JP2004132601A - Capillary force driven two-phase fluid loop and its heat transport method - Google Patents

Capillary force driven two-phase fluid loop and its heat transport method Download PDF

Info

Publication number
JP2004132601A
JP2004132601A JP2002296922A JP2002296922A JP2004132601A JP 2004132601 A JP2004132601 A JP 2004132601A JP 2002296922 A JP2002296922 A JP 2002296922A JP 2002296922 A JP2002296922 A JP 2002296922A JP 2004132601 A JP2004132601 A JP 2004132601A
Authority
JP
Japan
Prior art keywords
evaporator
working fluid
vapor
wick
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296922A
Other languages
Japanese (ja)
Inventor
Hiromitsu Masumoto
増本 博光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002296922A priority Critical patent/JP2004132601A/en
Publication of JP2004132601A publication Critical patent/JP2004132601A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the supply of a working fluid solution from an evaporator core to a wick. <P>SOLUTION: As the end plate of the wick 2, a wick end plate 14A protruded to the reverse side of the evaporator core 8 is used. When a working fluid vapor 9b flows from a condenser 5 to an evaporator 11A by the temporary rise of temperature of a heating source 12 or endothermic source 13, or the working fluid vapor 9b flows from a reservoir 10 to the evaporator 11A by a temporarily applied acceleration, the working fluid vapor 9b can be collected in the projection part, compared with a conventional evaporator 11 using a wick end plate having no projection. Therefore, the working fluid solution 9a can be stably supplied from the evaporator core 8 over the whole length of the wick 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、その毛細管力により作動流体液を吸引するウィックを蒸発器容器内部に収納した構造を有する蒸発器を用いた二相流体ループである毛細管力駆動型二相流体ループ、並びにこの毛細管力駆動型二相流体ループにおける蒸発器から凝縮器への熱輸送方法に関する。
【0002】
【従来の技術】
二相流体ループは、加熱源により加熱された作動流体を液相から蒸気相に相変化させる蒸発器と、吸熱源により吸熱され作動流体を蒸気相から液相に相変化させる凝縮器とを、管路によりループ状に接続したものである。毛細管力駆動型二相流体ループは、毛細管力を利用した仕組みによる蒸発器を使用する二相流体ループである。蒸発器内に組み込まれ毛細管力を発生させる多孔質の部材はウィックと呼ばれる。
【0003】
図5に、従来における毛細管力駆動型二相流体ループの一例構成を示す(例えば、特許文献1参照。)。図中、蒸発器11と凝縮器5との間の管路は、液相の作動流体即ち作動流体液9aを送給するための液管6と、蒸気相の作動流体即ち作動流体蒸気9bを送給するための蒸気管4とにより、ループ状に構成されている。蒸発器11は、加熱源12からの熱を受け、液管6から流入する作動流体液9aを作動流体蒸気9bに相変化させて蒸気管4に送出する。凝縮器5は、吸熱源13に潜熱を吸わせることにより、蒸気管4から流入する作動流体蒸気9bを作動流体液9aに相変化させて液管6に送出する。作動流体液9aは液管6を通じて蒸発器11に還流する。二相流体ループでは、このように二相間の相変化を伴いつつ作動流体が循環することにより、熱輸送が行われる。リザーバ10は、凝縮器5内の作動流体液9aと作動流体蒸気9bの割合を調整し、蒸発器11の温度制御をするために作動流体を溜める。
【0004】
また、図5に示した二相流体ループは毛細管力駆動型、即ち蒸発器11で毛細管力を利用するタイプである。蒸発器11は、中空有底筒状かつ多孔質構造を有するウィック2を蒸発器容器1内に収納した構造を有している。液管6は蒸発器容器1ならびにウィック端板14を貫通しウィック2内部の蒸発器コア8に連通しており、液管6からの作動流体液9aは蒸発器コア8に流入する。蒸発器コア8に流入した作動流体液9aはウィック2の毛細管力によりウィック2に吸い込まれる。他方、加熱源12からの熱は蒸発器容器1を介してウィック2に伝わる。そのため、伝わった熱によりウィック2内の作動流体液9aが蒸発する。それによって発生した作動流体蒸気9bは、ウィック2と蒸発器容器1の内壁面との間隙である蒸気通路3を通り、蒸発器容器1に接合している蒸気管4に送出される。
【0005】
このように、毛細管力駆動型二相流体ループでは、従来形のヒートパイプがウィックの面内方向に作動流体液が流れるのに比べ、ウィックの面外方向に作動流体が流れるため圧力損失が小さく、従ってより大量の熱を輸送することができる。
【0006】
【特許文献1】
特開平10−246583号公報(第3頁、第14図)
【0007】
【発明が解決しようとする課題】
ここで、ウィック2の厚み方向に作動流体液9aを流すためには、蒸発器コア8内の作動流体液9aはウィック2内面と全面接触している必要がある。そのため毛細管力駆動型二相流体ループでは凝縮器5と液管6の接合部が常に作動流体液9aで満たされるように作動流体充填量とリザーバ10容積が決められる。しかし、図6に示すように、一時的に加熱源12からの熱負荷が増加したり、吸熱源13温度が高くなると、凝縮器5内の作動流体蒸気9bの締める割合が増加し、作動流体蒸気9bが液管6を通って凝縮器5から蒸発器11に流れる。液管6から蒸発器11に至った作動流体蒸気9bは、蒸発器コア8内に溜まり、作動流体蒸気9bと接する部分のウィック2には蒸発器コア8内の作動流体液9aを供給することができず、ウィック2内で毛細管力を発生できなくなる。この状態では作動流体を循環させるための圧力の高い蒸気通路3と圧力の低い蒸発器コア8間の圧力差を、ウィック2の毛細管力で保持できなくなり、作動流体の循環が円滑になされなくなる。また図7に示すように、リザーバ10にかかる一時的な加速度の方向によってもリザーバ10内の作動流体蒸気9bが液管6を通って蒸発器コア8内に流れ、作動流体蒸気9bと接する部分のウィック2に蒸発器コア8内の作動流体液9aを供給することができなくなる。このように作動流体蒸気9bが蒸発器コア8に流入する場合、従来における毛細管力駆動型二相流体ループは、蒸発器11の温度が変動したり充分な熱輸送性能を発揮できず、さらには動作が停止するという問題があった。
【0008】
この発明は、かかる問題点を解決するためになされたものであり、作動流体液9aのウィック2への供給を確実にすること、ひいては毛細管力駆動型二相流体ループにおける動作を安定化させることを、その目的としている。
【0009】
【課題を解決するための手段】
かかる目的を達成するため、この発明に係わる毛細管力駆動型二相流体ループにおいては、加熱源により加熱され作動流体液を作動流体蒸気へと相変化させる蒸発器と、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器と、蒸発器から凝縮器へと作動流体蒸気を送給する蒸気管と、凝縮器から蒸発器へと作動流体液を送給する液管と、作動流体を溜めるリザーバとを備え、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、液管が蒸発器容器を貫通してウィックに接合され、蒸気管が蒸気通路に連通する蒸発器であり、蒸発器内に流入した作動流体蒸気を溜める副リザーバを蒸発器コア内に設けることとしている。
【0010】
この発明に係わる毛細管力駆動型二相流体ループにおいては、より好ましくは、加熱源により加熱され作動流体液を作動流体蒸気へと相変化させる蒸発器と、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器と、蒸発器から凝縮器へと作動流体蒸気を送給する蒸気管と、凝縮器から蒸発器へと作動流体液を送給する液管と、作動流体を溜めるリザーバとを備え、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、液管が蒸発器容器を貫通してウィック内部のベイオネット管に接合され、蒸気管が蒸気通路に連通する蒸発器であり、蒸発器内に流入した作動流体蒸気を溜める副リザーバを蒸発器コアの液管側に設けることとしている。
【0011】
そして、この発明に係わる熱輸送方法においては、加熱源により加熱された作動流体液を作動流体蒸気へと相変化させる蒸発器から、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器へと、蒸気管を介した作動流体蒸気の送給により熱を輸送する熱輸送方法であって、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、この蒸発器容器を貫通してウィックに接合された液管から蒸発器コアに供給され毛細管力によりウィックに吸引させた作動流体液を、加熱源から蒸発器容器を介してウィックに加わった熱により作動流体蒸気へと相変化させ蒸気通路を介して蒸気管に送出する熱輸送方法において、蒸発器内に流入した作動流体蒸気を蒸発器コア内に設けた副リザーバに溜めることにより熱輸送を安定化する。
【0012】
【発明の実施の形態】
以下、この発明の好適な実施の形態に関し図面に基づき説明する。なお、図5、図6及び図7に示した従来技術と同様の又は対応する構成には同一の符号を付し、重複する説明を省略する。
【0013】
実施の形態1.
図1はこの発明の実施の形態1にかかわる毛細管力駆動型二相流体ループを示す図である。1〜13は蒸発器11Aを除いて上記従来の毛細管力駆動型二相流体ループと同一である。この実施の形態1に係わる毛細管力駆動型二相流体ループの蒸発器11Aは、ウィック2の端板のうち液管6と接合されない端板として、蒸発器コア8の逆側に突出したウィック端板14Aを備えるものである。
【0014】
上記のように構成された実施の形態1の毛細管力駆動型二相流体ループの動作原理について説明する。蒸発器11Aは、加熱源12からの熱を受け、液管6から流入する作動流体液9aを作動流体蒸気9bに相変化させて、蒸気管4に送出する。凝縮器5は、吸熱源13に潜熱を吸わせることにより、蒸気管4から流入する作動流体蒸気9bを作動流体液9aに相変化させて、液管6に送出する。作動流体液9aは液管6を通じて蒸発器11Aに還流する。上記のサイクルを繰り返すことにより熱を蒸発器11Aから凝縮器5に輸送するのは従来例と同様である。
【0015】
液管6は蒸発器容器1を貫通しウィック2内部の蒸発器コア8に連通しており、液管6からの作動流体液9aは蒸発器コア8に流入する。蒸発器コア8に流入した作動流体液9aはウィック2の毛細管力によりウィック2に吸い込まれる。加熱源12から蒸発器容器1を介してウィック2に伝わった熱により発生した作動流体蒸気9bは、ウィック2と蒸発器容器1の内壁面との間隙である蒸気通路3を通り、蒸発器容器1に接合している蒸気管4に送出される。
【0016】
一時的に加熱源12からの熱負荷が増加したり、吸熱源13温度が高くなると、凝縮器5内の作動流体蒸気9bの締める割合が増加し、作動流体蒸気9bが液管6を通って凝縮器5から蒸発器11Aに流れる。液管6から蒸発器11Aに至った作動流体蒸気9bは、蒸発器コア8内に溜まる。またリザーバ10にかかる一時的な加速度の方向によってもリザーバ10内の作動流体蒸気9bが液管6を通って蒸発器コア8内に流れる。
【0017】
本実施例においては従来例と異なって、液管6から蒸発器11Aに至った作動流体蒸気9bは圧力の低いウィック端板14Aの突出部に溜る。したがってウィック2の内面が蒸発器コア8内の作動流体液9aと全面接触するため、ウィック2全長にわたって作動流体液9aを供給することができる。その結果、蒸発器11Aから凝縮器5への熱輸送を安定して行うことができる。
【0018】
実施の形態2.
図2はこの発明の実施の形態2にかかわる毛細管力駆動型二相流体ループを示す図である。1〜13はベイオネット管7と蒸発器11Bを除いて上記従来の毛細管力駆動型二相流体ループと同一である。この実施の形態2に係わる毛細管力駆動型二相流体ループの蒸発器11Bは、ウィック2の端板のうち液管6と接合される端板として、液管6との接合部近傍が蒸発器コア8の逆側に突出したウィック端板14Bを備えるものである。
【0019】
上記のように構成された実施の形態2の毛細管力駆動型二相流体ループの動作原理について説明する。蒸発器11Bは、加熱源12からの熱を受け、液管6から流入する作動流体液9aを作動流体蒸気9bに相変化させて、蒸気管4に送出する。凝縮器5は、吸熱源13に潜熱を吸わせることにより、蒸気管4から流入する作動流体蒸気9bを作動流体液9aに相変化させて、液管6に送出する。作動流体液9aは液管6を通じて蒸発器11Bに還流する。上記のサイクルを繰り返すことにより熱を蒸発器11Bから凝縮器5に輸送するのは従来例と同様である。
【0020】
液管6は蒸発器容器1ならびにウィック端板14Bを貫通しウィック2内部のベイオネット管7に連通しており、液管6からの作動流体液9aはベイオネット管7を介してウィック2の内部空間である蒸発器コア8に流入する。蒸発器コア8に流入した作動流体液9aはウィック2の毛細管力によりウィック2に吸い込まれる。加熱源12から蒸発器容器1を介してウィック2に伝わった熱により発生した作動流体蒸気9bは、ウィック2と蒸発器容器1の内壁面との間隙である蒸気通路3を通り、蒸発器容器1に接合している蒸気管4に送出される。
【0021】
図3に示すように、一時的に加熱源12からの熱負荷が増加したり、吸熱源13温度が高くなると、凝縮器5内の作動流体蒸気9bの締める割合が増加し、作動流体蒸気9bが液管6を通って凝縮器5から蒸発器11Bに流れる。液管6から蒸発器11Bに至った作動流体蒸気9bは、蒸発器コア8内に溜まる。また図4に示すように、リザーバ10にかかる一時的な加速度の方向によってもリザーバ10内の作動流体蒸気9bが液管6を通って蒸発器コア8内に流れる。
【0022】
本実施例においては従来例と異なって、液管6から蒸発器11Bに至った作動流体蒸気9bは圧力の低いウィック端板14Bの突出部に溜り、かつ温度の低いベイオネット管7外表面で凝縮するため、ウィック端板14Bの突出部に溜まる作動流体蒸気9bの体積を小さく維持することができる。したがってウィック2の内面が蒸発器コア8内の作動流体液9aと全面接触するため、ウィック2全長にわたって作動流体液9aを供給することができる。その結果、蒸発器11Bから凝縮器5への熱輸送を安定して行うことができる。
【0023】
【発明の効果】
このように、この発明に係わる毛細管力駆動型二相流体ループによれば、蒸発器コア内の副リザーバに、蒸発器コア内に流入した作動流体蒸気を溜めるようにしたため、ウィック全長にわたって作動流体液を供給することができる。
【0024】
また、上記副リザーバをウィック端板の形状を蒸発器コアと反対側に突出させることで実現することにより、従来から使用されていた部材の変形のみで上記効果を得ることができる。
【0025】
そして、本発明に係わる熱輸送方法によれば、蒸発器に流入した作動流体蒸気を蒸発器コア内の副リザーバに溜めるようにしたため、熱輸送性能の安定化という効果を比較的簡便な手段により得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における毛細管力駆動型二相流体ループの一例構成を示す図であり、(a)は蒸発器の縦断面及び管路配置を示す図、(b)は蒸発器の横断面を示す図である。
【図2】この発明の実施の形態2における毛細管力駆動型二相流体ループの一例構成を示す図であり、(a)は蒸発器の縦断面及び管路配置を示す図、(b)は蒸発器の横断面を示す図である。
【図3】この発明の実施の形態2における毛細管力駆動型二相流体ループの熱輸送方法を示す図であり、一時的に加熱源や吸熱源の温度が高くなった場合を示す図である。
【図4】この発明の実施の形態2における毛細管力駆動型二相流体ループの熱輸送方法を示す図であり、一時的にリザーバに加速度がかかった場合を示す図である。
【図5】従来における毛細管力駆動型二相流体ループの一例構成を示す図であり、(a)は蒸発器の縦断面及び管路配置を示す図、(b)は蒸発器の横断面を示す図である。
【図6】従来技術の毛細管力駆動型二相流体ループの問題点を示す図であり、一時的に加熱源や吸熱源の温度が高くなった場合を示す図である。
【図7】従来技術の毛細管力駆動型二相流体ループの問題点を示す図であり、一時的にリザーバに加速度がかかった場合を示す図である。
【符号の説明】
1  蒸発器容器、2  ウィック、3  蒸気通路、4  蒸気管、5  凝縮器、6液管、7  ベイオネット管、8  蒸発器コア、9a  作動流体液、9b  作動流体蒸気、10  リザーバ、11、11A 、11B 蒸発器、12  加熱源、13  吸熱源、14、14A、14B ウィック端板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-phase fluid loop using an evaporator having a structure in which a wick for sucking a working fluid liquid by the capillary force is housed in an evaporator container, and a capillary force driven type two-phase fluid loop. The present invention relates to a method of transporting heat from an evaporator to a condenser in a driven two-phase fluid loop.
[0002]
[Prior art]
The two-phase fluid loop includes an evaporator that changes the phase of the working fluid heated by the heating source from the liquid phase to a vapor phase, and a condenser that absorbs heat from the heat absorbing source and changes the phase of the working fluid from the vapor phase to the liquid phase. They are connected in a loop by a pipe. The capillary force driven two-phase fluid loop is a two-phase fluid loop using an evaporator based on a mechanism utilizing capillary force. A porous member that is incorporated in the evaporator and generates a capillary force is called a wick.
[0003]
FIG. 5 shows an example of a conventional capillary force driven two-phase fluid loop (for example, see Patent Document 1). In the figure, a pipeline between the evaporator 11 and the condenser 5 is connected to a liquid pipe 6 for supplying a liquid-phase working fluid, that is, a working fluid liquid 9a, and a vapor-phase working fluid, that is, a working fluid vapor 9b. A loop is formed by the steam pipe 4 for feeding. The evaporator 11 receives heat from the heating source 12, changes the phase of the working fluid liquid 9 a flowing from the liquid pipe 6 into a working fluid vapor 9 b, and sends out the same to the steam pipe 4. The condenser 5 causes the heat absorbing source 13 to absorb latent heat, thereby changing the phase of the working fluid vapor 9 b flowing from the steam pipe 4 into a working fluid liquid 9 a and sending the same to the liquid pipe 6. The working fluid 9a returns to the evaporator 11 through the liquid pipe 6. In the two-phase fluid loop, heat transfer is performed by circulating the working fluid with the phase change between the two phases. The reservoir 10 adjusts the ratio of the working fluid liquid 9 a and the working fluid vapor 9 b in the condenser 5 and stores the working fluid for controlling the temperature of the evaporator 11.
[0004]
Further, the two-phase fluid loop shown in FIG. 5 is of a capillary force drive type, that is, a type in which the evaporator 11 utilizes the capillary force. The evaporator 11 has a structure in which a wick 2 having a hollow bottomed cylindrical shape and a porous structure is accommodated in the evaporator container 1. The liquid pipe 6 penetrates through the evaporator container 1 and the wick end plate 14 and communicates with the evaporator core 8 inside the wick 2, and the working fluid liquid 9 a from the liquid pipe 6 flows into the evaporator core 8. The working fluid 9a flowing into the evaporator core 8 is sucked into the wick 2 by the capillary force of the wick 2. On the other hand, heat from the heating source 12 is transmitted to the wick 2 via the evaporator container 1. Therefore, the working fluid liquid 9a in the wick 2 evaporates due to the transmitted heat. The working fluid vapor 9b generated thereby passes through the vapor passage 3, which is a gap between the wick 2 and the inner wall surface of the evaporator container 1, and is sent out to the steam pipe 4 joined to the evaporator container 1.
[0005]
As described above, in the two-phase fluid loop driven by the capillary force, the pressure loss is small because the working fluid flows in the out-of-plane direction of the wick, while the working fluid flows in the in-plane direction of the wick in the conventional heat pipe. Thus, a greater amount of heat can be transported.
[0006]
[Patent Document 1]
JP-A-10-246583 (page 3, FIG. 14)
[0007]
[Problems to be solved by the invention]
Here, in order to flow the working fluid 9a in the thickness direction of the wick 2, the working fluid 9a in the evaporator core 8 needs to be in full contact with the inner surface of the wick 2. Therefore, in the capillary force driven type two-phase fluid loop, the working fluid filling amount and the volume of the reservoir 10 are determined so that the joint between the condenser 5 and the liquid pipe 6 is always filled with the working fluid liquid 9a. However, as shown in FIG. 6, when the heat load from the heating source 12 temporarily increases or the temperature of the heat absorbing source 13 increases, the tightening rate of the working fluid vapor 9b in the condenser 5 increases, and the working fluid increases. The vapor 9 b flows from the condenser 5 to the evaporator 11 through the liquid pipe 6. The working fluid vapor 9b that has reached the evaporator 11 from the liquid pipe 6 accumulates in the evaporator core 8, and supplies the working fluid liquid 9a in the evaporator core 8 to the wick 2 in contact with the working fluid vapor 9b. And no capillary force can be generated in the wick 2. In this state, the pressure difference between the high pressure steam passage 3 for circulating the working fluid and the low pressure evaporator core 8 cannot be maintained by the capillary force of the wick 2, and the working fluid cannot be circulated smoothly. Further, as shown in FIG. 7, the working fluid vapor 9b in the reservoir 10 also flows through the liquid pipe 6 into the evaporator core 8 depending on the direction of the temporary acceleration applied to the reservoir 10, and is in contact with the working fluid vapor 9b. Cannot supply the working fluid liquid 9a in the evaporator core 8 to the wick 2 of FIG. When the working fluid vapor 9b flows into the evaporator core 8 as described above, the conventional capillary force driven two-phase fluid loop cannot fluctuate the temperature of the evaporator 11 or exhibit sufficient heat transport performance, and furthermore, There was a problem that operation stopped.
[0008]
The present invention has been made to solve such a problem, and it is necessary to ensure the supply of the working fluid 9a to the wick 2 and to stabilize the operation in the capillary force driven two-phase fluid loop. For that purpose.
[0009]
[Means for Solving the Problems]
In order to achieve this object, a capillary force driven two-phase fluid loop according to the present invention includes an evaporator that is heated by a heating source and changes a phase of a working fluid to a working fluid vapor, and a working fluid that is absorbed by a heat absorbing source and absorbed by a heat absorbing source. A condenser that changes the phase of the vapor into a working fluid, a steam pipe that supplies the working fluid vapor from the evaporator to the condenser, a liquid pipe that supplies the working fluid from the condenser to the evaporator, A reservoir for storing a working fluid, wherein the evaporator has a hollow wick having a hollow bottomed cylindrical shape and a porous structure having a space as an evaporator core therein, and a steam passage as a gap for working fluid vapor flow. An evaporator container for accommodating the wick so as to be generated between the wick and the inner wall surface of the evaporator container, wherein the liquid pipe is connected to the wick through the evaporator container, and the vapor pipe communicates with the vapor passage. Yes, flows into the evaporator It is set to be provided with a secondary reservoir for storing the working fluid vapor into the evaporator core.
[0010]
In the capillary-force-driven two-phase fluid loop according to the present invention, more preferably, an evaporator that is heated by a heating source to change a phase of a working fluid liquid into a working fluid vapor, and that heat is absorbed by a heat absorbing source to operate the working fluid vapor A condenser that changes phase to a fluid liquid, a steam pipe that supplies working fluid vapor from the evaporator to the condenser, a liquid pipe that supplies working fluid liquid from the condenser to the evaporator, A wick having a hollow bottomed cylindrical and porous structure having a space serving as an evaporator core therein, and a vapor passage serving as a gap for a working fluid vapor flowing therethrough. An evaporator container for accommodating the wick so as to be generated between the inner wall surface of the evaporator and the evaporator. And steam The secondary reservoir for storing the working fluid steam flowing into the vessel is set to be provided on the liquid pipe of the evaporator core.
[0011]
In the heat transport method according to the present invention, the evaporator that changes the phase of the working fluid liquid heated by the heating source into the working fluid vapor changes the phase of the working fluid vapor absorbed by the heat absorbing source into the working fluid liquid. A heat transport method for transporting heat by feeding a working fluid vapor through a steam pipe to a condenser to be heated, wherein the evaporator has a hollow bottomed cylindrical shape having a space as an evaporator core therein. A wick having a porous structure, and an evaporator container for accommodating the wick such that a vapor passage as a gap for working fluid vapor flow is formed between the wick and the inner wall surface of the evaporator container. The working fluid liquid supplied to the evaporator core from the liquid pipe joined to the wick and sucked into the wick by capillary force is converted into a working fluid vapor by the heat applied to the wick from the heating source via the evaporator container. In the heat transport method for delivering the steam pipe through a steam passage is of, for stabilizing the heat transport by accumulating the secondary reservoir having a working fluid steam flowing into the evaporator in the evaporator core.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The same or corresponding components as those in the related art shown in FIGS. 5, 6, and 7 are denoted by the same reference numerals, and redundant description will be omitted.
[0013]
Embodiment 1 FIG.
FIG. 1 is a diagram showing a capillary force driven two-phase fluid loop according to Embodiment 1 of the present invention. Reference numerals 1 to 13 are the same as the conventional capillary force driven two-phase fluid loop except for the evaporator 11A. The evaporator 11A of the capillary-force-driven two-phase fluid loop according to the first embodiment is a wick end protruding on the opposite side of the evaporator core 8 as an end plate of the wick 2 not joined to the liquid tube 6. It has a plate 14A.
[0014]
The principle of operation of the capillary force driven two-phase fluid loop of Embodiment 1 configured as described above will be described. The evaporator 11 </ b> A receives the heat from the heating source 12, changes the phase of the working fluid liquid 9 a flowing from the liquid pipe 6 into a working fluid vapor 9 b, and sends out the same to the steam pipe 4. The condenser 5 causes the heat absorption source 13 to absorb latent heat, thereby changing the phase of the working fluid vapor 9 b flowing from the steam pipe 4 into a working fluid liquid 9 a and sending the same to the liquid pipe 6. The working fluid 9a returns to the evaporator 11A through the liquid pipe 6. Transporting heat from the evaporator 11A to the condenser 5 by repeating the above cycle is the same as in the conventional example.
[0015]
The liquid pipe 6 penetrates the evaporator container 1 and communicates with the evaporator core 8 inside the wick 2, and the working fluid liquid 9 a from the liquid pipe 6 flows into the evaporator core 8. The working fluid 9a flowing into the evaporator core 8 is sucked into the wick 2 by the capillary force of the wick 2. The working fluid vapor 9b generated by the heat transmitted from the heating source 12 to the wick 2 via the evaporator container 1 passes through the vapor passage 3, which is a gap between the wick 2 and the inner wall surface of the evaporator container 1, and passes through the evaporator container The steam is sent to the steam pipe 4 joined to the steam pipe 1.
[0016]
When the heat load from the heating source 12 increases temporarily or the temperature of the heat absorbing source 13 increases, the tightening rate of the working fluid vapor 9b in the condenser 5 increases, and the working fluid vapor 9b passes through the liquid pipe 6 It flows from the condenser 5 to the evaporator 11A. The working fluid vapor 9b that has reached the evaporator 11A from the liquid pipe 6 accumulates in the evaporator core 8. The working fluid vapor 9 b in the reservoir 10 also flows through the liquid pipe 6 into the evaporator core 8 depending on the direction of the temporary acceleration applied to the reservoir 10.
[0017]
In the present embodiment, unlike the conventional example, the working fluid vapor 9b from the liquid pipe 6 to the evaporator 11A accumulates at the protruding portion of the wick end plate 14A having a low pressure. Therefore, since the inner surface of the wick 2 comes into full contact with the working fluid 9a in the evaporator core 8, the working fluid 9a can be supplied over the entire length of the wick 2. As a result, heat transport from the evaporator 11A to the condenser 5 can be performed stably.
[0018]
Embodiment 2 FIG.
FIG. 2 is a diagram showing a capillary force driven two-phase fluid loop according to Embodiment 2 of the present invention. Reference numerals 1 to 13 are the same as the above-mentioned conventional capillary force driven two-phase fluid loop except for the bayonet tube 7 and the evaporator 11B. The evaporator 11B of the capillary force driven type two-phase fluid loop according to the second embodiment is an end plate of the end plate of the wick 2 which is connected to the liquid tube 6, and an evaporator near the joint with the liquid tube 6 is provided. A wick end plate 14B protruding from the opposite side of the core 8 is provided.
[0019]
The principle of operation of the capillary force driven two-phase fluid loop of Embodiment 2 configured as described above will be described. The evaporator 11 </ b> B receives the heat from the heating source 12, changes the phase of the working fluid liquid 9 a flowing from the liquid pipe 6 into a working fluid vapor 9 b, and sends out the same to the steam pipe 4. The condenser 5 causes the heat absorption source 13 to absorb latent heat, thereby changing the phase of the working fluid vapor 9 b flowing from the steam pipe 4 into a working fluid liquid 9 a and sending the same to the liquid pipe 6. The working fluid 9a returns to the evaporator 11B through the liquid pipe 6. Transporting heat from the evaporator 11B to the condenser 5 by repeating the above cycle is the same as in the conventional example.
[0020]
The liquid pipe 6 penetrates through the evaporator container 1 and the wick end plate 14B and communicates with the bayonet pipe 7 inside the wick 2. The working fluid 9a from the liquid pipe 6 passes through the bayonet pipe 7 through the internal space of the wick 2. Into the evaporator core 8. The working fluid 9a flowing into the evaporator core 8 is sucked into the wick 2 by the capillary force of the wick 2. The working fluid vapor 9b generated by the heat transmitted from the heating source 12 to the wick 2 via the evaporator container 1 passes through the vapor passage 3, which is a gap between the wick 2 and the inner wall surface of the evaporator container 1, and passes through the evaporator container The steam is sent to the steam pipe 4 joined to the steam pipe 1.
[0021]
As shown in FIG. 3, when the heat load from the heating source 12 temporarily increases or the temperature of the heat absorbing source 13 increases, the tightening ratio of the working fluid vapor 9 b in the condenser 5 increases, and the working fluid vapor 9 b Flows from the condenser 5 to the evaporator 11B through the liquid pipe 6. The working fluid vapor 9b that has reached the evaporator 11B from the liquid pipe 6 accumulates in the evaporator core 8. As shown in FIG. 4, the working fluid vapor 9 b in the reservoir 10 also flows through the liquid pipe 6 into the evaporator core 8 depending on the direction of the temporary acceleration applied to the reservoir 10.
[0022]
In this embodiment, unlike the conventional example, the working fluid vapor 9b from the liquid pipe 6 to the evaporator 11B accumulates at the protruding portion of the low-pressure wick end plate 14B and condenses on the outer surface of the low-temperature bayonet pipe 7. Therefore, the volume of the working fluid vapor 9b accumulated in the protrusion of the wick end plate 14B can be kept small. Therefore, since the inner surface of the wick 2 comes into full contact with the working fluid 9a in the evaporator core 8, the working fluid 9a can be supplied over the entire length of the wick 2. As a result, heat transfer from the evaporator 11B to the condenser 5 can be performed stably.
[0023]
【The invention's effect】
As described above, according to the capillary force driven type two-phase fluid loop according to the present invention, the working fluid vapor flowing into the evaporator core is stored in the sub-reservoir in the evaporator core. Liquid can be supplied.
[0024]
Further, by realizing the sub-reservoir by projecting the shape of the wick end plate on the side opposite to the evaporator core, the above-described effect can be obtained only by the deformation of the conventionally used member.
[0025]
According to the heat transport method of the present invention, the working fluid vapor flowing into the evaporator is stored in the sub-reservoir in the evaporator core, so that the effect of stabilizing the heat transport performance can be achieved by relatively simple means. Obtainable.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a configuration of a capillary force driven type two-phase fluid loop according to Embodiment 1 of the present invention, (a) showing a vertical cross section of an evaporator and pipe arrangement, and (b) showing It is a figure which shows the cross section of an evaporator.
FIGS. 2A and 2B are diagrams showing an example of a configuration of a two-phase fluid loop driven by a capillary force according to Embodiment 2 of the present invention, wherein FIG. It is a figure which shows the cross section of an evaporator.
FIG. 3 is a diagram illustrating a heat transport method of a capillary force driven two-phase fluid loop according to Embodiment 2 of the present invention, and is a diagram illustrating a case where the temperature of a heating source or a heat absorbing source temporarily increases. .
FIG. 4 is a diagram illustrating a heat transfer method of a capillary force driven two-phase fluid loop according to Embodiment 2 of the present invention, and illustrates a case where acceleration is temporarily applied to a reservoir.
5A and 5B are diagrams showing an example of a conventional capillary force driven type two-phase fluid loop, wherein FIG. 5A is a diagram showing a vertical cross section and a pipe arrangement of an evaporator, and FIG. FIG.
FIG. 6 is a diagram illustrating a problem of a conventional capillary force driven two-phase fluid loop, and illustrates a case where the temperature of a heating source or a heat absorbing source is temporarily increased.
FIG. 7 is a diagram illustrating a problem of a conventional capillary force driven two-phase fluid loop, and illustrates a case where acceleration is temporarily applied to a reservoir.
[Explanation of symbols]
1 evaporator container, 2 wicks, 3 steam passages, 4 steam pipes, 5 condensers, 6 liquid pipes, 7 bayonet pipes, 8 evaporator cores, 9a working fluid liquid, 9b working fluid vapor, 10 reservoirs, 11, 11A, 11B Evaporator, 12 Heat source, 13 Endothermic source, 14, 14A, 14B Wick end plate.

Claims (3)

加熱源により加熱され作動流体液を作動流体蒸気へと相変化させる蒸発器と、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器と、蒸発器から凝縮器へと作動流体蒸気を送給する蒸気管と、凝縮器から蒸発器へと作動流体液を送給する液管と、作動流体を溜めるリザーバとを備え、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、液管が蒸発器容器を貫通してウィックに接合され、蒸気管が蒸気通路に連通する蒸発器である毛細管力駆動型二相流体ループにおいて、蒸発器内に流入した作動流体蒸気を溜める副リザーバを蒸発器コア内に設けたことを特徴とする毛細管力駆動型二相流体ループ。An evaporator that is heated by a heating source and changes the phase of the working fluid to working fluid vapor, a condenser that absorbs heat by the heat absorbing source and changes the phase of the working fluid vapor to working fluid, and operates from the evaporator to the condenser A vapor pipe for supplying fluid vapor, a liquid pipe for supplying a working fluid from the condenser to the evaporator, and a reservoir for storing the working fluid. A wick having a hollow bottomed cylindrical and porous structure, and an evaporator container for accommodating the wick such that a vapor passage, which is a gap for flowing the working fluid vapor, is formed between the wick and the inner wall surface of the evaporator container. A liquid pipe penetrates the evaporator container and is joined to the wick, and the vapor pipe collects the working fluid vapor flowing into the evaporator in a capillary force driven two-phase fluid loop which is an evaporator communicating with the vapor passage. Sub-reservoir with evaporator Capillary force-driven two-phase fluid loop, characterized in that provided within. 加熱源により加熱され作動流体液を作動流体蒸気へと相変化させる蒸発器と、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器と、蒸発器から凝縮器へと作動流体蒸気を送給する蒸気管と、凝縮器から蒸発器へと作動流体液を送給する液管と、作動流体を溜めるリザーバとを備え、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、液管が蒸発器容器を貫通してウィック内部のベイオネット管に接合され、蒸気管が蒸気通路に連通する蒸発器である毛細管力駆動型二相流体ループにおいて、蒸発器内に流入した作動流体蒸気を溜める副リザーバが、蒸発器コアの液管側に位置することを特徴とする毛細管力駆動型二相流体ループ。An evaporator that is heated by a heating source and changes the phase of the working fluid to working fluid vapor, a condenser that absorbs heat by the heat absorbing source and changes the phase of the working fluid vapor to working fluid, and operates from the evaporator to the condenser A vapor pipe for supplying fluid vapor, a liquid pipe for supplying a working fluid from the condenser to the evaporator, and a reservoir for storing the working fluid. A wick having a hollow bottomed cylindrical and porous structure, and an evaporator container for accommodating the wick such that a vapor passage, which is a gap for flowing the working fluid vapor, is formed between the wick and the inner wall surface of the evaporator container. The liquid pipe is connected to the bayonet pipe inside the wick through the evaporator container, and the vapor pipe flows into the evaporator in a capillary-powered two-phase fluid loop that is an evaporator communicating with the vapor passage. Store fluid vapor Reservoir, the capillary force-driven two-phase fluid loop, characterized in that located on the liquid pipe of the evaporator core. 加熱源により加熱された作動流体液を作動流体蒸気へと相変化させる蒸発器から、吸熱源により吸熱され作動流体蒸気を作動流体液へと相変化させる凝縮器へと、蒸気管を介した作動流体蒸気の送給により熱を輸送する熱輸送方法であって、蒸発器が、その内部に蒸発器コアたる空間を有し中空有底筒状かつ多孔質構造を有するウィックと、作動流体蒸気流通用の間隙である蒸気通路がウィックと蒸発器容器内壁面との間に生じるようウィックを収納する蒸発器容器とを備え、この蒸発器容器を貫通してウィックに接合された液管から蒸発器コアに供給され毛細管力によりウィックに吸引させた作動流体液を、加熱源から蒸発器容器を介してウィックに加わった熱により作動流体蒸気へと相変化させ蒸気通路を介して蒸気管に送出する熱輸送方法において、蒸発器内に流入した作動流体蒸気を蒸発器コア内に設けた副リザーバに溜めることを特徴とする熱輸送方法。Operation via a steam pipe from an evaporator that changes the phase of the working fluid heated by the heating source to working fluid vapor to a condenser that changes the phase of the working fluid vapor absorbed by the heat absorbing source into working fluid liquid A heat transport method for transporting heat by feeding a fluid vapor, wherein the evaporator has a hollow bottomed cylindrical and porous structure having a space serving as an evaporator core therein, and a working fluid vapor flow. An evaporator container for accommodating the wick such that a vapor passage, which is a gap for use, is formed between the wick and the inner wall surface of the evaporator container. The working fluid supplied to the core and sucked into the wick by the capillary force is phase-changed into working fluid vapor by the heat applied from the heating source to the wick via the evaporator container, and is sent out to the steam pipe through the steam passage. Heat transport In law, heat transport method characterized by accumulating the secondary reservoir having a working fluid steam flowing into the evaporator in the evaporator core.
JP2002296922A 2002-10-10 2002-10-10 Capillary force driven two-phase fluid loop and its heat transport method Pending JP2004132601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296922A JP2004132601A (en) 2002-10-10 2002-10-10 Capillary force driven two-phase fluid loop and its heat transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296922A JP2004132601A (en) 2002-10-10 2002-10-10 Capillary force driven two-phase fluid loop and its heat transport method

Publications (1)

Publication Number Publication Date
JP2004132601A true JP2004132601A (en) 2004-04-30

Family

ID=32286752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296922A Pending JP2004132601A (en) 2002-10-10 2002-10-10 Capillary force driven two-phase fluid loop and its heat transport method

Country Status (1)

Country Link
JP (1) JP2004132601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552366C (en) * 2006-09-15 2009-10-21 富准精密工业(深圳)有限公司 Loop heat pipe
JP2011069546A (en) * 2009-09-25 2011-04-07 Fujitsu Ltd Loop type heat pipe and electronic equipment
JP2014526670A (en) * 2011-09-14 2014-10-06 ユーロ ヒート パイプス Capillary pump type heat transport device
CN108426476A (en) * 2018-04-13 2018-08-21 中国科学院理化技术研究所 A kind of microwell array loop heat pipe
CN115523781A (en) * 2021-06-01 2022-12-27 山东大学 Novel capillary core loop heat pipe and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552366C (en) * 2006-09-15 2009-10-21 富准精密工业(深圳)有限公司 Loop heat pipe
JP2011069546A (en) * 2009-09-25 2011-04-07 Fujitsu Ltd Loop type heat pipe and electronic equipment
JP2014526670A (en) * 2011-09-14 2014-10-06 ユーロ ヒート パイプス Capillary pump type heat transport device
CN108426476A (en) * 2018-04-13 2018-08-21 中国科学院理化技术研究所 A kind of microwell array loop heat pipe
CN115523781A (en) * 2021-06-01 2022-12-27 山东大学 Novel capillary core loop heat pipe and preparation method thereof
CN115523781B (en) * 2021-06-01 2024-02-13 山东大学 Novel capillary core loop heat pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
CN1328566C (en) Deep cold loop heat tube
JP3591339B2 (en) Loop type heat pipe
JPH10503580A (en) Energy transfer system between hot and cold heat sources
JP2003194485A (en) Evaporator, loop heat pipe with built-in reservoir, and heat transport method
JP2007107784A (en) Loop type heat pipe
JP6433848B2 (en) Heat exchangers, vaporizers, and electronics
JP2004132601A (en) Capillary force driven two-phase fluid loop and its heat transport method
JP5664107B2 (en) Loop-type heat pipe and electronic device equipped with such loop-type heat pipe
CN108253829A (en) The loop heat pipe of micro channel array auxiliary drive
JP2012037098A (en) Loop heat pipe, and electronic apparatus
JP2006057925A (en) Two-phase flow loop type heat transport device
JP2012037097A (en) Loop heat pipe, and electronic apparatus
JP2009041825A (en) Evaporator of loop heat pipe
JP4196574B2 (en) Capillary force driven two-phase fluid loop, evaporator and heat transport method
JP6760026B2 (en) Thermoacoustic engine
JP2622603B2 (en) Heat pipe heat exchanger
JP2018165580A (en) Thermal storage device
JP2010078259A (en) Evaporator for micro loop heat pipe
JP2003185370A (en) Capillary force driving-type two-phase fluid loop, its evaporator and heat transporting method
Van Oost et al. Secondary wick operation principle and performance mapping in LHP and FLHP evaporators
JP6756020B1 (en) Cooling system
JPH0539406Y2 (en)
JPH0726795B2 (en) Heat transport pipe
JPS5919899Y2 (en) heat pipe
JPH10170178A (en) Evaporator for capillary pump loop and heat exchange method