JPH08200976A - Evaporating tube - Google Patents

Evaporating tube

Info

Publication number
JPH08200976A
JPH08200976A JP7011994A JP1199495A JPH08200976A JP H08200976 A JPH08200976 A JP H08200976A JP 7011994 A JP7011994 A JP 7011994A JP 1199495 A JP1199495 A JP 1199495A JP H08200976 A JPH08200976 A JP H08200976A
Authority
JP
Japan
Prior art keywords
passage
liquid
material layer
vapor
capillary structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7011994A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Minoru Komori
實 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Space Development Agency of Japan
Original Assignee
Toshiba Corp
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, National Space Development Agency of Japan filed Critical Toshiba Corp
Priority to JP7011994A priority Critical patent/JPH08200976A/en
Publication of JPH08200976A publication Critical patent/JPH08200976A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Abstract

PURPOSE: To realize the operation control with high reliability by making a liquid film uniform. CONSTITUTION: A liquid passage 12 in which operating liquid is supplied is provided in parallel with a vapor passage 11 in which a capillary tube structure 13 is inserted in a tube axial direction, the passage 11 communicates with the passage 12 via a communicating groove 112. The structure 13 in which a hydrophilic material layer 131 and a hydrophobic material layer 13 are sequentially laminated from the wall surface side is inserted into the passage 11, the operating liquid supplied to the passage 12 by the capillarity of the structure 13 is spread to the wall of the passage 11 to always form a desired liquid film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星を含
む宇宙飛行体の排熱システムに好適する二相流体ループ
や、キャピラリポンプループや、大容量ヒートパイプ等
の蒸発部として用いられる蒸発管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-phase fluid loop suitable for an exhaust heat system of a spacecraft including artificial satellites, a capillary pump loop, and an evaporation pipe used as an evaporation unit for a large capacity heat pipe. Regarding

【0002】[0002]

【従来の技術】この種の蒸発管は、液路と蒸気路が並設
され、液路に供給される作動液を連通溝を介して蒸気路
に案内し、該蒸気路の壁面に液膜を形成することによ
り、該作動液が図示しない発熱体の熱量を奪って蒸発
し、この作動液蒸気が蒸気路を通って排熱される。この
蒸気路の壁面には、管軸方向に複数のグルーブと称する
溝に親水性材料を挿着した毛細管構造が設けられ、この
毛細管構造の毛細管力により液路から導かれた作動液が
壁面に行き渡らされて液膜を形成するように構成され
る。この際、蒸発路の壁面に案内される作動液は、毛細
管構造による毛細管力の作用により、その液面が凹形状
となり、液圧力が、その表面張力の分だけ蒸気圧より低
く設定される。
2. Description of the Related Art In this type of evaporation pipe, a liquid passage and a vapor passage are arranged in parallel, and the working liquid supplied to the liquid passage is guided to the vapor passage through a communication groove, and a liquid film is formed on the wall surface of the vapor passage. By forming the above, the working fluid deprives the heat quantity of the heating element (not shown) and evaporates, and the working fluid vapor is exhausted through the steam passage. The wall surface of this vapor path is provided with a capillary structure in which hydrophilic material is inserted in grooves called a plurality of grooves in the tube axis direction, and the working fluid introduced from the liquid path by the capillary force of this capillary structure is applied to the wall surface. It is configured to be distributed and form a liquid film. At this time, the working liquid guided to the wall surface of the evaporation path has a concave liquid surface due to the action of the capillary force of the capillary structure, and the liquid pressure is set lower than the vapor pressure by the surface tension.

【0003】ところで、このような蒸発管にあっては、
例えば二相流体ループ式排熱システムの蒸発部として用
いる場合、ループの圧損を補うために、移送ポンプを用
いて凝縮部からの作動液を強制的に液路に供給するよう
に構成される。
By the way, in such an evaporation tube,
When used as an evaporator of a two-phase fluid loop type exhaust heat system, for example, in order to compensate the pressure loss of the loop, a transfer pump is used to forcibly supply the working liquid from the condenser to the liquid passage.

【0004】しかしながら、上記蒸発管では、移送ポン
プて強制的に作動液を移送するように構成した場合、移
送ポンプのポンプヘッドの変動や、ポンプヘッドの制御
ミス等により、作動液の液圧が変動して蒸気圧より高く
なる虞を有する。これによると、蒸気路の壁面に形成さ
れる液膜が、成長し過ぎて厚くなり過ぎ、正常な蒸発が
出来なくなって、沸騰等の不安定現象が発生するという
問題を有する。係る問題は、特に、信頼性の高い動作制
御が要求される宇宙開発の分野においては、重大であ
る。
However, in the above-mentioned evaporation pipe, when the transfer pump is configured to forcibly transfer the working liquid, the hydraulic pressure of the working liquid is increased due to fluctuations in the pump head of the transfer pump, miscontrol of the pump head, and the like. It may fluctuate and become higher than the vapor pressure. According to this, there is a problem that the liquid film formed on the wall surface of the vapor path grows too thick and becomes too thick, normal evaporation cannot be performed, and an unstable phenomenon such as boiling occurs. Such a problem is particularly serious in the field of space development where highly reliable motion control is required.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の蒸発管では、作動液を強制的に移送するように構成
した場合、液圧力の変動を招いて、所望の液膜を得るこ
とができなくなり、作動液の沸騰等の不安定現象が発生
するという問題を有する。
As described above, in the conventional evaporation pipe, when the working liquid is forcibly transferred, the liquid pressure is changed to obtain a desired liquid film. However, there is a problem that an unstable phenomenon such as boiling of the working fluid occurs.

【0006】この発明は上記の事情に鑑みてなされたも
ので、簡易な構成で、液膜の均一化を図り得るようにし
て、信頼性の高い動作制御を実現した蒸発管を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an evaporation tube which has a simple structure and is capable of uniformizing a liquid film, and which realizes highly reliable operation control. To aim.

【0007】[0007]

【課題を解決するための手段】この発明は、菅軸方向に
毛細管構造が挿着された蒸気路に対して作動液の供給さ
れる液路を並設し、前記液路に供給される作動液を連通
溝を通して前記蒸気路に導いて前記毛細管構造の毛細管
力により該蒸発路の壁面に液膜を形成してなる蒸発管に
おいて、前記毛細管構造を、前記蒸気路の壁面側より親
水性材料層及び疎水性材料層を順に設けて構成したもの
である。
According to the present invention, a liquid passage to which a working liquid is supplied is provided in parallel with a vapor passage having a capillary structure inserted in a pipe axial direction, and an operation to be supplied to the liquid passage is performed. In an evaporation tube formed by forming a liquid film on the wall surface of the evaporation path by guiding the liquid to the steam path through the communication groove and by the capillary force of the capillary structure, the capillary structure is provided with a hydrophilic material from the wall surface side of the steam path. A layer and a hydrophobic material layer are provided in this order.

【0008】[0008]

【作用】上記構成によれば、毛細管構造は、液路の液圧
が所定の状態で、親水性材料層が作動液を保持して、該
作動液と蒸気の界面を凹形状に形成し、液圧を蒸気圧よ
り低く設定する。そして、液路の作動液の液圧が上昇す
ると、作動液の液面が上昇して、疎水性材料層に達し、
その壁面との界面が凸形状に変化され、液圧に抗する圧
力が発生される。従って、液圧と無関係に常に一定の液
膜が確保され、信頼性の高い動作制御が可能となる。
According to the above structure, in the capillary structure, the hydrophilic material layer holds the working fluid in a predetermined liquid pressure of the liquid passage, and the interface between the working fluid and the vapor is formed into a concave shape, Set the liquid pressure lower than the vapor pressure. Then, when the hydraulic pressure of the hydraulic fluid in the liquid passage increases, the liquid level of the hydraulic fluid rises and reaches the hydrophobic material layer,
The interface with the wall surface is changed to a convex shape, and a pressure against the hydraulic pressure is generated. Therefore, a constant liquid film is always ensured regardless of the hydraulic pressure, and highly reliable operation control is possible.

【0009】[0009]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1はこの発明の一実施例に係
る蒸発管を示すもので、図中10は、管路本体で、菅軸
方向に蒸気路11と液路12が並設される。このうち蒸
気路11は、図示しない凝縮部に接続され、その内壁面
には、周方向に所定の間隔を有して複数のグルーブと称
する溝111が菅軸方向に形成される。そして、この溝
111を含む内部には、略中空状の毛細管構造13が挿
着される。この毛細管構造13は、図2に示すようにフ
ァイバ材等で形成される親水性材料層131が上記溝1
11を含む蒸気路11の内壁面に積重して設けられ、こ
の親水性材料層131上には、疎水性材料層132が設
けられる。この疎水性材料層132は、例えばメッシュ
材で形成される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an evaporation pipe according to an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a pipe line main body, in which a vapor line 11 and a liquid line 12 are arranged in parallel in the axial direction of the pipe. Of these, the steam passage 11 is connected to a condenser (not shown), and a plurality of grooves 111 called grooves are formed in the tube axial direction on the inner wall surface of the steam passage 11 at predetermined intervals in the circumferential direction. A substantially hollow capillary structure 13 is inserted inside the groove 111. In this capillary structure 13, as shown in FIG. 2, the hydrophilic material layer 131 formed of a fiber material or the like has the groove 1 described above.
The hydrophilic material layer 131 is stacked on the inner wall surface of the vapor passage 11 including the hydrophobic material layer 131, and the hydrophobic material layer 132 is provided on the hydrophilic material layer 131. The hydrophobic material layer 132 is formed of, for example, a mesh material.

【0010】また、蒸気路11の外壁面には、内壁の複
数の溝111に対して略直交する複数の連通溝112が
菅軸方向に所定の間隔を有して形成される。この複数の
連通溝112は、複数の溝111と液路12をそれぞれ
連通する。
A plurality of communication grooves 112, which are substantially orthogonal to the plurality of grooves 111 on the inner wall, are formed on the outer wall surface of the steam passage 11 at predetermined intervals in the tube axial direction. The plurality of communication grooves 112 communicate with the plurality of grooves 111 and the liquid passage 12, respectively.

【0011】他方、液路12は上記凝縮部(図示せず)
の作動液出口に接続され、蒸気凝縮部(図示せず)から
の作動液が図示しない移送ポンプを介して矢印方向に移
送される。
On the other hand, the liquid path 12 is the above-mentioned condensing part (not shown).
Connected to the working fluid outlet of the working fluid, the working fluid from the vapor condenser (not shown) is transferred in the direction of the arrow through a transfer pump (not shown).

【0012】上記構成において、上記凝縮部(図示せ
ず)からの作動液が上記移送ポンプ(図示せず)を介し
て液路12の一方端から供給されると、該作動液は、先
ず、連通溝112を通って蒸気路11の溝111に案内
される。すると、作動液は、毛細管構造13の毛細管力
により、蒸気路11の壁面に行き渡り、該壁面に液膜を
形成する。この際、作動液は、毛細管構造13の親水性
材料層131に保持され、壁面との界面が凹形状に設定
され、液圧が蒸気圧より低く設定される。ここで、液膜
は、管路本体10に設置される図示しない発熱体の熱量
を奪って蒸発し、蒸発した作動液蒸気が蒸気路11を通
って上記凝縮部(図示せず)に導かれて凝縮され、再
び、該凝縮部(図示せず)の作動液出口が移送ポンプ
(図示せず)により液路に導かれる。
In the above structure, when the working fluid from the condensing section (not shown) is supplied from one end of the liquid passage 12 via the transfer pump (not shown), the working fluid is first fed. It is guided to the groove 111 of the steam path 11 through the communication groove 112. Then, the hydraulic fluid spreads to the wall surface of the vapor passage 11 by the capillary force of the capillary structure 13, and forms a liquid film on the wall surface. At this time, the hydraulic fluid is held by the hydrophilic material layer 131 of the capillary structure 13, the interface with the wall surface is set to a concave shape, and the hydraulic pressure is set to be lower than the vapor pressure. Here, the liquid film takes away the amount of heat of a heating element (not shown) installed in the conduit main body 10 and evaporates, and the evaporated working liquid vapor is guided to the condensing section (not shown) through the vapor passage 11. And condensed, and the working fluid outlet of the condensing part (not shown) is again guided to the liquid path by the transfer pump (not shown).

【0013】そして、上記の蒸発動作状態において、例
えば移送ポンプ(図示せず)のポンプヘッドが変化して
液圧が高くなると、作動液は、毛細管構造13の親水性
材料層131より液面が上昇して、疎水性材料層132
に到達され、その液面が、疎水性材料層132の作用に
より、蒸発路11との界面が凸形状に変化される。この
結果、作動液は、移送ポンプ(図示せず)のポンプヘッ
ドに抗する圧力を発生して、蒸気路11の壁面に形成す
る液膜が初期の状態に保たれる。
When the pump head of a transfer pump (not shown) changes and the hydraulic pressure increases in the above evaporation operation state, the hydraulic fluid has a liquid level higher than that of the hydrophilic material layer 131 of the capillary structure 13. Ascending, hydrophobic material layer 132
And the interface with the evaporation passage 11 is changed into a convex shape by the action of the hydrophobic material layer 132. As a result, the hydraulic fluid generates a pressure against the pump head of the transfer pump (not shown), and the liquid film formed on the wall surface of the vapor passage 11 is maintained in the initial state.

【0014】このように、上記蒸発管は、菅軸方向に毛
細管構造13が挿着された蒸気路11に対して作動液の
供給される液路12を並設して、これら蒸気路11と液
路12相互間を連通溝112を介して連通すると共に、
蒸気路11内に壁面側より親水性材料層131及び疎水
性材料層132を順に積重した毛細管構造13を挿着
し、この毛細管構造13の毛細管力により液路12に供
給される作動液を蒸発路11の壁面に行き渡らせて、所
望の液膜を形成するように構成した。これによれば、液
路12の液圧が所定の状態で、毛細管構造13の親水性
材料層131が作動液を保持して、該作動液の界面を凹
形状に設定し、液路の液圧が上昇すると、作動液の液面
が上昇して、毛細管構造13の疎水性材料層132に達
し、その界面が凸形状に変化することにより、液圧に抗
する圧力を発生し、初期の液膜に保つように動作され
る。したがって、液路12に作動液を供給するのに移送
ポンプ(図示せず)等を用いて強制的に移送するような
排熱システムに適用した場合においても、液圧の変化に
影響されることなく、蒸発路11の壁面に形成する液膜
の均一化が図れることにより、確実に高効率な吸熱特性
が実現される信頼性の高い動作制御が可能となる。
As described above, in the evaporation pipe, the liquid passage 12 to which the working liquid is supplied is juxtaposed to the vapor passage 11 in which the capillary structure 13 is inserted in the pipe axial direction, and these vapor passages 11 and While communicating between the liquid passages 12 through the communication groove 112,
A capillary structure 13 in which a hydrophilic material layer 131 and a hydrophobic material layer 132 are stacked in order from the wall surface side is inserted into the vapor passage 11 and the hydraulic fluid supplied to the liquid passage 12 by the capillary force of the capillary structure 13 is inserted. It was constructed so as to spread over the wall surface of the evaporation passage 11 to form a desired liquid film. According to this, the hydrophilic material layer 131 of the capillary structure 13 holds the hydraulic fluid in a predetermined state of the hydraulic pressure of the hydraulic passage 12, and the interface of the hydraulic fluid is set to a concave shape, thereby When the pressure rises, the liquid level of the hydraulic fluid rises to reach the hydrophobic material layer 132 of the capillary structure 13, and its interface changes into a convex shape, thereby generating a pressure against the fluid pressure, and It is operated to keep a liquid film. Therefore, even when it is applied to an exhaust heat system in which a transfer pump (not shown) or the like is used to forcibly transfer the hydraulic fluid to the liquid passage 12, it is affected by changes in the hydraulic pressure. In addition, since the liquid film formed on the wall surface of the evaporation passage 11 can be made uniform, highly reliable operation control that surely realizes highly efficient heat absorption characteristics becomes possible.

【0015】なお、上記実施例では、毛細管構造13の
親水性材料層131をファイバ材で形成し、疎水性材料
層132をメッシュ材で形成するように構成したが、こ
れに限ることなく、焼結金属等を用いて構成することも
可能である。よって、この発明は上記実施例に限ること
なく、その他、この発明の要旨を逸脱しない範囲で種々
の変形を実施し得ることは勿論のことである。
In the above embodiment, the hydrophilic material layer 131 of the capillary structure 13 is made of a fiber material and the hydrophobic material layer 132 is made of a mesh material. However, the invention is not limited to this. It is also possible to use a binding metal or the like. Therefore, it goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

【0016】[0016]

【発明の効果】以上詳述したように、この発明によれ
ば、簡易な構成で、液膜の均一化を図り得るようにし
て、信頼性の高い動作制御を実現した蒸発管を提供する
ことができる。
As described in detail above, according to the present invention, it is possible to provide an evaporation tube which has a simple structure and is capable of uniformizing a liquid film, and which realizes highly reliable operation control. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る蒸発管を示した図。FIG. 1 is a diagram showing an evaporation pipe according to an embodiment of the present invention.

【図2】図1の一部詳細を示した図。FIG. 2 is a diagram showing a part of FIG. 1 in detail.

【符号の説明】[Explanation of symbols]

10…管路本体、11…蒸気路、12…液路、111…
溝、112…連通溝、13…毛細管構造、131…親水
性材料層、132…疎水性材料層。
10 ... Pipe line main body, 11 ... Steam path, 12 ... Liquid path, 111 ...
Groove, 112 ... Communication groove, 13 ... Capillary structure, 131 ... Hydrophilic material layer, 132 ... Hydrophobic material layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 菅軸方向に毛細管構造が挿着された蒸気
路に対して作動液の供給される液路を並設し、前記液路
に供給される作動液を連通溝を通して前記蒸気路に導い
て前記毛細管構造の毛細管力により該蒸発路の壁面に液
膜を形成してなる蒸発管において、 前記毛細管構造は、前記蒸気路の壁面側より親水性材料
層及び疎水性材料層が順に設けられてなることを特徴と
する蒸発管。
1. A liquid passage to which a working liquid is supplied is arranged in parallel with a vapor passage having a capillary structure inserted in a pipe axial direction, and the working liquid supplied to the liquid passage is passed through a communication groove to form the vapor passage. In the evaporation tube formed by forming a liquid film on the wall surface of the evaporation path by the capillary force of the capillary structure, the capillary structure has a hydrophilic material layer and a hydrophobic material layer in order from the wall surface side of the vapor path. An evaporation tube characterized by being provided.
【請求項2】 前記毛細管構造は、前記親水性材料層が
ファイバ材で形成され、前記疎水性材料層がメッシュ材
で形成されてなることを特徴とする請求項1記載の蒸発
管。
2. The evaporation tube according to claim 1, wherein in the capillary structure, the hydrophilic material layer is formed of a fiber material and the hydrophobic material layer is formed of a mesh material.
JP7011994A 1995-01-27 1995-01-27 Evaporating tube Pending JPH08200976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7011994A JPH08200976A (en) 1995-01-27 1995-01-27 Evaporating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7011994A JPH08200976A (en) 1995-01-27 1995-01-27 Evaporating tube

Publications (1)

Publication Number Publication Date
JPH08200976A true JPH08200976A (en) 1996-08-09

Family

ID=11793144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7011994A Pending JPH08200976A (en) 1995-01-27 1995-01-27 Evaporating tube

Country Status (1)

Country Link
JP (1) JPH08200976A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011145B2 (en) * 2004-07-12 2006-03-14 Industrial Technology Research Institute Method for enhancing mobility of working fluid in liquid/gas phase heat dissipating device
CN100344931C (en) * 2003-12-05 2007-10-24 鸿富锦精密工业(深圳)有限公司 Heat pipe
JP2015183888A (en) * 2014-03-20 2015-10-22 株式会社豊田中央研究所 evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344931C (en) * 2003-12-05 2007-10-24 鸿富锦精密工业(深圳)有限公司 Heat pipe
US7011145B2 (en) * 2004-07-12 2006-03-14 Industrial Technology Research Institute Method for enhancing mobility of working fluid in liquid/gas phase heat dissipating device
JP2015183888A (en) * 2014-03-20 2015-10-22 株式会社豊田中央研究所 evaporator

Similar Documents

Publication Publication Date Title
US6450132B1 (en) Loop type heat pipe
US4785875A (en) Heat pipe working liquid distribution system
US4108239A (en) Heat pipe
US4220195A (en) Ion drag pumped heat pipe
JPH03170795A (en) Heat pipe
JPH08200976A (en) Evaporating tube
US4703796A (en) Corrosion resistant heat pipe
JP2009041825A (en) Evaporator of loop heat pipe
US4520865A (en) Gas-tolerant arterial heat pipe
JP2008215702A (en) Loop-type heat pipe
JP2904199B2 (en) Evaporator for capillary pump loop and heat exchange method thereof
CN115493314A (en) Generator and method of generating a signal
JP2001336890A (en) Heat transfer device
JP3162092B2 (en) Absorption cycle heat machine
JP2002181470A (en) Evaporator
JP2707070B2 (en) High temperature heat pipe
JP3036811B2 (en) Evaporator for capillary pump loop
JPH08166195A (en) Evaporator
JP2004132601A (en) Capillary force driven two-phase fluid loop and its heat transport method
US1003792A (en) Regulation of the temperature of superheated steam.
RU2170401C2 (en) Evaporative chamber of copntour heat pipe
JP2003279277A (en) Capillary force-driven two-phase fluid loop, evaporator and heat transfer method
JP2732755B2 (en) Double pipe heat pipe
SU946834A1 (en) Apparatus for soldering
JP2008190785A (en) Steam generating device