JPH0820212B2 - Positioning method for fine pattern - Google Patents

Positioning method for fine pattern

Info

Publication number
JPH0820212B2
JPH0820212B2 JP61218351A JP21835186A JPH0820212B2 JP H0820212 B2 JPH0820212 B2 JP H0820212B2 JP 61218351 A JP61218351 A JP 61218351A JP 21835186 A JP21835186 A JP 21835186A JP H0820212 B2 JPH0820212 B2 JP H0820212B2
Authority
JP
Japan
Prior art keywords
light
substrate
mask
processed
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61218351A
Other languages
Japanese (ja)
Other versions
JPS6373102A (en
Inventor
正樹 山部
芳隆 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61218351A priority Critical patent/JPH0820212B2/en
Publication of JPS6373102A publication Critical patent/JPS6373102A/en
Publication of JPH0820212B2 publication Critical patent/JPH0820212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔概要〕 被処理基板とのマスク合わせに際して、位置合わせに
使用する回折光の測定精度を向上する方法として、フレ
ネルゾーンプレートにより集光して被処理基板に照射す
るレーザ光の波長をそれぞれ変え、対応する波長の光の
みを検出する方法。
DETAILED DESCRIPTION OF THE INVENTION [Outline] When aligning a mask with a substrate to be processed, a laser for converging a Fresnel zone plate to irradiate the substrate to be processed is used as a method of improving measurement accuracy of diffracted light used for alignment. A method in which the wavelength of light is changed and only light of the corresponding wavelength is detected.

〔産業上の利用分野〕[Industrial applications]

本発明は測定精度を向上した微細パターンの位置合わ
せ方法に関する。
The present invention relates to a fine pattern alignment method with improved measurement accuracy.

大量の情報を高速に処理する情報処理技術の要望を満
たすために情報処理装置の主構成体である半導体装置は
集積化が進んでいる。
In order to meet the demand for information processing technology that processes a large amount of information at high speed, semiconductor devices, which are the main components of information processing devices, are being integrated.

すなわち半導体チップの最大面積は殆ど変わらないに
も拘らず、構成する素子数は増加しており、ICよりLSI
へ、またLSIよりVLSIへと高集積化が進んでいる。
In other words, although the maximum area of the semiconductor chip remains almost unchanged, the number of elements that make up it is increasing.
In addition, high integration is progressing from LSI to VLSI.

ここで、集積化は単位素子の小形化により行われてい
るが、この小形化は半導体層形成技術,薄膜形成技術な
どと共に写真蝕刻技術(ホトリソグラフィ或いは電子線
リソグラフィ)の進歩に負うところが大きい。
Here, the integration is performed by miniaturizing the unit element, but this miniaturization largely depends on the progress of the photolithography technology (photolithography or electron beam lithography) together with the semiconductor layer forming technology, the thin film forming technology and the like.

ここで、写真蝕刻技術は被処理基板の上に感光性レジ
ストを被覆し、これに光或いは電離放射線を照射して選
択的に露光せしめるもので、露光部と非露光部とが現像
液に対して溶解度に差を生じるのを利用してレジストパ
ターンが作られる。
Here, in the photo-etching technique, a substrate to be processed is coated with a photosensitive resist, which is irradiated with light or ionizing radiation to be selectively exposed. The exposed portion and the non-exposed portion are exposed to a developing solution. A resist pattern is formed by utilizing the difference in solubility.

そして、このレジストパターンをマスクとしてドライ
エッチング或いはウエットエッチングを行って被処理基
板を選択エッチングし、微細なパターンを形成するもの
である。
Then, by using this resist pattern as a mask, dry etching or wet etching is performed to selectively etch the substrate to be processed to form a fine pattern.

さて、半導体集積回路は高集積化と共にパターン幅が
1μm以下の所謂るサブミクロン(Sub-micron)パター
ンの形成が必要であるが、光源として紫外線を用いる従
来のパターン形成法では波長による制限から1μm以上
の線幅のものに限られており、これ以下の微細パターン
の形成は困難である。
Now, as semiconductor integrated circuits become highly integrated, it is necessary to form a so-called sub-micron pattern having a pattern width of 1 μm or less. However, in the conventional pattern formation method using ultraviolet rays as a light source, the wavelength is limited to 1 μm. It is limited to the above line width, and it is difficult to form a fine pattern below this.

一方、電子線の波長は加速電圧により異なるが0.1Å
程度であり、光の波長に較べて4桁以上も短いために大
きな解像力が期待でき、0.1μm幅のパターン形成も可
能となる。
On the other hand, the wavelength of the electron beam is 0.1 Å depending on the acceleration voltage.
Since it is about 4 digits or more shorter than the wavelength of light, a large resolving power can be expected, and a pattern with a width of 0.1 μm can be formed.

然し、この方法は電子線を順次に走査してパターンを
描画するために多大の時間を要することゝ電子は負の電
荷をもつためにレジストの表面に電荷の蓄積が起こり、
そのためにパターンの位置ずれが生ずると云う問題があ
る。
However, this method requires a large amount of time to draw a pattern by sequentially scanning an electron beam. "Since electrons have a negative charge, charge accumulation occurs on the resist surface,
Therefore, there is a problem that the position of the pattern is displaced.

また、X線を使用する写真蝕刻技術は波長が5〜15Å
のソフトX線を光の代わりに用い、マスクを通してレジ
ストを露光する方式であり、電子ビーム露光に較べて一
度に全面積の露光ができ、露光時間が短く、電子線のよ
うに電子の散乱がなく、切れのよい微細パターンを作る
ことができ、また特別な真空を用いなくともよいなど各
種の利点を有している。
In addition, the photo-etching technology that uses X-rays has a wavelength of 5 to 15Å
This is a method of exposing the resist through a mask by using soft X-rays instead of light, and it is possible to expose the entire area at once compared to electron beam exposure, the exposure time is short, and electron scattering like electron beams occurs. It has various advantages such that a fine pattern with good sharpness can be formed without using a special vacuum.

然し、この場合は紫外線露光の場合と同様にマスクが
必要で許容差がサブミクロン以下の高精度なマスク合わ
せを行う必要性がある。
However, in this case, a mask is required as in the case of ultraviolet exposure, and it is necessary to perform highly accurate mask alignment with a tolerance of submicron or less.

本発明はこのようなX線露光に限るわけではないが、
高精度を必要とする微細パターンの位置合わせ方法の改
良に関するものである。
The present invention is not limited to such X-ray exposure,
The present invention relates to an improvement in a fine pattern alignment method that requires high accuracy.

〔従来の技術〕[Conventional technology]

VLSIの製造プロセスに於けるように被処理基板上に複
数回の薄膜形成と写真蝕刻を繰り返して微細な立体回路
を形成する場合には、基板に対するマスク合わせを高精
度に行う必要がある。
In the case of forming a fine three-dimensional circuit by repeating thin film formation and photolithography a plurality of times on a substrate to be processed as in the VLSI manufacturing process, it is necessary to perform mask alignment with the substrate with high accuracy.

その方法としてマスク上に複数のリニアフレネルゾー
ンプレート(Linear-Fresnel-zone-plate 略してLFZ
P)を儲け、一方被処理基板上には回折格子をパターン
形成しておき、FLZPにレーザ光を照射し回折により集光
させて輝線を作り、この輝線を被処理基板の回折格子に
当てゝ回折せしめ、この回折光を検出して位置合わせす
る方法が知られている。
As a method, a plurality of Linear-Fresnel-zone-plates are abbreviated as LFZ on the mask.
P) on the other hand, while a diffraction grating is patterned on the substrate to be processed, the FLZP is irradiated with laser light and condensed by diffraction to form a bright line, and this bright line is applied to the diffraction grating on the substrate to be processed. A method of diffracting light, detecting the diffracted light, and aligning the position is known.

(X線リソグラフィ用の位置合わせ機構“Optical al
ignment system for submicron x-ray lithography"B.F
ay,J.Trotel,and A.Frichet J.Vac.Sci.Technol.16
(6),Nov/Dec.1979) 第1図は本発明を適用したマスク合わせ機構の斜視
図、また第2図はLFZPと回折格子との位置合わせ方法を
示す斜視図であるが、構造は従来法と同じなので、この
図面を用いて位置合わせ法を説明する。
(Alignment mechanism for X-ray lithography "Optical al
ignment system for submicron x-ray lithography "BF
ay, J.Trotel, and A.Frichet J.Vac.Sci.Technol.16
(6), Nov / Dec.1979) FIG. 1 is a perspective view of a mask alignment mechanism to which the present invention is applied, and FIG. 2 is a perspective view showing a method of aligning an LFZP and a diffraction grating. Since it is the same as the conventional method, the alignment method will be described with reference to this drawing.

第1図において、厚さが数μmの窒化硼素(BN)或い
はポリイミドの薄膜などX線を通す材料からなるマスク
1の上には電極や導体パターンなど転写すべき微細パタ
ーン2が形成されている隙間を利用して複数(この例の
場合は三個)のLFZP3が微細パターンと同様に金(Au)
などX線を吸収する金属薄膜を用い、真空蒸着法やスパ
ッタ法などによって作られている。
In FIG. 1, a fine pattern 2 to be transferred, such as an electrode or a conductor pattern, is formed on a mask 1 made of a material such as boron nitride (BN) or a polyimide thin film having a thickness of several μm that allows X-rays to pass therethrough. Multiple (three in this example) LFZP3 are made of gold (Au) as in the fine pattern using the gap.
It is made by a vacuum deposition method, a sputtering method, or the like using a metal thin film that absorbs X-rays.

また、被処理基板4の上には回折格子5が作られる
が、例えば被処理基板4がシリコン(Si)ウエハからな
る場合には回折格子はこの上に形成した二酸化シリコン
(SiO2)をエッチングして作られている。
A diffraction grating 5 is formed on the substrate 4 to be processed. For example, when the substrate 4 to be processed is made of a silicon (Si) wafer, the diffraction grating etches silicon dioxide (SiO 2 ) formed on the substrate. It is made by.

第2図は波長7800Åのレーザ光に対応するLFZP3と回
折格子5との拡大図であって、LFZP3はAu蒸着膜をエッ
チングして中央部6のパターン幅は約3μmと広く、外
側に向かうに従って幅が狭く、最外部7が約0.5μmと
狭く形成されており、一方長さは約150μmと長いフレ
ネル・ゾーンが形成されている。
FIG. 2 is an enlarged view of the LFZP3 corresponding to a laser beam having a wavelength of 7800Å and the diffraction grating 5. The LFZP3 is formed by etching the Au vapor-deposited film and the pattern width of the central portion 6 is as wide as about 3 μm. The width is narrow and the outermost part 7 is formed as narrow as about 0.5 μm, while the Fresnel zone having a long length of about 150 μm is formed.

これに投射された光は破線8に示すように回折して集
光し、細長い輝線を生ずる。
The light projected on this is diffracted and condensed as shown by a broken line 8 to form a long and narrow bright line.

一方、被処理基板4の上には、この例の場合、大きさ
が2μm角で約3μmの間隔で直線状に配列するスポッ
ト9からなる回折格子5が形成されている。
On the other hand, in this example, on the substrate 4 to be processed, a diffraction grating 5 is formed which is composed of spots 9 having a size of 2 μm square and linearly arranged at intervals of about 3 μm.

そして、第1図に示すようにレーザ光10はミラー11に
よりLFZP3に投射されるが、このレーザ光10は回折によ
り集光して輝線となるが、この輝線が被処理基板4の回
折格子5に投射されると回折を起こし、その反射光は再
びLFZP3を通り、ミラー12で反射して光検出器13により
検知されるよう構成されている。
Then, as shown in FIG. 1, the laser light 10 is projected on the LFZP 3 by the mirror 11, and the laser light 10 is condensed by diffraction to become a bright line. This bright line is the diffraction grating 5 of the substrate 4 to be processed. When the light is projected on, the light is diffracted, and the reflected light again passes through the LFZP3, is reflected by the mirror 12, and is detected by the photodetector 13.

そこで、マスクの位置合わせは被処理基板4を移動し
て複数個(この場合は三個)の光検出器13に回折格子5
での回折光が最大感度で検出できるようにすればよい。
Therefore, in order to align the mask, the substrate 4 to be processed is moved and a plurality of (three in this case) photodetectors 13 are attached to the diffraction grating 5.
It suffices that the diffracted light in 1 can be detected with the maximum sensitivity.

ここで、LFZP3と回折格子5との組み合わせを三個所
以上設ける理由はこれにより被処理基板4のマスク1と
の回転も補正できるからである。
Here, the reason for providing three or more combinations of the LFZP 3 and the diffraction grating 5 is that the rotation of the substrate 4 to be processed with respect to the mask 1 can be corrected by this.

然し、従来の位置合わせに使用するレーザ光10は総て
同一の光源から投射されているために波長は総て同一で
あり、そのためマスク1或いは被処理基板4からの散乱
光が対応する光検出器13以外の光検出器に入射し、信号
のS/Nを著しく低下させると云う問題があった。
However, since the laser light 10 used for the conventional alignment is projected from the same light source, the wavelengths thereof are all the same, so that the scattered light from the mask 1 or the substrate 4 to be processed corresponds to the light detection. There was a problem that the light was incident on the photodetectors other than the device 13 and the S / N of the signal was significantly lowered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上記したように被処理基板に対するマスクの位置合
わせを複数のLFZPと回折格子との組み合わせを用いて行
う場合に、従来はレーザ光の波長が同一なためにマスク
或いは被処理基板からの散乱光が対応する光検出器以外
の光検出器に入射し、信号のS/Nを著しく低下させてい
ることが問題である。
As described above, when alignment of the mask with respect to the substrate to be processed is performed by using a combination of a plurality of LFZPs and a diffraction grating, conventionally, since the wavelength of the laser light is the same, the scattered light from the mask or the substrate to be processed is Is incident on a photodetector other than the corresponding photodetector, and the S / N of the signal is significantly reduced, which is a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は複数のフレネルゾーンプレートを備えた
マスクにレーザ光を照射し、該プレートにより集光した
それぞれの輝線を被処理基板上に設けた対応する回折格
子に投射して回折せしめ、該回折光を検出して位置合わ
せを行うに当たり、前記の回折格子に投射する各レーザ
光として、それぞれ別個の波長の光を用いると共に、対
応する波長の回折光のみを検出する微細パターンの位置
合わせ方法により解決することができる。
The above problem is caused by irradiating a mask provided with a plurality of Fresnel zone plates with laser light, projecting each bright line condensed by the plates onto a corresponding diffraction grating provided on the substrate to be processed, and diffracting the diffraction lines. In detecting the light and performing the alignment, as the laser light projected on the diffraction grating, the light of the different wavelength is used, and the alignment method of the fine pattern detects only the diffracted light of the corresponding wavelength. Can be resolved.

〔作用〕[Action]

本発明は光検出器に入射する信号のS/Nを向上する方
法として、被処理基板4の上に形成されている複数の回
折格子5に投射するレーザ光10の波長をそれぞれ変えて
行うと共に、複数の回折格子5に対応するそれぞれの光
検出器13にもフィルタを設けることにより対応するレー
ザ光のみを検知することができ、これによりS/Nの向上
を実現するものである。
The present invention is a method for improving the S / N of the signal incident on the photodetector by changing the wavelengths of the laser light 10 projected on the plurality of diffraction gratings 5 formed on the substrate 4 to be processed. By providing a filter for each of the photodetectors 13 corresponding to the plurality of diffraction gratings 5, only the corresponding laser beam can be detected, thereby improving the S / N.

〔実施例〕〔Example〕

第1図は本発明を適用したマスク合わせ機構の斜視図
であるが、従来法と異なるところはレーザ光10の波長が
それぞれ異なることゝ、これに対応するLFZP3と回折格
子5をその波長に対応するピッチに形成することであ
る。
FIG. 1 is a perspective view of a mask aligning mechanism to which the present invention is applied. The difference from the conventional method is that the wavelength of the laser light 10 is different, and the corresponding LFZP3 and diffraction grating 5 correspond to the wavelength. The pitch is to be formed.

また、これに対応する光検出器13にもその波長の光の
みを選択的に通す干渉フィルタを備える必要がある。
Further, the photodetector 13 corresponding to this must also be provided with an interference filter that selectively passes only light of that wavelength.

本実施例の場合は三個の光源として中心波長が7800Å
と8300Åと13000Åのレーザダイオードを使用した。
In the case of this embodiment, the center wavelength is 7800Å as three light sources.
And used 8300Å and 13000Å laser diodes.

測定の結果として従来はS/Nが低いためにマスク1お
よび被処理基板4の上に微小な塵埃が存在すると、その
影響を大きく受け、三点同時の位置合わせが困難であ
り、またマスク1での余計な散乱を防ぐためにLFZP3に
投射するレーザ光10はフレネルゾーン内に入るよう絞る
必要があったが、本発明の実施により三点同時の位置合
わせが容易となり、またレーザ光の直径がフレネルゾー
ンを越えても差支えがなくなり、これにより作業能率が
大幅に向上した。
As a result of the measurement, since the S / N is low in the past, if minute dust is present on the mask 1 and the substrate 4 to be processed, it is greatly affected, and it is difficult to perform simultaneous alignment of three points. The laser light 10 projected onto the LFZP3 had to be narrowed so as to enter the Fresnel zone in order to prevent unnecessary scattering at, but the implementation of the present invention facilitates the simultaneous alignment of three points, and the diameter of the laser light is Even if it exceeds the Fresnel zone, there is no hindrance, which greatly improves work efficiency.

なお、レーザ光源としてそれぞれ別なものを使用する
ことは大変のように思われるが、中心波長が同一のレー
ザダイオードを用い、注入電流を変えて波長の異なるモ
ードで発振させても異なる波長の光を得ることができ
る。
Although it seems to be difficult to use different laser light sources, even if laser diodes with the same center wavelength are used and the injection current is changed to oscillate in different wavelength modes, light with different wavelengths will be emitted. Can be obtained.

〔発明の効果〕〔The invention's effect〕

以上記したように本発明の実施によりサブミクロン以
下の精度が必要なマスクの位置合わせが容易となり、こ
れにより作業能率の大幅な向上が可能となる。
As described above, the practice of the present invention facilitates the alignment of the mask, which requires accuracy of sub-micron or less, and thus can significantly improve the work efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用したマスク合わせ機構の斜視図、 第2図はマクス上のLFZPと被処理基板上の回折格子との
関係図、 である。 図において、 1はマスク、2は微細パターン、3はLFZP、4は被処理
基板、5は回折格子、10はレーザ光、11,12はミラー、1
3は光検出器、 である。
FIG. 1 is a perspective view of a mask alignment mechanism to which the present invention is applied, and FIG. 2 is a relational diagram between LFZP on a mask and a diffraction grating on a substrate to be processed. In the figure, 1 is a mask, 2 is a fine pattern, 3 is LFZP, 4 is a substrate to be processed, 5 is a diffraction grating, 10 is a laser beam, 11 and 12 are mirrors, 1
3 is a photodetector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のフレネルゾーンプレートを備えたマ
スクにレーザ光を照射し、該プレートにより集光したそ
れぞれの輝線を被処理基板上に設けた対応する回折格子
に投射して回折せしめ、該回折光を検出して位置合わせ
を行うに当たり、前記の回折格子に投射する各レーザ光
として、それぞれ別個の波長の光を用いると共に、対応
する波長の回折光のみを検出することを特徴とする微細
パターンの位置合わせ方法。
1. A laser beam is applied to a mask having a plurality of Fresnel zone plates, and the respective bright lines collected by the plates are projected onto a corresponding diffraction grating provided on a substrate to be processed to be diffracted. In detecting the diffracted light and performing alignment, light of different wavelengths is used as each laser light projected on the diffraction grating, and only the diffracted light of the corresponding wavelength is detected. Pattern alignment method.
JP61218351A 1986-09-17 1986-09-17 Positioning method for fine pattern Expired - Fee Related JPH0820212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218351A JPH0820212B2 (en) 1986-09-17 1986-09-17 Positioning method for fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218351A JPH0820212B2 (en) 1986-09-17 1986-09-17 Positioning method for fine pattern

Publications (2)

Publication Number Publication Date
JPS6373102A JPS6373102A (en) 1988-04-02
JPH0820212B2 true JPH0820212B2 (en) 1996-03-04

Family

ID=16718514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218351A Expired - Fee Related JPH0820212B2 (en) 1986-09-17 1986-09-17 Positioning method for fine pattern

Country Status (1)

Country Link
JP (1) JPH0820212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269604A (en) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd Aligning method
US7433018B2 (en) * 2005-12-27 2008-10-07 Asml Netherlands B.V. Pattern alignment method and lithographic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182104A (en) * 1981-04-30 1982-11-09 Nec Home Electronics Ltd Recognition of object
JPS58173734A (en) * 1982-04-06 1983-10-12 Fuji Xerox Co Ltd Detecting device of size of original in copying machine
JPS6098623A (en) * 1983-11-04 1985-06-01 Hitachi Ltd Method and apparatus for exposing semiconductor

Also Published As

Publication number Publication date
JPS6373102A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JP3167095B2 (en) Illumination apparatus, exposure apparatus and microscope apparatus having the same, and device production method
US5148037A (en) Position detecting method and apparatus
JP3513236B2 (en) X-ray mask structure, method for manufacturing X-ray mask structure, X-ray exposure apparatus and X-ray exposure method using the X-ray mask structure, and semiconductor device manufactured using the X-ray exposure method
JP3292022B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JPS6349894B2 (en)
JPH081890B2 (en) Exposure method for semiconductor device and dummy mask
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
US5334466A (en) X-ray mask and process comprising convex-concave alignment mark with alignment reflection film
US5495336A (en) Position detecting method for detecting a positional relationship between a first object and a second object
JPH0820212B2 (en) Positioning method for fine pattern
JP3368017B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
US7101645B1 (en) Reflective mask for short wavelength lithography
Silverman et al. Fabrication of fully scaled 0.5‐μm n‐type metal–oxide semiconductor test devices using synchrotron x‐ray lithography: Overlay, resist processes, and device fabrication
JPH0567049B2 (en)
US5227268A (en) X-ray mask and its fabricating method-comprising a first and second alignment pattern
US5969807A (en) Method for measuring lens imaging uniformity
JPS588129B2 (en) How to expose the radiation-sensitive layer to X-rays
JP2998673B2 (en) Wafer, method and apparatus for aligning the wafer
JP2775988B2 (en) Position detection device
JPH0269604A (en) Aligning method
JPH07130645A (en) Mask for x-ray exposure and x-ray aligner using same
JPH06105679B2 (en) Exposure equipment
JP3420401B2 (en) Position detecting apparatus and method, semiconductor exposure apparatus, and method of manufacturing semiconductor device
JP3004240B2 (en) Method of forming through hole and buried pattern, beam adjusting method, and charged beam exposure method
JP3513304B2 (en) Position shift detection method and semiconductor device manufacturing method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees