JPH07159409A - Automatic analyzer for trace metal in blood - Google Patents

Automatic analyzer for trace metal in blood

Info

Publication number
JPH07159409A
JPH07159409A JP30251093A JP30251093A JPH07159409A JP H07159409 A JPH07159409 A JP H07159409A JP 30251093 A JP30251093 A JP 30251093A JP 30251093 A JP30251093 A JP 30251093A JP H07159409 A JPH07159409 A JP H07159409A
Authority
JP
Japan
Prior art keywords
furnace
blood
ashing
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30251093A
Other languages
Japanese (ja)
Inventor
Hiroko Nakamura
弘子 仲村
Akira Yonetani
明 米谷
Toshihiro Shirasaki
俊浩 白崎
Koichi Uchino
興一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30251093A priority Critical patent/JPH07159409A/en
Publication of JPH07159409A publication Critical patent/JPH07159409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve higher measuring accuracy and sensitivity by reducing effect of organic matters and coexisting salts when trace metal existing in blood is concentrated in a furnace in an atomic absorption photometer and an automatic analyzer for trace metal in blood which has metal in a graphite furnace, tungsten furnace or the like at an atomizing part. CONSTITUTION:This analyzer has an automatic sampler 10 and a furnace 3, and is provided with a gas controller 7 capable of switching a piping 6 of an oxygen mixed gas and a carrier gas, is capable of the concentration within the furnace including a ashing process. A gas mixed with oxygen flows as carrier gas during the period of ashing. Thus, organic matters and coexisting salts in blood are removed thereby achieving an effect to improve measuring accuracy, sensitivity and prolonging the life of the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子化部にグラファイ
ト炉もしくはタングステン炉等金属炉を備えた血液中微
量金属自動分析装置に係り、特に炉内濃縮を用いなけれ
ば検出が困難なクロム,マンガン等の血中の微量金属の
分析において、炉内濃縮の精度の向上を図るとともに、
測定目的元素の感度および再現性を大幅に向上させる装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic analyzer for trace metals in blood provided with a metal furnace such as a graphite furnace or a tungsten furnace in the atomization section, and especially chromium which is difficult to detect unless concentration in the furnace is used. In the analysis of trace metals such as manganese in blood, the accuracy of concentration in the furnace was improved and
The present invention relates to a device that significantly improves the sensitivity and reproducibility of a measurement target element.

【0002】[0002]

【従来の技術】グラファイト炉を備えた原子吸光光度計
を例に従来より行われてきた自動炉内濃縮法を説明す
る。炉内濃縮は、クロム,マンガン等血液中において極
めて微量でしか存在しない元素に適用する。まず試料を
炉内に注入させ、乾燥過程(200℃未満)を開始する。
乾燥過程終了後、再び試料の注入を行い、乾燥過程を行
う。この過程を数回繰り返すことにより試料の濃縮を行
う。しかし、血液のような有機物および共存塩等を多量
に含有している試料を炉内において濃縮する場合、上記
に示した炉内濃縮法を用いると、濃縮終了後、有機物お
よび共存塩の炉内での蓄積が起こる。蓄積した残渣は、
その後灰化を行っても完全に灰化/酸化することは困難
であり、高いバックグラウンド吸収の原因となる。その
ため、正確な分析値を得ることは極めて困難となる。一
方、有機物の影響を小さくする方法として、事前に試料
を酸処理し、タンパク質の除去等前処理を行う方法があ
る。しかし、これによると前処理過程が多くなり、目的
元素のコンタミネーションを生じる可能性がある他、人
の労力を必要とし、自動化は難しい。
2. Description of the Related Art A conventional automatic in-concentration method will be described by taking an atomic absorption spectrophotometer equipped with a graphite furnace as an example. In-furnace enrichment is applied to elements such as chromium and manganese that are present in blood in very small amounts. First, the sample is injected into the furnace and the drying process (less than 200 ° C) is started.
After completion of the drying process, the sample is injected again to perform the drying process. The sample is concentrated by repeating this process several times. However, in the case of concentrating a sample containing a large amount of organic substances such as blood and coexisting salts in the furnace, using the in-reactor concentration method described above, after concentration is completed Accumulation occurs in. The accumulated residue is
Even if ashing is performed thereafter, it is difficult to completely ash / oxidize, which causes high background absorption. Therefore, it is extremely difficult to obtain an accurate analysis value. On the other hand, as a method for reducing the influence of organic substances, there is a method in which a sample is subjected to acid treatment in advance and pretreatment such as protein removal is performed. However, this increases the number of pretreatment processes, may cause contamination of the target element, requires human labor, and is difficult to automate.

【0003】また、測定において増感剤および干渉抑制
剤等の試薬の添加については、従来、試料注入前および
注入後のいずれか一方あるいはその両方において自動で
行わせていたが、炉内濃縮法を用いてそれらの試薬を添
加する場合、試料注入前については、濃縮が開始するま
えに一回、試料注入後については、濃縮終了後に一回行
われるのみである。このような方法では、濃縮回数が増
加するにつれ試薬の添加効果が低下し、再現性不良およ
び感度低下を起こす原因となっていた。
Further, in the measurement, addition of reagents such as a sensitizer and an interference suppressor has been conventionally performed automatically before or after injection of a sample, or both, but in the furnace concentration method. When these reagents are added by using, before the sample injection, it is performed once before the concentration starts, and after the sample injection, it is performed only once after the concentration is completed. In such a method, the effect of adding the reagent decreases as the number of times of concentration increases, which causes poor reproducibility and sensitivity.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、炉内
において試料注入および乾燥過程を繰り返し試料の濃縮
をした後、灰化を行っている。しかし、血液のような有
機物あるいは共存塩を多量に含む試料では、この方法で
は有機物および共存塩が蓄積し、灰化時において有機物
の完全灰化/酸化および共存塩の除去が困難となり、炉
内にそれらの蓄積が起こる。さらに、増感剤および干渉
抑制剤等の試薬添加は、炉内において濃縮する場合、従
来、自動で添加を行うことは可能であったが、添加回数
は濃縮の最初あるいは最後のいずれか一回であり、濃縮
回数が増加するにつれ試薬添加の効果はしだいに低下
し、再現性および感度が不良となる原因となっていた。
本発明は、炉内において試料注入,乾燥および灰化過程
(200℃以上)までを繰り返し、試料を濃縮させるた
め、有機物の完全灰化/酸化および共存塩の除去を行う
ことが可能となり、測定精度を向上させ、炉の寿命を高
めるようにしたものである。また、増感剤および干渉抑
制剤等の試薬は、濃縮の過程が終了するごとに自動で添
加を行わせることにより、測定精度,感度および再現性
の向上を図ろうとしたものである。
In the above-mentioned conventional technique, the process of injecting and drying the sample is repeated in the furnace to concentrate the sample, and then ashing is performed. However, in the case of a sample containing a large amount of organic substances or coexisting salts such as blood, this method accumulates the organic substances and coexisting salts, making it difficult to completely ash / oxidize the organic substances and remove the coexisting salts during ashing. Accumulation of them occurs. Furthermore, when a reagent such as a sensitizer and an interference suppressor was added, it was possible to add the reagent automatically in the case of concentrating in a furnace. Therefore, the effect of reagent addition gradually decreased as the number of times of concentration increased, which was a cause of poor reproducibility and sensitivity.
In the present invention, the sample injection, the drying and the ashing process (200 ° C. or higher) are repeated in the furnace to concentrate the sample. Therefore, complete ashing / oxidation of organic substances and removal of coexisting salts can be carried out, and measurement is performed. It is intended to improve accuracy and extend the life of the furnace. Further, reagents such as a sensitizer and an interference suppressor are intended to improve the measurement accuracy, sensitivity and reproducibility by automatically adding the reagents each time the concentration process is completed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、血液中の微量金属の分析において、従来
用いられていた炉内濃縮過程に加え、灰化過程(200
℃以上)を施し、さらに、灰化時にキャリアガスへ酸素
ガスを混合することにより、有機物の完全灰化/酸化を
行えるようにしたものである。これにより、有機物およ
び共存塩の影響による高いバックグラウンド吸収が低減
し、また、炉内に有機物残渣の蓄積を防止することがで
きるため、測定精度が向上し、炉の寿命も高められるよ
うにしている。増感剤および干渉抑制剤の添加について
は、濃縮の過程が終了するごとに試料注入前あるいは灰
化前に自動的に添加できるようにし、試料添加効果のさ
らなる向上を図っている。これにより、感度および再現
性の良好な測定が可能となる。
In order to achieve the above object, the present invention provides an incineration process (200) in addition to the in-furnace concentration process that has been conventionally used in the analysis of trace metals in blood.
By subjecting the carrier gas to oxygen gas at the time of ashing, complete ashing / oxidation of organic substances can be performed. This reduces high background absorption due to the effects of organic substances and coexisting salts, and also prevents the accumulation of organic residue in the furnace, thus improving the measurement accuracy and extending the life of the furnace. There is. Regarding the addition of the sensitizer and the interference suppressor, it is possible to automatically add each time the concentration process is completed before the sample is injected or before the ashing, and the sample addition effect is further improved. This enables measurement with good sensitivity and reproducibility.

【0006】[0006]

【作用】クレーム1の構成は、試料注入,乾燥,灰化過
程(200℃以上)までを繰り返し濃縮を行うようにさ
せ、高温炉内に血液中の有機物残渣の蓄積を防止させ、
また、共存塩を除去させるようにし、測定精度の向上を
図ったものである。
In the structure of claim 1, the sample injection, drying, and ashing processes (200 ° C. or higher) are repeatedly concentrated to prevent the accumulation of organic residue in the blood in the high temperature furnace.
In addition, the coexisting salt is removed to improve the measurement accuracy.

【0007】クレーム2の構成は、灰化時において、キ
ャリアガスに酸素を混合させることにより、有機物の酸
化を促し、これを完全に灰化させるようにし、さらに、
測定精度の向上と炉の寿命を延ばしたものである。
According to the constitution of claim 2, at the time of ashing, oxygen is mixed with the carrier gas to promote the oxidation of the organic substance and completely ash it.
It improves the measurement accuracy and extends the life of the furnace.

【0008】クレーム3の構成は、増感剤および干渉抑
制剤等の試薬添加を、濃縮の過程が終了するごとに試料
注入前あるいは灰化過程が開始する前に行わせ、その効
果を、常に一定にさせることにより、感度および再現性
の向上を図ったものである。
In the structure of claim 3, the addition of reagents such as a sensitizer and an interference suppressor is carried out before the sample injection or the ashing process is started each time the concentration process is completed, and the effect is always maintained. By making it constant, sensitivity and reproducibility are improved.

【0009】[0009]

【実施例】図1は、原子化部1にグラフィト炉3もしく
はタングステン炉等金属を備えた原子吸光光度計および
血液中の微量金属自動分析装置である。なお、バックグ
ラウンド補正についてはゼーマン法であってもよし、ま
た、D2 法あるいはS−R法であってもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an atomic absorption spectrophotometer equipped with a metal such as a graffiti furnace 3 or a tungsten furnace in an atomization part 1 and an automatic trace metal analyzer in blood. Even Zeeman method for background correction OK, or may be a D 2 method or S-R method.

【0010】測定用試料として血清を使用し、濃縮回数
を10回として測定を行う。試料は全血であっても良
い。
Serum is used as a sample for measurement, and the number of times of concentration is 10 times. The sample may be whole blood.

【0011】測定開始後、オートサンプラ10からノズ
ル17が自動で試料を炉内に注入されると乾燥過程が始
まる。乾燥が終了した後に増感剤および干渉抑制剤の添
加を試料同様、自動で行う。試薬の添加については、試
料注入前に行ってもよい。その後、灰化過程に入るが、
この時、ガス制御装置7によりキャリアガス6をアルゴ
ンガスから酸素を10%混合したアルゴンガスに切り換
える。酸素の混合量は有機物の含量により可変してもよ
い。このガスにより血清中の有機物の完全灰化/酸化を
行う。また、増感剤を添加しているため、灰化温度を高
めることができ共存塩の除去が可能となる。灰化終了ま
での過程を濃縮の1過程とする。この動作を10回繰り
返した後に原子化過程が開始する。
After the measurement is started, the nozzle 17 automatically injects the sample into the furnace from the autosampler 10 to start the drying process. After the drying is completed, the addition of the sensitizer and the interference suppressor is automatically performed like the sample. The reagent may be added before the sample injection. After that, the ashing process begins,
At this time, the gas control device 7 switches the carrier gas 6 from argon gas to argon gas containing 10% oxygen. The amount of oxygen mixed may vary depending on the content of organic substances. This gas completely ashes / oxidizes organic matter in serum. Further, since the sensitizer is added, the ashing temperature can be raised and the coexisting salt can be removed. The process until the end of ashing is referred to as one process of concentration. After repeating this operation 10 times, the atomization process starts.

【0012】従来の濃縮法では、乾燥までの過程を繰り
返すことにより濃縮を行ってきた。しかし、血清試料を
測定する場合、この方法では有機物および共存塩の影響
により精度良く濃縮することができず、正確な分析値が
得られなかった。本発明では、灰化過程を含む濃縮を行
うため、それらの影響は小さくなり、測定精度が向上し
た。
In the conventional concentration method, the concentration has been performed by repeating the process until drying. However, in the case of measuring a serum sample, this method could not accurately concentrate due to the influence of organic substances and coexisting salts, and an accurate analysis value could not be obtained. In the present invention, since the concentration including the ashing process is performed, their influences are reduced and the measurement accuracy is improved.

【0013】上記に記した方法によりクロムを測定した
例を図2に示す。その結果より、灰化時においてアルゴ
ンガスのみ使用2では3回までしか精度良く濃縮できな
かったのに対し、酸素混合アルゴンガス使用1では10
回濃縮を行っても再現性は良好であり、濃縮回数と吸光
度間において相関が高い。従って、この操作を行うこと
により、血清中の微量のクロムが十分炉内で濃縮可能で
あり、信頼性のある分析が行える。測定の結果を表1に
示す。血清中のクロムの濃度は大約0.1ppb〜0.15p
pbであり、分析値と良く一致していた。
An example of measuring chromium by the method described above is shown in FIG. From the results, it was possible to accurately concentrate up to 3 times in the case of using argon gas only 2 at the time of ashing, whereas it was 10 in the case of using oxygen-mixed argon gas 1
The reproducibility is good even if the concentration is performed once, and there is a high correlation between the number of concentration and the absorbance. Therefore, by performing this operation, a trace amount of chromium in serum can be sufficiently concentrated in the furnace, and reliable analysis can be performed. The measurement results are shown in Table 1. The concentration of chromium in serum is about 0.1ppb-0.15p
It was pb and was in good agreement with the analysis value.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成され
ているので以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0016】炉内において灰化過程を含む濃縮を行い、
また、灰化時にキャリアガスへ酸素を混合させることに
より、血液中の微量金属の直接分析を行う場合におい
て、有機物の完全灰化/酸化,共存塩の除去を行うこと
ができる。そのため、測定精度の向上および炉の寿命を
も高められる。また、増感剤および干渉抑制剤等の試薬
を濃縮が終了するごとに添加することにより試薬添加の
ばらつきを小さくし、感度および再現性の向上を図る。
Concentration including ashing process is performed in the furnace,
Further, by mixing oxygen with a carrier gas during ashing, complete ashing / oxidation of organic substances and removal of coexisting salts can be performed in the case of directly analyzing trace metals in blood. Therefore, the measurement accuracy can be improved and the life of the furnace can be extended. Further, by adding reagents such as a sensitizer and an interference suppressor each time the concentration is completed, variations in addition of the reagents are reduced, and sensitivity and reproducibility are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of an embodiment.

【図2】測定例を示す図である。FIG. 2 is a diagram showing a measurement example.

【符号の説明】[Explanation of symbols]

1…原子化部、2…光学系、3…炉、4…リング、5…
中空陰極ランプ、6…キャリアガス配管、7…ガス制御
装置、8…アルゴンガス配管、9…酸素ガス配管、10
…オートサンプラ、11…本体コントロールシステム、
12…反射鏡、13…コリメーティングミラー、14…
ホトマル、15…スリット、16…偏光子、17…ノズ
ル、18…光路。
1 ... Atomization part, 2 ... Optical system, 3 ... Furnace, 4 ... Ring, 5 ...
Hollow cathode lamp, 6 ... Carrier gas pipe, 7 ... Gas control device, 8 ... Argon gas pipe, 9 ... Oxygen gas pipe, 10
… Auto sampler, 11… Main unit control system,
12 ... Reflective mirror, 13 ... Collimating mirror, 14 ...
Photomal, 15 ... Slit, 16 ... Polarizer, 17 ... Nozzle, 18 ... Optical path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内野 興一 茨城県勝田市堀口字長久保832番地2 日 立計測エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koichi Uchino 832 Nagakubo, Horiguchi, Katsuta City, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子化部にグラファイト炉もしくはタング
ステン炉等金属炉を備えた、元素の原子化時における吸
光現象を利用し、分析を行う装置において、血中に存在
する微量金属を炉内で濃縮して分析する場合、濃縮時に
乾燥過程に加え、灰化過程(200℃以上)を施すこと
により有機物や共存塩の影響を小さくすることを特徴と
する血液中微量金属自動分析装置。
1. A device for performing analysis by utilizing an absorption phenomenon at the time of atomization of an element, which is equipped with a metal furnace such as a graphite furnace or a tungsten furnace in an atomization part, and trace metals existing in blood in the furnace. In the case of concentrating and analyzing, in addition to the drying process at the time of concentrating, an ashing process (200 ° C. or higher) is performed to reduce the influence of organic substances and coexisting salts.
【請求項2】請求項1において、灰化時にキャリアガス
へ酸素ガスを混合することにより有機物の完全灰化/酸
化を行わせることを特徴とする血液中微量金属自動分析
装置。
2. An automatic analyzer for trace metals in blood according to claim 1, wherein oxygen gas is mixed with carrier gas during ashing to completely ash / oxidize organic matter.
【請求項3】請求項1において、増感剤および干渉抑制
剤等の試薬を添加する際に、濃縮の1過程が終了するご
とに乾燥前あるいは灰化前にこれを自動的に添加するこ
とを特徴とする血液中微量金属自動分析装置。
3. The method according to claim 1, wherein when a reagent such as a sensitizer and an interference suppressor is added, it is automatically added before drying or ashing each time one process of concentration is completed. Automatic trace metal analyzer in blood characterized by:
JP30251093A 1993-12-02 1993-12-02 Automatic analyzer for trace metal in blood Pending JPH07159409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30251093A JPH07159409A (en) 1993-12-02 1993-12-02 Automatic analyzer for trace metal in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30251093A JPH07159409A (en) 1993-12-02 1993-12-02 Automatic analyzer for trace metal in blood

Publications (1)

Publication Number Publication Date
JPH07159409A true JPH07159409A (en) 1995-06-23

Family

ID=17909836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30251093A Pending JPH07159409A (en) 1993-12-02 1993-12-02 Automatic analyzer for trace metal in blood

Country Status (1)

Country Link
JP (1) JPH07159409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101930A (en) * 2006-10-17 2008-05-01 Sumitomo Osaka Cement Co Ltd Qualitative analyzing method of inorganic fibrous substance and qualitative analyzing system
JP2012211802A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Method for analyzing sulfur compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101930A (en) * 2006-10-17 2008-05-01 Sumitomo Osaka Cement Co Ltd Qualitative analyzing method of inorganic fibrous substance and qualitative analyzing system
JP2012211802A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Method for analyzing sulfur compound

Similar Documents

Publication Publication Date Title
Nixon et al. The determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry
Perone et al. Application of controlled potential techniques to study of rapid succeeding chemical reaction coupled to electro-oxidation of ascorbic acid
Hwang et al. Direct flameless atomic absorption determination of lead in the blood
Maessen et al. Direct determination of gold, cobalt, and lithium in blood plasma using the mini-Massmann carbon rod atomizer
Mierzwa et al. Determination of chromium, manganese and vanadium in sediments and soils by modifier—free slurry sampling electrothermal atomic absorption spectrometry
JP2694595B2 (en) Method for determining gas concentration in molten metal
JPH07159409A (en) Automatic analyzer for trace metal in blood
Cervera et al. Platform in furnace Zeeman-effect atomic absorption spectrometric determination of arsenic in beer by atomization of slurries of sample ash
Völlkopf et al. Determination of cadmium, copper, manganese and rubidium in plastic materials by graphite furnace atomic absorption spectrometry using solid sampling
Gilbert Pulse Polarographic Determination of Nickel and Vanadium.
Brodie et al. Measurement of whole blood lead and cadmium at low levels using an automatic sample dispenser and furnace atomic absorption
Costantini et al. Comparison of flameless atomic absorption spectrophotometry and anodic stripping voltammetry for the determination of blood lead
Clifford Automatic measurement of total oxygen demand
Pickford et al. Determination of lead in atmospheric particulates using an automated atomic-absorption spectrophotometric system with electrothermal atomisation
Driscoll et al. Direct determination of phosphorus in gasoline by flameless atomic absorption spectrometry
Coedo et al. Study of the application of air-water flow injection inductively coupled plasma mass spectrometry for the determination of calcium in steels
CN111855886A (en) Method for rapidly and quantitatively detecting residual quantity of oil stains on metal film
Robinson et al. Direct Determination of Cadmium in Whole Blood Using an Rf-Heated Carbon-Bed Atomizer for Atomic Absorption Spectroscopy
KR100295183B1 (en) Method for measuring the effective amount of phosphoric acid of solution leached by lancaster method
Izquierdo et al. Individual and simultaneous determination of zinc and cadmium in biological tissues by flow injections/stripping voltammetric analysis
Taddia et al. Determination of chromium in gallium arsenide by electrothermal atomic absorption spectrometry
JP2815454B2 (en) Quantitative analysis method for metal elements in sulfur
JPH01302141A (en) Analysis of very small amount of gallium by flameless atomic absorptiometry
Smith Spectrophotometric Determination of Vanadium in Ethylene-Propylene Rubber Solutions with 2, 3´-Diaminobenzidine.
JP2001021546A (en) Analytical method of ammonia nitrogen and nitrate/ nitrite nitrogen and total nitrogen