JPH08203516A - Non-sintered nickel electrode and its manufacture - Google Patents

Non-sintered nickel electrode and its manufacture

Info

Publication number
JPH08203516A
JPH08203516A JP7010183A JP1018395A JPH08203516A JP H08203516 A JPH08203516 A JP H08203516A JP 7010183 A JP7010183 A JP 7010183A JP 1018395 A JP1018395 A JP 1018395A JP H08203516 A JPH08203516 A JP H08203516A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
nickel hydroxide
electrode
hydroxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7010183A
Other languages
Japanese (ja)
Other versions
JP3113534B2 (en
Inventor
Hidekazu Otohata
秀和 乙幡
Seiji Ishizuka
清司 石塚
Takeshi KOMIYAMA
健 小見山
Kenichi Sugano
憲一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP07010183A priority Critical patent/JP3113534B2/en
Publication of JPH08203516A publication Critical patent/JPH08203516A/en
Application granted granted Critical
Publication of JP3113534B2 publication Critical patent/JP3113534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nickel electrode having a high utilizing ratio of positive electrode active material and capable of ensuring a stable battery capacity, and a manufacturing method in which such a nickel electrode can be easily manufactured. CONSTITUTION: A nickel electrode has a three-dimensional porous metal base 1 and a nickel hydroxide particle 2 filled and supported in the metal base 1, and the surface of the nickel hydroxide particle 2 is covered with cobalt oxyhydroxide 3. A method for manufacturing such a nickel electrode comprises a process for adding an alkali aqueous solution to a cobalt sulfide aqueous solution in which the nickel hydroxide particle is dispersed followed by stirring to cover the nickel hydroxide particle surface with a cobalt compound; a process for separating the nickel hydroxide particle covered with the cobalt compound, and heating and drying it to oxidize the cobalt compound into cobalt oxyhydroxide; a process for filling and supporting a paste material containing the nickel hydroxide particle covered with cobalt oxyhydroxide in the three- dimensional porous metal base; and a process for drying the filled and supported paste material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非焼結型(非焼結式)ニ
ッケル電極およびその製造方法に係り、さらに詳しく
は、電極利用率を向上させたアルカリ二次電池用の非焼
結型ニッケル電極およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered (non-sintered) nickel electrode and a method for manufacturing the same, and more specifically, to a non-sintered type alkaline alkaline battery with improved electrode utilization. The present invention relates to a nickel electrode and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ニッケル−水素二次電池、あるいはニッ
ケル−カドミウム二次電池などに代表されるアルカリ二
次電池は、たとえば携帯用電話機や携帯型撮像機など各
種の機器システムの作動電源として広く実用化されてい
る。つまり、この種のアルカリ二次電池は、充電操作に
よる電力の確保もしくは貯蔵と、前記確保もしくは貯蔵
した電力を電源とした負荷の駆動(放電)とを繰り返し
行い得ることから、各種の機器システムに組込まれ実用
されている。
2. Description of the Related Art Alkaline secondary batteries represented by nickel-hydrogen secondary batteries or nickel-cadmium secondary batteries are widely used as operating power sources for various equipment systems such as portable telephones and portable image pickup devices. Has been converted. In other words, this type of alkaline secondary battery can be repeatedly used to secure or store electric power by charging operation and to drive (discharge) a load using the secured or stored electric power as a power source. It is incorporated and put into practical use.

【0003】ところで、前記アルカリ二次電池が具備・
装着する正極は、いわゆる集電体として機能する三次元
多孔性(多孔質)の金属基板に、正極活物質として水酸
化ニッケルを充填・担持させた構成を採っている。ま
た、この構成において、正極活物質を活性化するために
導電性粉末を添加することも行われており、酸化コバル
ト(一酸化コバルト),水酸化コバルトもしくは両者を
添加した場合、正極活物質の利用率を向上し得ることも
知られている。すなわち、前記コバルト化合物をニッケ
ル電極に添加・含有させた構成の場合は、二次電池の最
初の充電で電気化学的に酸化され、下記に式で示すごと
く、導電性に富むオキシ水酸化コバルトを生成し、この
オキシ水酸化コバルトが活物質である水酸化ニッケルの
周面を被覆して、活物質間および三次元多孔性の金属基
板間の導通をよくすることにより、ニッケル電極の利用
効率が向上することになる。
By the way, the alkaline secondary battery is equipped with
The positive electrode to be mounted has a three-dimensionally porous (porous) metal substrate that functions as a so-called current collector and has nickel hydroxide as a positive electrode active material filled and supported thereon. In addition, in this structure, conductive powder is also added to activate the positive electrode active material. When cobalt oxide (cobalt monoxide), cobalt hydroxide, or both are added, positive electrode active material It is also known that the utilization rate can be improved. That is, in the case where the cobalt compound is added to and contained in the nickel electrode, it is electrochemically oxidized by the first charge of the secondary battery, and as shown by the following formula, cobalt oxyhydroxide rich in conductivity is added. The generated nickel oxyhydroxide coats the peripheral surface of nickel hydroxide, which is the active material, to improve the conduction between the active materials and between the three-dimensional porous metal substrates, thereby improving the utilization efficiency of the nickel electrode. Will be improved.

【0004】 CoO+OH- →HCoO2 - (1) HCoO2 - + H2 O →Co(OH)2 +OH- (2) Co(OH)2 +OH- → CoOOH+ H2 O + e- (3) なお、水酸化コバルトは反応式 (3)に示すように、その
表面にOH- イオンが接触した後、電子和を放出してオキ
シ水酸化コバルトに変化する。
CoO + OH → HCoO 2 − (1) HCoO 2 − + H 2 O → Co (OH) 2 + OH (2) Co (OH) 2 + OH → CoOOH + H 2 O + e (3) As shown in reaction formula (3), cobalt hydroxide is converted into cobalt oxyhydroxide by releasing an electron sum after the OH ion contacts the surface.

【0005】そして、前記ニッケル電極は、一般的に次
のようにして製造されている。すなわち、集電体として
機能する三次元多孔性の金属基板、たとえばニッケル繊
維系基板に、ニッケル酸化物系の活物質を含むペースト
を塗布・充填した後、加熱乾燥してニッケル電極を製造
している。さらに詳しく説明すると、酸化コバルト粉末
もしくは水酸化コバルト粉末などの導電性粉末を所要量
含むニッケル酸化物系粉末、カルボキシメチルセルロー
ス,ポリアクリル酸ナトリウム,ポリテトラフロロエチ
レン,メチルセルロースなどのバインダー樹脂成分、お
よび水などの媒体で調製されたペーストを、たとえばニ
ッケル繊維系基板に塗布・充填した後、適宜、加熱乾燥
・処理を施すことによって、所要の活物質を充填・担持
する非焼結式(型)のニッケル電極を得ている。
The nickel electrode is generally manufactured as follows. That is, a three-dimensional porous metal substrate that functions as a current collector, for example, a nickel fiber-based substrate, is coated and filled with a paste containing a nickel oxide-based active material, and then heated and dried to produce a nickel electrode. There is. More specifically, a nickel oxide powder containing a required amount of conductive powder such as cobalt oxide powder or cobalt hydroxide powder, a binder resin component such as carboxymethyl cellulose, sodium polyacrylate, polytetrafluoroethylene or methyl cellulose, and water. A paste prepared with a medium such as the following is applied / filled to, for example, a nickel fiber-based substrate, and then heat-dried / treated as appropriate to fill / carry the required active material. I have a nickel electrode.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記製
造方法で得られたニッケル電極は、なお、実用上十分満
足し得るものとはいえない。すなわち、前記正極活物質
の利用率を向上するため、コバルト化合物をニッケル電
極に添加・含有させた構成を採っても、安定した電池容
量を確保するためには、初期充電時にコバルト化合物
が、十分にオキシ水酸化コバルトに酸化されることが前
提となる。そして、前記初期充電時のオキシ水酸化コバ
ルト化に当たっては、適正な初期充電条件の設定が必然
的に要求され、煩雑な操作が不可避となる。さらに言及
すると、前記のように、電気化学的にオキシ水酸化コバ
ルトを生成する場合は、操作が煩雑化するばかりでな
く、コバルト化合物の分散状態によって決まり、多く分
散する箇所では比較的多く、少なく分散する箇所では比
較的少なく生成し、水酸化ニッケルの表面に生成するオ
キシ水酸化コバルト層にムラが生じて、ニッケル電極中
の水酸化ニッケルを有効に利用し得ない場合もしばしば
起こる。したがって、この種のニッケル電極を装着・組
み込んだアルカリ二次電池においては、最初の充電時
に、前記ニッケル電極に添加・含有させたコバルト化合
物が優先的に酸化されるような充電条件の選択,設定
が、精力的にいろいろ試みられている。しかし、まだ十
分な、もしくは有効な充電条件の選択,設定が成功して
おらず、十分な電池容量の確保という目的は、依然とし
て達成されていない状況にある。
However, the nickel electrode obtained by the above-mentioned manufacturing method cannot be said to be sufficiently satisfactory in practical use. That is, in order to improve the utilization rate of the positive electrode active material, even if a structure in which a cobalt compound is added to and contained in a nickel electrode is adopted, in order to secure a stable battery capacity, the cobalt compound is sufficient at the time of initial charging. It is premised that it is oxidized to cobalt oxyhydroxide. When converting the cobalt oxyhydroxide during the initial charging, it is inevitably necessary to set proper initial charging conditions, and complicated operations are inevitable. Furthermore, as mentioned above, in the case of electrochemically producing cobalt oxyhydroxide, not only the operation becomes complicated, but also it is determined by the dispersion state of the cobalt compound, and relatively large and small in the places where many are dispersed. A relatively small amount is generated in the dispersed portion, and unevenness occurs in the cobalt oxyhydroxide layer formed on the surface of nickel hydroxide, and it often happens that nickel hydroxide in the nickel electrode cannot be effectively used. Therefore, in an alkaline secondary battery in which this type of nickel electrode is mounted / incorporated, at the time of first charging, selection and setting of charging conditions such that the cobalt compound added / contained in the nickel electrode is preferentially oxidized. However, various efforts are being made. However, the selection or setting of sufficient or effective charging conditions has not been successful yet, and the purpose of ensuring sufficient battery capacity is still unachieved.

【0007】本発明は、このような事情に対処してなさ
れたもので、正極活物質の利用率が高く、かつ安定した
電池容量の確保も可能となるニッケル電極、およびその
ようなニッケル電極を容易に製造し得る製造方法の提供
を目的とする。
The present invention has been made in consideration of such circumstances, and a nickel electrode which has a high utilization rate of a positive electrode active material and can secure a stable battery capacity, and such a nickel electrode An object of the present invention is to provide a manufacturing method that can be easily manufactured.

【0008】[0008]

【課題を解決するための手段】本発明に係る第1のニッ
ケル電極は、三次元多孔性の金属基板と、前記金属基板
に充填・担持された水酸化ニッケル粒子とを具備して成
り、かつ前記水酸化ニッケル粒子表面がオキシ水酸化コ
バルトで被覆されていることを特徴とする。
A first nickel electrode according to the present invention comprises a three-dimensionally porous metal substrate and nickel hydroxide particles filled and supported on the metal substrate, and The surface of the nickel hydroxide particles is coated with cobalt oxyhydroxide.

【0009】本発明に係る第2のニッケル電極は、上記
第1のニッケル電極を構成する三次元多孔性の金属基板
が、ニッケル繊維系板であることを特徴とする。
The second nickel electrode according to the present invention is characterized in that the three-dimensional porous metal substrate forming the first nickel electrode is a nickel fiber-based plate.

【0010】本発明に係るニッケル電極の製造方法は、
水酸化ニッケル粒子を分散させた硫酸コバルト水溶液に
アルカリ水溶液を添加・撹拌し、水酸化ニッケル粒子表
面にコバルト化合物を被覆する工程と、前記コバルト化
合物を被覆した水酸化ニッケル粒子を分離し、加熱乾燥
処理を施してコバルト化合物をオキシ水酸化コバルトに
酸化する工程と、前記オキシ水酸化コバルトで被覆され
た水酸化ニッケル粒子を含むペースト状物を三次元多孔
性の金属基板に充填・担持させる工程と、前記充填・担
持させたペースト状物を乾燥する工程とを具備して成る
ことを特徴とする。
The method for producing a nickel electrode according to the present invention comprises:
A process of adding and stirring an alkaline aqueous solution to an aqueous cobalt sulfate solution in which nickel hydroxide particles are dispersed, and separating the nickel hydroxide particles coated with the cobalt compound on the surface of the nickel hydroxide particles, and heating and drying. A step of applying a treatment to oxidize the cobalt compound into cobalt oxyhydroxide, and a step of filling and supporting a paste-like material containing the nickel hydroxide particles coated with the cobalt oxyhydroxide on a three-dimensional porous metal substrate. And a step of drying the filled and supported paste-like material.

【0011】前記のように、本発明に係る非焼結型のニ
ッケル電極およびその製造方法は、三次元多孔性の金属
基板に充填・担持される水酸化ニッケル粒子表面がオキ
シ水酸化コバルトで予め被覆されていることを骨子とし
ている。つまり、本発明は、前記三次元多孔性の金属基
板に充填・担持させた活物質としての水酸化ニッケル粒
子表面を、予めオキシ水酸化コバルト層で被覆して初期
充電時に先だって既に所要の導電性が付与されているこ
とを特徴とするものである。
As described above, in the non-sintered nickel electrode and the method for producing the same according to the present invention, the surface of the nickel hydroxide particles filled and supported on the three-dimensional porous metal substrate is previously made of cobalt oxyhydroxide. The outline is that it is covered. That is, the present invention, the surface of the nickel hydroxide particles as the active material filled and supported on the three-dimensional porous metal substrate is previously coated with a cobalt oxyhydroxide layer to obtain the required conductivity before the initial charging. Is added.

【0012】本発明において、三次元多孔性の金属基板
としては、たとえばニッケル繊維系の板、ニッケル系多
孔質の板、ニッケル綱,ステンレス綱,ニッケルめっき
が施された樹脂など耐アルカリ性材料を素材として網
状,スポンジ状,繊維状,フェルト状などに加工したも
のが例示され、一般的には空隙率90〜95%程度、厚さ 1
〜 2mm程度が好ましい。
In the present invention, the three-dimensional porous metal substrate is made of, for example, a nickel fiber-based plate, a nickel-based porous plate, nickel steel, stainless steel, or an alkali-resistant material such as nickel-plated resin. Examples include those processed into a net shape, sponge shape, fiber shape, felt shape, etc. Generally, porosity is about 90 to 95%, thickness 1
It is preferably about 2 mm.

【0013】また、本発明において、三次元多孔性の金
属基板に充填・担持させる水酸化ニッケル系活物質は、
水酸化ニッケル粒子表面がオキシ水酸化コバルトで被覆
されている水酸化ニッケル粒子、およびカルボキシメチ
ルセルロース,メチルセルロース,ポリアクリル酸ナト
リウム,ポリテトラフルオロエチレンなどのバインダー
で形成されており、さらに要すれば、たとえば金属コバ
ルト粉末や金属ニッケル粉末などの導電性粉末を添加し
た形態を採ってもよい。
Further, in the present invention, the nickel hydroxide-based active material filled and supported on the three-dimensional porous metal substrate is
The nickel hydroxide particles are formed of nickel hydroxide particles whose surface is coated with cobalt oxyhydroxide, and a binder such as carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene, and the like. You may take the form which added electroconductive powders, such as a metal cobalt powder and a metal nickel powder.

【0014】さらに、本発明において、オキシ水酸化コ
バルトで被覆されている水酸化ニッケル粒子を製造する
ときに添加するアルカリ水溶液としては、たとえば濃度
1N以上の水酸化ナトリウム水溶液,水酸化カリウム水
溶液,水酸化リチウム水溶液などが挙げられる。ここ
で、アルカリ溶液の濃度が1N未満では、浸漬・処理の
効果が不十分な傾向が認められるので、1N以上に選択
することが望ましい。
Further, in the present invention, the alkaline aqueous solution added when producing the nickel hydroxide particles coated with cobalt oxyhydroxide is, for example, a sodium hydroxide aqueous solution having a concentration of 1N or more, a potassium hydroxide aqueous solution, and water. Examples thereof include a lithium oxide aqueous solution. Here, if the concentration of the alkaline solution is less than 1N, the effect of immersion / treatment tends to be insufficient, so it is preferable to select 1N or more.

【0015】また、本発明において、前記アルカリ溶液
の添加・撹拌処理後の加熱乾燥は、一般的に温度40〜 2
00℃程度で、10〜60分間程度に選択・設定することが望
ましい。すなわち、この加熱乾燥処理は、水酸化コバル
トなどのコバルト化合物をオキシ水酸化コバルトにする
ために要するエネルギーを与えるという観点から、少な
くとも60℃程度が望ましく、また、 200℃以上では活物
質を成す水酸化ニッケルが、酸化ニッケルに酸化される
傾向がある。
In the present invention, the heating and drying after the addition and stirring of the alkaline solution is generally carried out at a temperature of 40 to 2
It is desirable to select and set the temperature at about 00 ℃ for about 10 to 60 minutes. That is, this heat-drying treatment is preferably at least about 60 ° C. from the viewpoint of providing the energy required for converting a cobalt compound such as cobalt hydroxide to cobalt oxyhydroxide, and at 200 ° C. or higher, water forming the active material is used. Nickel oxide tends to oxidize to nickel oxide.

【0016】[0016]

【作用】第1のニッケル電極の場合は、活物質を充填・
担持させた三次元多孔性の金属基板に充填・担持させた
ニッケル活物質、すなわち水酸化ニッケル粒子の表面
が、予め良導電性のオキシ水酸化コバルトで被覆されて
おり、これによって水酸化ニッケル(活物質)粒子間の
導通、および水酸化ニッケル粒子と三次元多孔性の金属
基板(集電体)との導通が良好化し、十分な電池容量を
確保し得るニッケル電極として機能することが可能とな
る。
[Function] In the case of the first nickel electrode, the active material is filled
The surface of the nickel active material, that is, the nickel hydroxide particles, which are filled / supported on the supported three-dimensional porous metal substrate, is previously coated with cobalt oxyhydroxide having good conductivity. The conductivity between the active material particles and the conductivity between the nickel hydroxide particles and the three-dimensional porous metal substrate (current collector) are improved, and it is possible to function as a nickel electrode capable of ensuring a sufficient battery capacity. Become.

【0017】第2のニッケル電極の場合は、上記第1の
ニッケル電極の作用に加えて、三次元多孔性の金属基板
をニッケル繊維系の多孔性基板に選択したことにより、
さらに容易に所要の活物質の充填・担持が確保され、よ
り高性能化されたニッケル電極として機能することが可
能となる。
In the case of the second nickel electrode, in addition to the function of the first nickel electrode, the three-dimensional porous metal substrate is selected as the nickel fiber-based porous substrate.
Further, it is possible to more easily ensure the filling and supporting of the required active material, and it is possible to function as a nickel electrode with higher performance.

【0018】ニッケル電極の製造方法の場合は、正極活
物質、すなわち水酸化ニッケル粒子表面に、所要の導電
性の高いオキシ水酸化コバルト層が形成されるととも
に、この水酸化ニッケル粒子系を三次元多孔性の金属基
板に充填・担持させるため、上記第1および第2のニッ
ケル電極に相当するニッケル電極を、より容易に歩留ま
りよく得ることが可能となる。
In the case of the method for producing a nickel electrode, a required highly conductive cobalt oxyhydroxide layer is formed on the surface of the positive electrode active material, that is, nickel hydroxide particles, and the nickel hydroxide particle system is three-dimensionally formed. Since the porous metal substrate is filled and supported, nickel electrodes corresponding to the first and second nickel electrodes can be obtained more easily and with good yield.

【0019】[0019]

【実施例】以下図1を参照して本発明の実施例を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0020】図1は本発明に係る非焼結型ニッケル電極
の構造を拡大して模式的に示した断面図であり、1はた
とえばニッケル繊維を素材として成る三次元多孔性の金
属基板、2は前記金属基板1の空隙部に充填・担持され
た平均粒径10μm 程度の水酸化ニッケル粒子、3は前記
水酸化ニッケル粒子2表面を被覆するオキシ水酸化コバ
ルト層、4はたとえばポリテトラフロロエチレンなどの
バインダー樹脂である。 そして、このような本発明に
係る非焼結型ニッケル電極は、たとえば次ぎのような工
程を経て容易に製造し得る。先ず、平均粒径10μm 程度
の水酸化ニッケル粒子1000 gを飽和硫酸コバルト水溶液
800ml中に分散させた分散液を調製した。次ぎに、前記
分散液を撹拌しながら、その撹拌分散液に、濃度8Nの
水酸化ナトリウム水溶液 300mlを添加し、添加終了後撹
拌を続行した。その後、前記分散液から、水酸化ニッケ
ル粒子を濾過・分離し、表面が水酸化コバルトで被覆さ
れた水酸化ニッケル粒子(試料a…参考例)を得た。ま
た、前記水酸化コバルトで被覆された水酸化ニッケル粒
子(試料a)を2分し、一部を 100℃の温度で加熱乾燥
処理して、表面がオキシ水酸化コバルトで被覆された水
酸化ニッケル粒子(試料A…実施例)を得た。
FIG. 1 is an enlarged schematic cross-sectional view of the structure of the non-sintered nickel electrode according to the present invention, in which 1 is a three-dimensional porous metal substrate made of nickel fiber, for example, 2 Is nickel hydroxide particles having an average particle size of about 10 μm, which are filled and carried in the voids of the metal substrate 1, 3 is a cobalt oxyhydroxide layer covering the surface of the nickel hydroxide particles 2, and 4 is, for example, polytetrafluoroethylene Binder resin such as. Then, such a non-sintered nickel electrode according to the present invention can be easily manufactured through the following steps, for example. First, 1000 g of nickel hydroxide particles having an average particle size of about 10 μm was added to a saturated aqueous solution of cobalt sulfate.
A dispersion liquid dispersed in 800 ml was prepared. Next, while stirring the above dispersion liquid, 300 ml of an aqueous 8N sodium hydroxide solution was added to the stirring dispersion liquid, and stirring was continued after the addition was completed. Then, nickel hydroxide particles were filtered and separated from the dispersion liquid to obtain nickel hydroxide particles whose surface was coated with cobalt hydroxide (Sample a ... Reference Example). In addition, the nickel hydroxide particles coated with cobalt hydroxide (sample a) were divided into two parts, and a part of them was heated and dried at a temperature of 100 ° C. to obtain nickel hydroxide whose surface was coated with cobalt oxyhydroxide. Particles (Sample A ... Example) were obtained.

【0021】前記で得た試料A…実施例の水酸化ニッケ
ル粒子、および試料a…参考例の水酸化ニッケル粒子に
ついて、SEMおよびEDX観察によってそれらの性状
を評価したところ、両者ともコバルトが水酸化ニッケル
粒子表面を均一に被覆してることが観察された。
The properties of the above-obtained sample A ... Nickel hydroxide particles of the example and sample a ... Nickel hydroxide particles of the reference example were evaluated by SEM and EDX observation. It was observed that the surface of the nickel particles was uniformly coated.

【0022】前記オキシ水酸化コバルトで被覆された水
酸化ニッケル粒子(試料A…実施例) 100重量部、もし
くは水酸化コバルトで被覆された水酸化ニッケル粒子
(試料a…参考例) 100重量部と、粘着剤(結着剤)と
してカルボキシメチルセルロース0.2510重量部,ポリア
クリル酸ナトリウム0.2510重量部,ポリテトラフロロエ
チレン 3.0重量部と、水30重量部とを組成分として、こ
れらを混練して2種のペースト状の活物質(試料A′お
よび試料a′)を調製した。
100 parts by weight of nickel hydroxide particles coated with cobalt oxyhydroxide (Sample A ... Example) or 100 parts by weight of nickel hydroxide particles coated with cobalt hydroxide (Sample a ... Reference example) , As an adhesive (binder) 0.2510 parts by weight of carboxymethyl cellulose, 0.2510 parts by weight of sodium polyacrylate, 3.0 parts by weight of polytetrafluoroethylene, and 30 parts by weight of water as composition components, and kneading these two types of Paste-like active materials (Sample A ′ and Sample a ′) were prepared.

【0023】次いで、予め用意しておいたテープ状のニ
ッケル繊維系基板に、前記ペースト状の活物質:試料
A′,試料a′をそれぞれ塗布・充填してから乾燥処
理、もしくはプレス加工を施して、それぞれの活物質:
試料Aもしくは試料aを充填・担持する2種の非焼結型
ニッケル電極を製作した。このようにして製作した非焼
結型ニッケル電極について、ボルタモグラム測定により
観察・評価したところ、活物質:試料A′を使用して形
成したニッケル電極の場合は、コバルトの2価/3価の
酸化ピークが観察されず、オキシ水酸化コバルト化して
いるのに対して、活物質:試料a′を使用して形成した
ニッケル電極の場合は、コバルトの2価/3価の酸化ピ
ークが観察された。
Next, the above-mentioned paste-like active material: sample A'and sample a'are applied and filled on a tape-like nickel fiber substrate prepared in advance, respectively, and then dried or pressed. And each active material:
Two types of non-sintered nickel electrodes were prepared to fill and carry the sample A or the sample a. The non-sintered nickel electrode produced in this manner was observed and evaluated by voltammogram measurement. As a result, in the case of the nickel electrode formed using the active material: sample A ′, cobalt divalent / trivalent oxidation was performed. No peak was observed, and cobalt oxyhydroxide was formed, whereas in the case of the nickel electrode formed using the active material: sample a ′, a divalent / trivalent cobalt oxidation peak was observed. .

【0024】また、比較のために、平均粒径10μm の水
酸化ニッケル粒子90重量部に、水酸化コバルト粒子10重
量部を添加・配合してニッケル系の活物質(試料b)を
調製し、SEMおよびEDX観察によってそれらの性状
を評価したところ、コバルト化合物が水酸化ニッケル粒
子間に点在してることが観察された。さらに、前記活物
質(試料b)を、前記と同様の条件でペースト状の活物
質(試料b′)化し、かつ非焼結型ニッケル電極を製作
した。
For comparison, a nickel-based active material (sample b) was prepared by adding and blending 10 parts by weight of cobalt hydroxide particles to 90 parts by weight of nickel hydroxide particles having an average particle size of 10 μm. When their properties were evaluated by SEM and EDX observation, it was observed that cobalt compounds were scattered between the nickel hydroxide particles. Further, the active material (sample b) was made into a paste-like active material (sample b ') under the same conditions as above, and a non-sintered nickel electrode was manufactured.

【0025】次ぎに、前記実施例,参考例および比較例
のニッケル電極を、それぞれ水素極層およびポリオレフ
ィン繊維製不織布から成るセパレータを捲回して起電要
素部を形成した。その後、この起電要素部(捲回体)を
負極端子を兼ねる電池外装缶(容器)内に装着し、常套
の手段にしたがって、起電要素部に含浸させる形態でア
ルカリ電解液を注入して、単3サイズの密閉型ニッケル
水素電池(理論容量 1.1Ah)を3種類製作した。なお、
前記水素極層はLmNi4.0 Co0.4 Mn0.3 Al0.3(ただしLm
はミッシュメタルである)の組成から成る水素吸蔵合金
粉末 100重量部に、ポリアクリル酸塩 0.5重量部,カル
ボキシメチルセルロース 0.125質量部,ポリテトラフル
オロエチレン 1.5重量部,カーボン粉末 1.0重量部およ
び純水50重量部を添加して混練・調製したペーストを、
ニッケル製のネットに塗布・乾燥し、ローラプレスして
作製したものである。
Next, the nickel electrodes of the above-mentioned Examples, Reference Examples and Comparative Examples were each wound with a separator made of a hydrogen electrode layer and a polyolefin fiber non-woven fabric to form an electromotive element part. Then, this electromotive element part (rolled body) is mounted in a battery outer can (container) which also serves as a negative electrode terminal, and an alkaline electrolyte is injected in a form of impregnating the electromotive element part by a conventional means. , Three types of AA size sealed nickel hydride batteries (theoretical capacity 1.1Ah) were manufactured. In addition,
The hydrogen electrode layer is LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3 (however, Lm
Is a misch metal), 100 parts by weight of hydrogen storage alloy powder having a composition of 0.5 parts by weight, polyacrylate salt 0.5 parts by weight, carboxymethyl cellulose 0.125 parts by weight, polytetrafluoroethylene 1.5 parts by weight, carbon powder 1.0 part by weight and pure water 50 A paste prepared by kneading and adding parts by weight,
It is manufactured by coating and drying on a net made of nickel and roller pressing.

【0026】上記で製造した各ニッケル−水素電池につ
いて、 0.1Cの定電流で15時間充電をそれぞれ行った
後、 1.0Cの定電流で電池電圧1Vまで放電を行ったと
きのニッケル正極の利用率(%)を試験・評価したとこ
ろ次表に示すごとくであった。 上記表から分かるように、本発明に係るニッケル電極、
すなわち表面がオキシ水酸化コバルトで被覆された水酸
化ニッケル粒子を集電体に充填・担持させた構成を採っ
た非焼結型のニッケル電極を組み込んだアルカリ二次電
池の場合は、参考例や、比較例の場合に比べて、ニッケ
ル正極の利用効率が高く、高性能化していることが認め
られる。
Each nickel-hydrogen battery produced as described above was charged at a constant current of 0.1 C for 15 hours, and then discharged to a battery voltage of 1 V at a constant current of 1.0 C. Utilization rate of nickel positive electrode When the (%) was tested and evaluated, it was as shown in the following table. As can be seen from the above table, the nickel electrode according to the present invention,
That is, in the case of an alkaline secondary battery incorporating a non-sintered nickel electrode having a configuration in which nickel hydroxide particles whose surface is coated with cobalt oxyhydroxide are filled and supported on a current collector, reference examples and It can be seen that the nickel positive electrode has higher utilization efficiency and higher performance than the comparative example.

【0027】なお、上記では、ニッケル水素二次電池用
のニッケル電極の製造例を示したが、ニッケル−カドミ
ウム二次電池に適用しても同様の結果が得られる。
In the above, the production example of the nickel electrode for the nickel-hydrogen secondary battery is shown, but the same result can be obtained by applying it to the nickel-cadmium secondary battery.

【0028】[0028]

【発明の効果】上記説明したように、本発明に係る非焼
結型ニッケル電極場合は、集電体として機能する三次元
多孔性の金属基板に充填・担持された活物質、すなわち
水酸化ニッケル粒子表面が、既にオキシ水酸化コバルト
層化されて良好な導電性が付与されている。換言する
と、煩雑な電気化学的な処理を別途施さずとも、水酸化
ニッケル粒子表面(周面)が、良導電性のオキシ水酸化
コバルト層で被覆されており、これによって水酸化ニッ
ケル粒子間の導通、および水酸化ニッケル粒子と三次元
多孔性の金属基板(集電体)との導通が良好化し、十分
な電池容量の確保が可能となって、二次電池の高性能化
が図られる。
As described above, in the case of the non-sintered nickel electrode according to the present invention, the active material filled in and supported on the three-dimensional porous metal substrate functioning as a current collector, that is, nickel hydroxide. The surface of the particles has already been layered with cobalt oxyhydroxide to give good conductivity. In other words, the surface (peripheral surface) of the nickel hydroxide particles is covered with the cobalt oxyhydroxide layer having good conductivity, without the need for separately performing a complicated electrochemical treatment. The conduction and the conduction between the nickel hydroxide particles and the three-dimensionally porous metal substrate (current collector) are improved, sufficient battery capacity can be secured, and high performance of the secondary battery can be achieved.

【0029】また、本発明に係る非焼結型ニッケル電極
の製造方法の場合は、上記作用・効果を有する非焼結型
ニッケル電極を、より容易に高性能化されたニッケル電
極を歩留まりよく得ることが可能となる。
Further, in the case of the method for producing a non-sintered nickel electrode according to the present invention, a non-sintered nickel electrode having the above-described actions and effects can be easily obtained with a high yield. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非焼結型ニッケル電極の構造を拡
大して模式的に示す断面図。
FIG. 1 is an enlarged schematic sectional view of a structure of a non-sintered nickel electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1……三次元多孔性の金属基板 2……水酸化ニッ
ケル粒子 3……オキシ水酸化コバルト層 4
……結着剤脂
1 ... Three-dimensional porous metal substrate 2 ... Nickel hydroxide particles 3 ... Cobalt oxyhydroxide layer 4
...... Binder fat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 憲一 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Sugano 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三次元多孔性の金属基板と、前記金属基
板に充填・担持された水酸化ニッケル粒子とを具備して
成り、かつ前記水酸化ニッケル粒子の表面がオキシ水酸
化コバルトで被覆されていることを特徴とする非焼結型
ニッケル電極。
1. A three-dimensionally porous metal substrate, and nickel hydroxide particles filled and supported on the metal substrate, wherein the surface of the nickel hydroxide particles is coated with cobalt oxyhydroxide. The non-sintered nickel electrode is characterized in that
【請求項2】 請求項1記載の三次元多孔性の金属基板
が、ニッケル繊維系板であることを特徴とする非焼結型
ニッケル電極。
2. A non-sintered nickel electrode, wherein the three-dimensional porous metal substrate according to claim 1 is a nickel fiber-based plate.
【請求項3】 水酸化ニッケル粒子を分散させた硫酸コ
バルト水溶液にアルカリ水溶液を添加・撹拌し、水酸化
ニッケル粒子表面にコバルト化合物を被覆する工程と、 前記コバルト化合物を被覆した水酸化ニッケル粒子を分
離し、加熱乾燥処理を施してコバルト化合物をオキシ水
酸化コバルトに酸化する工程と、 前記オキシ水酸化コバルトで被覆された水酸化ニッケル
粒子を含むペースト状物を三次元多孔性の金属基板に充
填・担持させる工程と、 前記充填・担持させたペースト状物を乾燥する工程とを
具備して成ることを特徴とする非焼結型ニッケル電極の
製造方法。
3. A step of adding an alkali aqueous solution to a cobalt sulfate aqueous solution in which nickel hydroxide particles are dispersed and stirring the mixture to coat the surface of the nickel hydroxide particles with a cobalt compound, and the nickel hydroxide particles coated with the cobalt compound. Separation, heating and drying treatment to oxidize cobalt compound to cobalt oxyhydroxide, and filling paste containing nickel hydroxide particles coated with the cobalt oxyhydroxide into a three-dimensional porous metal substrate A method for producing a non-sintered nickel electrode, comprising a step of supporting and a step of drying the filled and supported paste-like material.
JP07010183A 1995-01-25 1995-01-25 Non-sintered nickel electrode and method for producing the same Expired - Fee Related JP3113534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07010183A JP3113534B2 (en) 1995-01-25 1995-01-25 Non-sintered nickel electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07010183A JP3113534B2 (en) 1995-01-25 1995-01-25 Non-sintered nickel electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08203516A true JPH08203516A (en) 1996-08-09
JP3113534B2 JP3113534B2 (en) 2000-12-04

Family

ID=11743184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07010183A Expired - Fee Related JP3113534B2 (en) 1995-01-25 1995-01-25 Non-sintered nickel electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3113534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881896A (en) * 2012-10-22 2013-01-16 吉林吉恩亚融科技有限公司 Cobalt coating method for spherical nickel hydroxide by mechanical fusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881896A (en) * 2012-10-22 2013-01-16 吉林吉恩亚融科技有限公司 Cobalt coating method for spherical nickel hydroxide by mechanical fusion
CN102881896B (en) * 2012-10-22 2014-06-18 吉林吉恩亚融科技有限公司 Cobalt coating method for spherical nickel hydroxide by mechanical fusion

Also Published As

Publication number Publication date
JP3113534B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
KR100362132B1 (en) Conductive Agent for Alkaline Batteries and Non-Sintered Nickel Electrode for Alkaline Batteries Using the Same
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2002025604A (en) Alkaline secondary battery
JP3113534B2 (en) Non-sintered nickel electrode and method for producing the same
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3094033B2 (en) Nickel hydride rechargeable battery
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH08315850A (en) Alkaline secondary battery and its manufacture
JPH11260359A (en) Alkaline storage battery
JP3004241B2 (en) Hydrogen battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JPH04248268A (en) Electrode of battery
JPH08203515A (en) Manufacture of nickel electrode
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees