content analytical equipment in gas
JP2018169209A (en) Nickel carbonyl analyzer and nickel carbonyl analyzing method
JP5975832B2 (en) Analysis method of hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106