JP2008101930A - Qualitative analyzing method of inorganic fibrous substance and qualitative analyzing system - Google Patents

Qualitative analyzing method of inorganic fibrous substance and qualitative analyzing system Download PDF

Info

Publication number
JP2008101930A
JP2008101930A JP2006282477A JP2006282477A JP2008101930A JP 2008101930 A JP2008101930 A JP 2008101930A JP 2006282477 A JP2006282477 A JP 2006282477A JP 2006282477 A JP2006282477 A JP 2006282477A JP 2008101930 A JP2008101930 A JP 2008101930A
Authority
JP
Japan
Prior art keywords
sample
fourier transform
ashing
transform infrared
inorganic fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282477A
Other languages
Japanese (ja)
Other versions
JP4841390B2 (en
Inventor
Akira Ono
晃 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006282477A priority Critical patent/JP4841390B2/en
Publication of JP2008101930A publication Critical patent/JP2008101930A/en
Application granted granted Critical
Publication of JP4841390B2 publication Critical patent/JP4841390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a qualitative analyzing method for rapidly, simply and accurately discriminating the presence of an inorganic fibrous substance being a target in a sample, and a qualitative analyzing system. <P>SOLUTION: This qualitative analyzing method ST includes at least an organic fiber ashing process for ashing a sample Ay to obtain an ashed sample A wherein an organic fiber (y) is ashed, a Fourier transform infrared spectroscopic analyzing process st2 for measuring the ashed sample A by a Fourier transform infrared spectroscopic apparatus 2 to obtain Fourier transform infrared spectrum sp of the ashed sample A and an inorganic fiber detection process st3 which enables the detection of predetermined asbestos (a) from the Fourier transform infrared spectrum sp obtained by the Fourier transform infrared spectroscopic analyzing process st2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、無機質繊維状物質の定性分析方法に関わるもので、主として大気中や、珪酸カルシウム板、保温材、スレート板、吹き付け材等の製品中に含まれる無機質繊維状物質の定性分析方法に関するものである。   The present invention relates to a method for qualitative analysis of inorganic fibrous materials, and mainly relates to a method for qualitative analysis of inorganic fibrous materials contained in products such as air and products such as calcium silicate plates, heat insulating materials, slate plates, and spray materials. Is.

従来、石綿などの無機質繊維状物質は、耐久性、耐熱性、耐薬品性、電気絶縁性などの特性に非常に優れ安価であるため、珪酸カルシウム板、保温材、スレート板、耐火被覆と吸音、断熱用吹き付け材、摩耗材、ブレーキライニング、パッキン等、様々な用途に広く使用されてきた。   Conventionally, inorganic fibrous materials such as asbestos have excellent properties such as durability, heat resistance, chemical resistance, and electrical insulation, and are inexpensive, so calcium silicate plates, heat insulating materials, slate plates, fireproof coatings and sound absorption It has been widely used in various applications such as spraying materials for heat insulation, wear materials, brake linings, packings and the like.

ここで特に石綿の場合、人体への影響がしばしば議論されるようになり、日本では最近、石綿の使用が禁止されることとなった。また、既に使用された石綿含有物が飛散しないようにする対策や、建物を撤去する際の石綿の飛散防止対策が必要であり、石綿の有無を迅速且つ簡易に判別し得る方法が必要とされている。   Here, especially in the case of asbestos, the effects on the human body are often discussed, and in Japan recently the use of asbestos has been banned. In addition, measures to prevent the asbestos-containing material already used from scattering and measures to prevent the asbestos from scattering when the building is removed are necessary, and a method that can quickly and easily determine the presence or absence of asbestos is required. ing.

そのような現状の中で、例えば、位相差顕微鏡や偏光顕微鏡を用いて色別観察を行うことにより、石綿の有無を判別する方法(例えば、特許文献1及び特許文献2参照)や、X線回析により石綿の結晶構造を特定することにより石綿の有無を判別する方法が提案されている。
特開平7−181268号公報 特開平9−127102号公報
Under such circumstances, for example, a method for determining the presence or absence of asbestos by performing color-specific observation using a phase contrast microscope or a polarizing microscope (see, for example, Patent Document 1 and Patent Document 2), X-ray A method for determining the presence or absence of asbestos by specifying the asbestos crystal structure by diffraction has been proposed.
JP-A-7-181268 JP-A-9-127102

しかしながら、これらの方法では、顕微鏡やX線回析装置の操作が煩雑でしかも熟練を要求されるものであるため、例えば上記特許文献に挙げた方法では1試料当たり7〜8時間程度要するものとなっている。加えて斯かる顕微鏡による方法では、試料に含まれる有機質繊維と検出対象である無機質繊維状物質を混同してしまう場合も考えられる。さらに、X線回析による分析方法では、例えば試料の量が微少な場合には検出し得ない上に、例えば検出対象とする無機質繊維状物質と、同一な鉱物組成を有する非繊維状物質が存在する場合、誤って当該非繊維状物質を検出してしまう恐れがある。   However, in these methods, since the operation of the microscope and the X-ray diffraction apparatus is complicated and skill is required, for example, the method described in the above-mentioned patent document requires about 7 to 8 hours per sample. It has become. In addition, in such a method using a microscope, it is conceivable that the organic fiber contained in the sample is confused with the inorganic fibrous substance to be detected. Furthermore, in the analysis method by X-ray diffraction, for example, when the amount of the sample is very small, it cannot be detected, and for example, an inorganic fibrous substance to be detected and a non-fibrous substance having the same mineral composition are included. When it exists, there exists a possibility of detecting the said non-fibrous substance accidentally.

本発明は、このような不具合に着目したものであり、試料中の対象とする無機質繊維状物質の有無を迅速、簡易且つ的確に判別する方法並びにシステムを提供する。   The present invention pays attention to such problems, and provides a method and system for quickly, simply and accurately determining the presence or absence of a target inorganic fibrous substance in a sample.

本発明は、このような目的を達成するために、次のような手段を講じたものである。すなわち、本発明に係る無機質繊維状物質の定性分析方法は、試料を灰化させることにより有機質繊維を灰化した灰化試料を得る有機質繊維灰化工程と、前記灰化試料をフーリエ変換赤外分光装置により測定し前記灰化試料のフーリエ変換赤外分光スペクトルを得るフーリエ変換赤外分光分析工程と、当該フーリエ変換赤外分光分析工程により得られたフーリエ変換赤外分光スペクトルから所定の無機質繊維状物質を検出し得る無機質繊維検出工程とを少なくとも含んでいることを特徴とする。   In order to achieve such an object, the present invention takes the following measures. That is, the method for qualitative analysis of an inorganic fibrous substance according to the present invention includes an organic fiber ashing step for obtaining an ashed sample obtained by ashing a sample by ashing the sample, and Fourier transform infrared for the ashed sample. A Fourier transform infrared spectroscopic analysis step for obtaining a Fourier transform infrared spectroscopic spectrum of the ashed sample measured by a spectroscopic device, and a predetermined inorganic fiber from the Fourier transform infrared spectroscopic spectrum obtained by the Fourier transform infrared spectroscopic analysis step And an inorganic fiber detecting step capable of detecting a particulate substance.

また本発明に係る無機質繊維状物質の定性分析システムは、試料を灰化させることにより有機質繊維を灰化した灰化試料を得る有機質繊維灰化装置と、前記灰化試料をフーリエ変換赤外分光分析を行うことにより得た前記灰化試料のフーリエ変換赤外分光スペクトルから所定の無機質繊維状物質を検出し得るフーリエ変換赤外分光装置とを少なくとも具備していることを特徴とするものである。   Further, the qualitative analysis system for inorganic fibrous materials according to the present invention includes an organic fiber ashing device for obtaining an ashed sample obtained by ashing an organic fiber by ashing the sample, and Fourier transform infrared spectroscopy of the ashed sample. It comprises at least a Fourier transform infrared spectroscopic device capable of detecting a predetermined inorganic fibrous substance from a Fourier transform infrared spectroscopic spectrum of the ashed sample obtained by performing the analysis. .

このようなものであれば、試料中に有機質繊維が含まれている場合には、当該試料中の当該有機質繊維を灰化して灰化試料とすることができるので、有機質繊維と所定の無機質繊維状物質とを誤って同定、検出してしまうという不具合を有効に回避することができる。さらに、フーリエ変換赤外分光分析を行うことにより迅速な処理を行うことができるとともに、当該フーリエ変換赤外分光分析によれば同一の鉱物組成を有する無機質繊維状物質と非繊維状物質、例えばクリソタイル(白石綿)とアンチゴライト(非石綿)とを的確に判別することが可能となる。   If it is such, when the organic fiber is contained in the sample, the organic fiber in the sample can be ashed to form an ashed sample, so the organic fiber and the predetermined inorganic fiber It is possible to effectively avoid the problem of erroneously identifying and detecting the particulate matter. Furthermore, it is possible to perform rapid processing by performing Fourier transform infrared spectroscopy, and according to the Fourier transform infrared spectroscopy, inorganic fibrous materials and non-fibrous materials having the same mineral composition, such as chrysotile (White asbestos) and antigolite (non-asbestos) can be accurately discriminated.

有機質繊維灰化工程によって所定の無機質繊維状物質を分解或いは変質させてしまうという不具合を有効に回避するためには、低温灰化装置を用いることによって、有機質繊維灰化工程を、例えばクリソタイルが熱分解され始める温度である450℃以下の温度により試料を灰化する低温灰化工程とすることが望ましい。さらには、斯かる灰化に要するエネルギー量を有効に抑えるためには、200℃の温度で試料を灰化することがさらに好ましい。   In order to effectively avoid the problem that a predetermined inorganic fibrous material is decomposed or altered by the organic fiber ashing process, by using a low-temperature ashing device, the organic fiber ashing process is heated by, for example, chrysotile. It is desirable to use a low-temperature ashing step in which the sample is incinerated at a temperature of 450 ° C. or lower, which is the temperature at which decomposition begins. Furthermore, in order to effectively suppress the amount of energy required for such ashing, it is more preferable to ash the sample at a temperature of 200 ° C.

そして、フーリエ変換赤外分光分析工程を、顕微フーリエ変換赤外分光装置による顕微フーリエ変換赤外分光分析工程とすれば、上述のクリソタイルのみならず、他の種類の無機質繊維状物質が単一の試料中に含まれている場合においても各繊維毎に好適に検出し、それぞれを判別すなわち好適に定性分析することが可能である。   And if the Fourier transform infrared spectroscopic analysis process is a microscopic Fourier transform infrared spectroscopic analysis process using a microscopic Fourier transform infrared spectroscopic device, not only the above-mentioned chrysotile but also other kinds of inorganic fibrous substances are single. Even when it is contained in the sample, it is possible to suitably detect each fiber, and to discriminate each, that is, to suitably perform qualitative analysis.

特に、本発明を有効に活用し得る用途としては、所定の無機質繊維状物質として、石綿を採用することが望ましい。   In particular, as an application in which the present invention can be effectively used, it is desirable to employ asbestos as a predetermined inorganic fibrous substance.

そして本発明では定性分析を行う試料として、大気中の浮遊物や建材を対象として有効に活用することが望ましい。   In the present invention, it is desirable to effectively use the suspended matter or building material in the atmosphere as a sample for qualitative analysis.

本発明によれば、試料中に有機質繊維が含まれている場合には、当該試料中の当該有機質繊維を灰化して灰化試料とすることができるので、有機質繊維と所定の無機質繊維状物質とを誤って同定、検出してしまうという不具合を有効に回避することができる。さらに、フーリエ変換赤外分光分析を行うことにより迅速な処理を行うことができるとともに、当該フーリエ変換赤外分光分析によれば同一の鉱物阻止を有する無機質繊維状物質と非繊維状物質とを的確に判別することできる。そうすることにより、簡易、迅速且つ的確な無機質繊維状物質の定性分析を行うことが可能である。   According to the present invention, when an organic fiber is contained in the sample, the organic fiber in the sample can be incinerated to obtain an ashed sample. Therefore, the organic fiber and the predetermined inorganic fibrous substance can be obtained. Can be effectively avoided. Furthermore, the Fourier transform infrared spectroscopic analysis enables rapid processing, and according to the Fourier transform infrared spectroscopic analysis, the inorganic fibrous material and non-fibrous material having the same mineral blockage can be accurately identified. Can be determined. By doing so, it is possible to perform simple, quick and accurate qualitative analysis of inorganic fibrous materials.

以下、本発明の一実施の形態について図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る無機質繊維状物質の定性分析システム(以下、分析システムと称する)Sを図1に模式的に示す。   A qualitative analysis system (hereinafter referred to as an analysis system) S for inorganic fibrous substances according to this embodiment is schematically shown in FIG.

斯かる分析システムSは、例えば大気中の浮遊物や建材といった試料Ayから、無機質繊維状物質であるアスベスト類aの有無並びに種類を的確に判別し得るものである。   Such an analysis system S can accurately determine the presence and type of asbestos a, which is an inorganic fibrous substance, from a sample Ay such as a suspended matter or building material in the atmosphere.

ここで本実施形態に係る分析システムSは、試料Ayを灰化させることにより有機質繊維yを灰化した灰化試料Aを得る有機質繊維灰化装置1と、灰化試料Aをフーリエ変換赤外分光分析を行うことにより得た灰化試料Aのフーリエ変換赤外分光スペクトルspから所定のアスベスト類aを検出し得るフーリエ変換赤外分光装置2とを少なくとも具備していることを特徴とするものである。   Here, the analysis system S according to the present embodiment includes an organic fiber ashing apparatus 1 that obtains an ashed sample A obtained by ashing the organic fiber y by ashing the sample Ay, and the ashed sample A by Fourier transform infrared. Characterized in that it comprises at least a Fourier transform infrared spectrometer 2 capable of detecting a predetermined asbestos a from the Fourier transform infrared spectroscopic spectrum sp of the ashed sample A obtained by spectroscopic analysis. It is.

そして本発明に係る無機質繊維状物質の定性分析方法(以下、分析方法と記す)STは、試料Ayを灰化させることにより有機質繊維yを灰化した灰化試料Aを得る有機質繊維灰化工程たる灰化工程st1と、灰化試料Aをフーリエ変換赤外分光装置2により測定し灰化試料Aのフーリエ変換赤外分光スペクトルspを得るフーリエ変換赤外分光分析工程たる分析工程st2と、分析工程st2により得られたフーリエ変換赤外分光スペクトルspから所定のアスベスト類aを検出し得る無機質繊維検出工程たる検出工程st3とを少なくとも含んでいることを特徴とする。なお本実施形態では、同実施形態において検出し得る無機質繊維状物質を、以下明細書中に「アスベスト類a」と記載するものとするが、本発明に係る無機質繊維状物質とは、斯かるアスベスト類aのみに限定されるものではない。   And the qualitative analysis method (hereinafter referred to as the analysis method) ST of the inorganic fibrous substance according to the present invention is an organic fiber ashing step for obtaining an ashed sample A in which the organic fiber y is ashed by ashing the sample Ay. The ashing step st1, the ashing sample A is measured by the Fourier transform infrared spectroscopic device 2 and the Fourier transform infrared spectroscopic analysis step sp2 of the ashing sample A is obtained. It includes at least a detection step st3 which is an inorganic fiber detection step capable of detecting a predetermined asbestos a from the Fourier transform infrared spectroscopic spectrum sp obtained in the step st2. In the present embodiment, the inorganic fibrous substance that can be detected in the embodiment is referred to as “asbestos a” in the following description, but the inorganic fibrous substance according to the present invention is described as such. It is not limited to asbestos a.

以下、斯かる分析システムS並びに分析方法STについて説明する。   Hereinafter, the analysis system S and the analysis method ST will be described.

分析システムSは上述の通り、試料Ayを灰化し得る灰化装置1と、灰化装置1により灰化した灰化試料Aに対してフーリエ変換赤外分光分析工程(以下、分光分析工程と記す)st2を経ることによって得たフーリエ変換赤外分光スペクトル(以下、分光スペクトルと記す)spから所定のアスベスト類aを検出し得るフーリエ変換赤外分光装置(以下、赤外分光装置と記す)2とを有しているものである。   As described above, the analysis system S includes the ashing apparatus 1 capable of ashing the sample Ay, and the ashing sample A ashed by the ashing apparatus 1 with a Fourier transform infrared spectroscopic analysis process (hereinafter referred to as a spectroscopic analysis process). ) A Fourier transform infrared spectroscopic device (hereinafter referred to as an infrared spectroscopic device) 2 capable of detecting a predetermined asbestos a from a Fourier transform infrared spectroscopic spectrum (hereinafter referred to as a spectroscopic spectrum) sp obtained through st2. It is what has.

灰化装置1は、図1に示すように、有機質繊維yを含んでいる試料Ayを灰化することによって灰化試料Aとするものである。言い換えれば、本発明に係る灰化工程st1を行い得るものである。具体的には、当該灰化装置1としては、クリソタイルが分解し得ない450℃以下の温度である200℃で灰化を行う本発明に係る低温灰化工程を行うことによって、試料Ayに含まれる有機質繊維yを酸化或いは熱分解することにより繊維状の分子構造を破壊するものである。そうすることによって、灰化試料A中には後述する分析工程st2によりアスベスト類aと間違って検出されてしまう有機質繊維yが存在しない状態とし得るものである。なお当該灰化装置1として、ヤナコ分析工業株式会社製、LTA―102を採用している。   As shown in FIG. 1, the ashing apparatus 1 ashes a sample Ay containing an organic fiber y to form an ashed sample A. In other words, the ashing step st1 according to the present invention can be performed. Specifically, the ashing apparatus 1 is included in the sample Ay by performing the low-temperature ashing process according to the present invention in which ashing is performed at 200 ° C., which is a temperature of 450 ° C. or less at which chrysotile cannot be decomposed. The fibrous molecular structure is destroyed by oxidizing or thermally decomposing the organic fiber y. By doing so, the ashed sample A can be in a state where there is no organic fiber y that is mistakenly detected as asbestos a by the analysis step st2 described later. As the ashing device 1, LTA-102 manufactured by Yanako Analytical Industries, Ltd. is adopted.

赤外分光装置2は、灰化試料Aを分析することにより分光スペクトルspを得る分析部21と、得られた分光スペクトルspからアスベスト類aを検出する検出部22とを有している。言い換えれば、当該赤外分光装置2は、本発明に係る分析工程st2と、無機質繊維検出工程たる検出工程st3とを行い得るものである。具体的には、赤外分光装置2として、顕微フーリエ変換赤外分光装置2(サーモエレクトロン株式会社製Nicolet 6700(FT-IR)及びNicolet Centaurus(赤外顕微鏡)からなる装置)を採用している。   The infrared spectroscopic device 2 has an analysis unit 21 that obtains a spectral spectrum sp by analyzing the ashed sample A, and a detection unit 22 that detects asbestos a from the obtained spectral spectrum sp. In other words, the infrared spectroscopic device 2 can perform the analysis step st2 according to the present invention and the detection step st3 which is an inorganic fiber detection step. Specifically, as the infrared spectroscopic device 2, a microscopic Fourier transform infrared spectroscopic device 2 (a device comprising Nicolet 6700 (FT-IR) and Nicolet Centaurus (infrared microscope) manufactured by Thermo Electron Co., Ltd.) is employed. .

分析部21は、すなわち分析工程st2では、灰化試料Aを分析することにより、図2、図3、図4及び図5に示すような各試料Ayの分光スペクトルspを得るものである。そして斯かる分光スペクトルspには、それぞれのアスベスト類aの結晶構造を反映した所定の一又は複数のピークが現れることとなる。   In the analysis step st2, the analysis unit 21 analyzes the ashed sample A to obtain the spectral spectrum sp of each sample Ay as shown in FIG. 2, FIG. 3, FIG. 4, and FIG. In such a spectral spectrum sp, one or more predetermined peaks reflecting the crystal structure of each asbestos a appear.

検出部22は、すなわち検出工程st3では、分析部21による分析工程st2によって得た分光スペクトルspに現れたピークの位置、或いはピークの強度を含む分光スペクトルspの波形から、アスベスト類aの有無並びにアスベスト類aの同定を行い得るものである。   In the detection step st3, that is, in the detection step st3, the presence or absence of asbestos a and the position of the peak appearing in the spectral spectrum sp obtained by the analysis step st2 by the analysis unit 21 or the waveform of the spectral spectrum sp including the peak intensity are detected. Asbestos a can be identified.

以下、斯かる分析システムS並びに分析方法STによって試料Ay中のアスベスト類aを検出した分析結果について図2、図3、図4及び図5を参照して説明する。なお、分析システムSによる、試料Ayの灰化からアスベスト類aの定性分析に至るために要する作業時間は20分程度となっている。   Hereinafter, analysis results of detecting asbestos a in the sample Ay by the analysis system S and the analysis method ST will be described with reference to FIGS. 2, 3, 4, and 5. Note that the work time required from the ashing of the sample Ay to the qualitative analysis of asbestos a by the analysis system S is about 20 minutes.

まず、図2に示すように、斯かる分析システムS並びに分析方法STでは、各分光スペクトルspの波形の差異によって、クリソタイル(白石綿)a1の波形と、当該クリソタイルと同一の鉱物組成を有するアンチゴライトb1の波形とを判別し得るものとなっている。   First, as shown in FIG. 2, in the analysis system S and the analysis method ST, the waveform of the chrysotile (white asbestos) a1 and the anti mineral having the same mineral composition as the chrysotile are obtained due to the difference in the waveform of each spectral spectrum sp. The waveform of the golite b1 can be discriminated.

また、図3に示すように、係る赤外分光装置2として、顕微フーリエ変換赤外分光装置を採用しているため、クリソタイルa1の他、同じくアスベスト類aであり、日本国内で使用されていたクロシドライト(青石綿)a2、アモサイト(茶石綿)a3や、日本国内では使用を禁じられているアンソフィライトa4、トレモライトa5やアクチノライトa6を混合した試料Ayを供試した場合であっても、それぞれ異なる波形から検出し得るものとなっている。換言すればアスベスト類a間の定性分析を好適に行い得るものとなっている。   Moreover, as shown in FIG. 3, since the microscopic Fourier transform infrared spectroscopic device is adopted as the infrared spectroscopic device 2, it is also an asbestos a in addition to the chrysotile a1, and was used in Japan. Even when samples Ay mixed with crocidolite (Ao Asbestos) a2, amosite (Brown asbestos) a3, anthophyllite a4, tremolite a5 and actinolite a6, which are prohibited to use in Japan, were tested. It can be detected from different waveforms. In other words, qualitative analysis between asbestos a can be suitably performed.

そして、これら図2、図3に示したような分光スペクトルspを基にすることによって、図4に示すように、試料Ayとして建材である灰吹炉断熱材を用いた場合には、含有するクリソタイルa1及びクロシドライトb1を、石綿ひもを用いた場合には、含有するクリソタイルa1を的確に検出し得るものとなっている。さらに図5に示すように、セメンコーキング材に含まれるクリソタイルa1を的確に検出し得るものとなっている。なお同図にはクリソタイルa1、セメント及びタルクの分光スペクトルspの波形をも示しており、当該コーキング材の波形には、これらの波形に加えて、図2にも示したクリソタイルa1の波形と共通するピークが現れていることが分かる。   Then, by using the spectral spectrum sp as shown in FIG. 2 and FIG. 3, as shown in FIG. 4, when an ash-blast furnace heat insulating material as a building material is used as the sample Ay, the chrysotile contained When asbestos string is used for a1 and crocidolite b1, the contained chrysotile a1 can be accurately detected. Further, as shown in FIG. 5, the chrysotile a1 contained in the cement coking material can be accurately detected. In addition, the waveform of the spectral spectrum sp of chrysotile a1, cement and talc is also shown in the same figure, and the waveform of the caulking material is common to the waveform of the chrysotile a1 shown in FIG. 2 in addition to these waveforms. It can be seen that a peak appears.

そして勿論、これら建材或いは当該建材が空気中に飛散した場合に斯かる大気中の浮遊物を試料Ayとした場合であっても、的確にアスベスト類aを検出、同定し得るものとなっている。   And of course, even when these building materials or the building materials are scattered in the air, the asbestos a can be accurately detected and identified even when the suspended matter in the atmosphere is the sample Ay. .

以上のような構成とすることにより、本実施形態に係る分析方法STは、灰化工程st1と分析工程st2と、検出工程st3とを有しており、本発明に係るアスベスト類aの定性分析システムSは、灰化装置1と赤外分光装置2とを少なくとも具備しているものであるので、試料Ay中に有機質繊維yが含まれている場合には、当該試料Ay中の有機質繊維yを灰化することによって、有機質繊維yが所定のアスベスト類aと誤って同定、検出されてしまうという不具合を有効に回避し得たものとなっている。さらに、この灰化試料Aにフーリエ変換赤外分光分析を行うことにより迅速な処理を行うことができるとともに、当該フーリエ変換赤外分光分析によればクリソタイルa1(白石綿)とアンチゴライトb1(非石綿)といった同一の鉱物阻止を有するものを的確に判別することが可能となる。具体的には、従来であれば1つの試料Ayを分析するために7〜8時間要していたのに対して、本実施形態によれば、要する時間は20分程度となっている。   With the configuration as described above, the analysis method ST according to the present embodiment includes the ashing step st1, the analysis step st2, and the detection step st3, and the qualitative analysis of the asbestos a according to the present invention. Since the system S includes at least the ashing device 1 and the infrared spectroscopic device 2, when the organic fiber y is included in the sample Ay, the organic fiber y in the sample Ay is included. As a result of ashing, the problem that the organic fiber y is erroneously identified and detected as the predetermined asbestos a can be effectively avoided. Further, rapid processing can be performed by performing Fourier transform infrared spectroscopic analysis on the ashed sample A. According to the Fourier transform infrared spectroscopic analysis, chrysotile a1 (white asbestos) and antigolite b1 ( It is possible to accurately discriminate those having the same mineral inhibition (non-asbestos). Specifically, conventionally, it took 7 to 8 hours to analyze one sample Ay, but according to the present embodiment, the time required is about 20 minutes.

そして本実施形態では、灰化装置1による灰化工程st1は、低温灰化装置たる灰化装置1を用いることによって、クリソタイルa1が熱分解され始める温度である450℃以下の温度、具体的には200℃の温度で試料Ayを灰化する本発明に係る低温灰化工程となっているので、灰化に要するエネルギー量を有効に抑え得るものとなっている。   In this embodiment, the ashing step st1 by the ashing device 1 uses the ashing device 1 which is a low-temperature ashing device, whereby a temperature of 450 ° C. or less, which is a temperature at which the chrysotile a1 starts to be thermally decomposed, specifically Is a low-temperature ashing step according to the present invention in which sample Ay is incinerated at a temperature of 200 ° C., so that the amount of energy required for incineration can be effectively suppressed.

そして、分析工程st2を、顕微フーリエ変換赤外分光装置2による析工程st2としているので、上述のクリソタイルa1のみならず、同じくアスベスト類aであるクロシドライト(青石綿)a2、アモサイト(茶石綿)a3や、アンソフィライトa4、トレモライトa5やアクチノライトa6を含む建材、図5に示すような試料Ayを供試した場合であっても、分光スペクトルspの波形から好適に検出し得るものとなっている。換言すればアスベスト類aの定性分析を好適に行い得るものとなっている。勿論、顕微フーリエ変換赤外分光装置2を採用することにより、供試する試料Ayが微量である場合であってもアスベスト類aの定性分析を好適に行い得るものとなっている。   Since the analysis step st2 is the analysis step st2 by the microscopic Fourier transform infrared spectroscopic device 2, not only the above-mentioned chrysotile a1, but also the asbestos a, crocidolite (blue asbestos) a2, amosite (tea asbestos) a3 In addition, even when a building material including anthophyllite a4, tremolite a5 and actinolite a6, and a sample Ay as shown in FIG. 5 are tested, they can be suitably detected from the waveform of the spectral spectrum sp. . In other words, the qualitative analysis of asbestos a can be suitably performed. Of course, by adopting the microscopic Fourier transform infrared spectroscopic device 2, it is possible to suitably perform qualitative analysis of asbestos a even when the sample Ay to be tested is a very small amount.

以上、本発明の実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Although the embodiment of the present invention has been described above, the specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、試料として採用するものは上記実施形態に挙げたものに限られず、他の種々の建材に適用することが可能である。   For example, what is adopted as the sample is not limited to those described in the above embodiment, and can be applied to other various building materials.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る模式的な構成図。The typical block diagram which concerns on one Embodiment of this invention. 同実施形態に係る無機質繊維状物質の赤外分光分析スペクトルを示す図。The figure which shows the infrared spectroscopy spectrum of the inorganic fibrous substance which concerns on the same embodiment. 同上。Same as above. 同上。Same as above. 同上。Same as above.

符号の説明Explanation of symbols

1…灰化装置、低温灰化装置(灰化装置)
2…フーリエ変換赤外分光分析装置、顕微フーリエ変換赤外分光分析装置(分析装置)
A…灰化試料
Ay…試料
y…有機質繊維
a…アスベスト類(無機質繊維状物質)
S…無機質繊維状物質の定性分析システム(分析システム)
ST…無機質繊維状物質の定性分析方法(分析方法)
st1…有機質繊維灰化工程(灰化工程)
st2…フーリエ変換赤外分光分析工程(分析工程)
st3…無機質繊維検出工程(検出工程)
1 ... Ashing equipment, low-temperature ashing equipment (ashing equipment)
2 ... Fourier transform infrared spectroscopic analyzer, microscopic Fourier transform infrared spectroscopic analyzer (analyzer)
A ... Ash sample Ay ... Sample y ... Organic fiber a ... Asbestos (inorganic fibrous material)
S ... Qualitative analysis system for inorganic fibrous materials (analysis system)
ST: Qualitative analysis method for inorganic fibrous materials (analysis method)
st1 ... Organic fiber ashing process (ashing process)
st2 ... Fourier transform infrared spectroscopic analysis process (analysis process)
st3 ... Inorganic fiber detection process (detection process)

Claims (11)

試料を灰化させることにより有機質繊維を灰化した灰化試料を得る有機質繊維灰化工程と、
前記灰化試料をフーリエ変換赤外分光装置により測定し前記灰化試料のフーリエ変換赤外分光スペクトルを得るフーリエ変換赤外分光分析工程と、
当該フーリエ変換赤外分光分析工程により得られたフーリエ変換赤外分光スペクトルから所定の無機質繊維状物質を検出し得る無機質繊維検出工程とを少なくとも含んでいることを特徴とする無機質繊維状物質の定性分析方法。
An organic fiber ashing step for obtaining an ashed sample obtained by ashing the organic fiber by ashing the sample;
A Fourier transform infrared spectroscopic analysis step of measuring the ashed sample with a Fourier transform infrared spectroscopic device to obtain a Fourier transform infrared spectroscopic spectrum of the ashed sample;
A qualitative property of the inorganic fibrous material, comprising at least an inorganic fiber detecting step capable of detecting a predetermined inorganic fibrous material from the Fourier transform infrared spectrum obtained by the Fourier transform infrared spectroscopy Analysis method.
前記有機質繊維灰化工程を、450℃以下の温度により試料を灰化する低温灰化工程としている請求項1記載の無機質繊維状物質の定性分析方法。 The method for qualitative analysis of an inorganic fibrous material according to claim 1, wherein the organic fiber ashing step is a low-temperature ashing step in which the sample is ashed at a temperature of 450 ° C or lower. 前記フーリエ変換赤外分光分析工程を、顕微フーリエ変換赤外分光装置による顕微フーリエ変換赤外分光分析工程としている請求項1又は2記載の無機質繊維状物質の定性分析方法。 The method for qualitative analysis of an inorganic fibrous substance according to claim 1 or 2, wherein the Fourier transform infrared spectroscopic analysis step is a micro Fourier transform infrared spectroscopic analysis step using a microscopic Fourier transform infrared spectroscopic device. 前記所定の無機質繊維状物質を石綿としている請求項1、2又は3記載の無機質繊維状物質の定性分析方法。 The method for qualitative analysis of an inorganic fibrous substance according to claim 1, 2 or 3, wherein the predetermined inorganic fibrous substance is asbestos. 前記試料を、大気中の浮遊物としている請求項1、2、3又は4記載の無機質繊維状物質の定性分析方法。 The method for qualitative analysis of an inorganic fibrous substance according to claim 1, 2, 3, or 4, wherein the sample is a suspended matter in the atmosphere. 前記試料を、建材としている請求項1、2、3又は4記載の無機質繊維状物質の定性分析方法。 The qualitative analysis method for an inorganic fibrous substance according to claim 1, 2, 3 or 4, wherein the sample is a building material. 試料を灰化させることにより有機質繊維を灰化した灰化試料を得る有機質繊維灰化装置と、
前記灰化試料をフーリエ変換赤外分光分析を行うことにより得た前記灰化試料のフーリエ変換赤外分光スペクトルから所定の無機質繊維状物質を検出し得るフーリエ変換赤外分光装置とを少なくとも具備していることを特徴とする無機質繊維状物質の定性分析システム。
An organic fiber ashing device for obtaining an ashed sample obtained by ashing the organic fiber by ashing the sample;
A Fourier transform infrared spectroscopic device capable of detecting a predetermined inorganic fibrous substance from a Fourier transform infrared spectroscopic spectrum of the ashed sample obtained by performing Fourier transform infrared spectroscopic analysis of the ashed sample. A system for qualitative analysis of inorganic fibrous materials.
前記有機質繊維灰化装置を、450℃以下の温度により前記試料を灰化し得る低温灰化装置としている請求項8記載の無機質繊維状物質の定性分析システム。 The qualitative analysis system for an inorganic fibrous substance according to claim 8, wherein the organic fiber ashing device is a low-temperature ashing device capable of ashing the sample at a temperature of 450 ° C or lower. 前記有機質繊維灰化装置を、200℃の温度により前記試料を灰化し得る低温灰化装置としている請求項8記載の無機質繊維状物質の定性分析システム。 The qualitative analysis system for an inorganic fibrous material according to claim 8, wherein the organic fiber ashing device is a low-temperature ashing device capable of ashing the sample at a temperature of 200 ° C. 前記フーリエ変換赤外分光装置を、顕微フーリエ変換赤外分光装置としている請求項7又は8記載の無機質繊維状物質の定性分析システム。 The qualitative analysis system for inorganic fibrous substances according to claim 7 or 8, wherein the Fourier transform infrared spectrometer is a microscopic Fourier transform infrared spectrometer. 前記所定の無機質繊維状物質を石綿としている請求項8、9又は10記載の無機質繊維状物質の定性分析システム。 The qualitative analysis system for an inorganic fibrous substance according to claim 8, 9 or 10, wherein the predetermined inorganic fibrous substance is asbestos.
JP2006282477A 2006-10-17 2006-10-17 Qualitative analysis method and system for asbestos Active JP4841390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282477A JP4841390B2 (en) 2006-10-17 2006-10-17 Qualitative analysis method and system for asbestos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282477A JP4841390B2 (en) 2006-10-17 2006-10-17 Qualitative analysis method and system for asbestos

Publications (2)

Publication Number Publication Date
JP2008101930A true JP2008101930A (en) 2008-05-01
JP4841390B2 JP4841390B2 (en) 2011-12-21

Family

ID=39436368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282477A Active JP4841390B2 (en) 2006-10-17 2006-10-17 Qualitative analysis method and system for asbestos

Country Status (1)

Country Link
JP (1) JP4841390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064735A (en) * 2012-09-14 2013-04-11 Tokyu Construction Co Ltd Specific substance detection device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159161A (en) * 1981-03-26 1982-10-01 Canon Inc Detector for callout signal
JPS62193551A (en) * 1986-02-18 1987-08-25 Fujitsu Ltd Braking mechanism of linear motor
JPH01307662A (en) * 1988-05-06 1989-12-12 Man Technol Gmbh Method and reactor for multiple element- substance analysis
JPH07159409A (en) * 1993-12-02 1995-06-23 Hitachi Ltd Automatic analyzer for trace metal in blood
JPH07181268A (en) * 1993-12-22 1995-07-21 Ask:Kk Method for discriminating asbestos easily
JPH09127102A (en) * 1995-11-02 1997-05-16 Nichias Corp Qualitative analysis method for fiber such as asbestos
JPH11344440A (en) * 1998-06-02 1999-12-14 Nec Corp Method and instrument for analyzing organic substance for impurity
JP2001074620A (en) * 1999-09-06 2001-03-23 Fusako Kakehi Sample base for infrared microspectrometric analyzing
JP2005275603A (en) * 2004-03-23 2005-10-06 National Printing Bureau Method for judging authenticity of sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159161A (en) * 1981-03-26 1982-10-01 Canon Inc Detector for callout signal
JPS62193551A (en) * 1986-02-18 1987-08-25 Fujitsu Ltd Braking mechanism of linear motor
JPH01307662A (en) * 1988-05-06 1989-12-12 Man Technol Gmbh Method and reactor for multiple element- substance analysis
JPH07159409A (en) * 1993-12-02 1995-06-23 Hitachi Ltd Automatic analyzer for trace metal in blood
JPH07181268A (en) * 1993-12-22 1995-07-21 Ask:Kk Method for discriminating asbestos easily
JPH09127102A (en) * 1995-11-02 1997-05-16 Nichias Corp Qualitative analysis method for fiber such as asbestos
JPH11344440A (en) * 1998-06-02 1999-12-14 Nec Corp Method and instrument for analyzing organic substance for impurity
JP2001074620A (en) * 1999-09-06 2001-03-23 Fusako Kakehi Sample base for infrared microspectrometric analyzing
JP2005275603A (en) * 2004-03-23 2005-10-06 National Printing Bureau Method for judging authenticity of sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064735A (en) * 2012-09-14 2013-04-11 Tokyu Construction Co Ltd Specific substance detection device and method

Also Published As

Publication number Publication date
JP4841390B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Sikirzhytskaya et al. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil
Winchell et al. Analyses of per-and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment
Aquino et al. Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: Chemometric applications for better data interpretation
Autelitano et al. Analytical assessment of asphalt odor patterns in hot mix asphalt production
Marnane Comprehensive environmental review following the pork PCB/dioxin contamination incident in Ireland
George et al. Censoring trace-level environmental data: statistical analysis considerations to limit bias
JP4841390B2 (en) Qualitative analysis method and system for asbestos
Zholobenko et al. In situ spectroscopic identification of the six types of asbestos
Gregoris et al. Microplastics analysis: can we carry out a polymeric characterisation of atmospheric aerosol using direct inlet Py-GC/MS?
Dyke et al. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine
Luo et al. Raman imaging of microplastics and nanoplastics released from the printed toner powders burned by a mimicked bushfire
JP2005233658A (en) Asbestos automatic determination method and determination device
Serranti et al. Hyperspectral imaging applied to asbestos containing materials detection: specimen preparation and handling
Wenzel et al. Determination of atmospherically deposited microplastics in moss: Method development and performance evaluation
Amorello et al. An analytical method for monitoring micro-traces of landfill leachate in groundwater using fluorescence excitation–emission matrix spectroscopy
Allen et al. Elevated corrosion rates and hydrogen sulfide in homes with ‘Chinese Drywall’
Wright et al. Methamphetamine contamination in homes–contamination and risk levels
Stănescu-Dumitru FTIR asbestos presence identification in the occupational environment
Fiorenza et al. PFAS Experts Symposium 2: An update on advances in chemical analysis of PFAS
Hendrych et al. Thermogravimetric analysis as significant tool for suitability assessment of solid waste destined for processing by thermal desorption
Settimo et al. State-of-art of the legislation on odour emissions with a focus on the Italian studies
Wu et al. Rapid screening for chemical weapons infiltration in drinking water
Yang Oil in produced water analysis and monitoring in the North Sea
Light Assessment and Remediation of Misapplied Spray Polyurethane Foam
Obmiński Comparison of the effects of use, protection, improper renovation and removal of asbestos products on the example of typical old office buildings in Poland

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3