JPH0819938B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device

Info

Publication number
JPH0819938B2
JPH0819938B2 JP62071206A JP7120687A JPH0819938B2 JP H0819938 B2 JPH0819938 B2 JP H0819938B2 JP 62071206 A JP62071206 A JP 62071206A JP 7120687 A JP7120687 A JP 7120687A JP H0819938 B2 JPH0819938 B2 JP H0819938B2
Authority
JP
Japan
Prior art keywords
supply
groove
discharge
static pressure
pressure generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071206A
Other languages
Japanese (ja)
Other versions
JPS63235723A (en
Inventor
和彦 杉田
和久 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP62071206A priority Critical patent/JPH0819938B2/en
Publication of JPS63235723A publication Critical patent/JPS63235723A/en
Publication of JPH0819938B2 publication Critical patent/JPH0819938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回転軸を支持する流体軸受装置、特に動圧発
生領域を設けて動剛性を向上させた静圧軸受装置、いわ
ゆるハイブリッド型の流体軸受装置に関する。
Description: TECHNICAL FIELD The present invention relates to a hydrodynamic bearing device that supports a rotating shaft, particularly a hydrostatic bearing device that has a dynamic pressure generating region to improve dynamic rigidity, a so-called hybrid fluid. Bearing device

(従来技術) この種の流体軸受装置としては、倒えば特開昭54−90
434号公報に開示されたものがある。この技術において
は、軸受面に静圧発生領域を形成する凹部と動圧発生領
域を形成するランド部を設け、軸の回転により静圧発生
領域からランド部と回転軸の間に引き込まれる作動流体
により動圧を発生している。工作機械の主軸等において
は、加工時に振動荷重などの大なる負荷が作用するが、
上述の如き流体軸受装置によれば主軸の回転時に軸受剛
性が増大するので、大なる負荷にも対応することができ
る。
(Prior Art) As a hydrodynamic bearing device of this type, if it collapses
Some are disclosed in Japanese Patent No.434. In this technique, a concave portion forming a static pressure generating region and a land portion forming a dynamic pressure generating region are provided on the bearing surface, and the working fluid drawn from the static pressure generating region between the land portion and the rotating shaft by the rotation of the shaft. To generate dynamic pressure. A large load such as a vibration load acts on the spindle of a machine tool during machining,
According to the fluid dynamic bearing device as described above, since the bearing rigidity increases when the main shaft rotates, it is possible to cope with a large load.

(発明が解決しようとする問題点) しかしながら、動圧発生のためにランド部と回転軸の
間に引き込まれる作動流体は粘性による流体摩擦損失が
生じるので発熱し、その発熱量は回転速度の増大に応じ
て増大する。一方、軸は軸受に対して放熱が悪いので前
記発熱による熱膨張により軸受隙間が減少し、これによ
る障害を防止するために軸受隙間の設定値を充分減少さ
せることが出来ないので、動圧による軸受剛性の増大も
限られ、負荷が加った場合の回転軸の変位を充分小さく
することができないという問題がある。本発明は、回転
軸の回転速度が大となった場合の冷却を良くして、この
ような問題を解決しようとするものである。
(Problems to be Solved by the Invention) However, the working fluid drawn between the land portion and the rotary shaft due to the generation of dynamic pressure generates heat due to fluid friction loss due to viscosity, and the generated heat amount increases the rotation speed. Increase accordingly. On the other hand, since the shaft radiates heat poorly to the bearing, the bearing gap decreases due to the thermal expansion due to the above-mentioned heat generation, and the set value of the bearing gap cannot be sufficiently reduced in order to prevent failures due to this, so dynamic pressure The increase in bearing rigidity is also limited, and there is a problem that the displacement of the rotary shaft cannot be sufficiently reduced when a load is applied. The present invention intends to solve such a problem by improving cooling when the rotational speed of the rotary shaft becomes large.

(問題点を解決するための手段) このために、本発明による流体軸受装置は、添付図面
に例示する如く、回転軸15を支持する軸受部材20の軸受
面に、円周方向に間隔をおいて設けられ供給ポンプ40よ
り加圧された作動流体が絞り30を介して供給されて静圧
発生領域Aを形成する複数の凹部23,223と、この静圧発
生領域に円周方向に隣接して設けられ前記回転軸15の回
転により同静圧発生領域内から流入する作動流体により
動圧発生領域Bを形成する複数のランド部24,124,224
と、前記凹部23,223とランド部24,124,224を囲む流通溝
25を形成してなる流体軸受装置において、前記流通溝25
を回転軸線方向に離間した一対の排出溝25aと、この一
対の排出溝25aを互いに連通して前記静圧及び動圧発生
領域A,Bを円周方向に区分する円周上複数の給排溝25bに
より形成し、前記排出溝25aは常にリザーバ43に連通
し、前記給排溝25bを前記リザーパ43と前記供給ポンプ4
0に選択的に連通する切換弁42を設け、この切換弁42は
前記回転軸15の回転速度が低速の場合は前記給排溝25b
を前記リザーパ43に連通させ、前記回転軸15の回転速度
が高速の場合は前記給排溝25bを前記供給ポンプ40に連
通するように構成したものである。
(Means for Solving the Problems) Therefore, in the hydrodynamic bearing device according to the present invention, as illustrated in the accompanying drawings, the bearing surface of the bearing member 20 supporting the rotating shaft 15 is circumferentially spaced. A plurality of recesses 23 and 223, which are provided in the static pressure generating area A by supplying the working fluid pressurized by the supply pump 40 through the throttle 30, and are provided adjacent to the static pressure generating area in the circumferential direction. A plurality of land portions 24, 124, 224 that form a dynamic pressure generation region B by the working fluid flowing from the static pressure generation region by the rotation of the rotary shaft 15.
And a flow groove surrounding the recesses 23,223 and lands 24,124,224
In the hydrodynamic bearing device having 25, the flow groove 25
With a pair of discharge grooves 25a spaced apart in the direction of the rotation axis, and a plurality of supply and discharge on the circumference for communicating the pair of discharge grooves 25a with each other to divide the static pressure and dynamic pressure generation regions A and B in the circumferential direction. The discharge groove 25a is formed by a groove 25b, and the discharge groove 25a always communicates with the reservoir 43. The supply / discharge groove 25b is formed by the reservoir 43 and the supply pump 4.
A switching valve 42 that selectively communicates with 0 is provided, and this switching valve 42 is provided with the supply / discharge groove 25b when the rotation speed of the rotating shaft 15 is low.
Is connected to the reservoir 43, and when the rotation speed of the rotating shaft 15 is high, the supply / discharge groove 25b is connected to the supply pump 40.

(作用) 回転軸15が停止またはその回転速度が小さい間は切換
弁42は給排溝25bをリザーバ43に連通しており、供給ポ
ンプ40からの作動流体は軸受部材20の凹部23,223にのみ
供給され、これにより主として静圧発生領域Aに生じる
静圧により回転軸15は支持され、凹部23,223を通った作
動流体は排出溝25a及び給排溝25bを経てリザーバ43に排
出される。回転軸15の回転速度が増大するにつれて動圧
発生領域Bに生じる動圧は増大し、これと共に同領域B
に生じる発熱量も増大する。この動圧が回転軸15を支持
するに足る値となれば、切換弁42が作動して給排溝25b
を供給ポンプ40に連通するようになり、供給ポンプ40か
らの作動流体は凹部23,223のみならず給排溝25bにも並
列に供給され、此等を通った作動流体が排出溝25aから
リザーバ43に排出されるようになる。この状態では、給
排溝25bを通る作動流体により回転軸15が冷却されて、
動圧発生領域Bに生じる発熱により回転軸15の温度上昇
は防止される。
(Operation) While the rotary shaft 15 is stopped or its rotational speed is low, the switching valve 42 communicates the supply / discharge groove 25b with the reservoir 43, and the working fluid from the supply pump 40 is supplied only to the recesses 23, 223 of the bearing member 20. As a result, the rotary shaft 15 is supported mainly by the static pressure generated in the static pressure generating region A, and the working fluid passing through the recesses 23 and 223 is discharged to the reservoir 43 through the discharge groove 25a and the supply / discharge groove 25b. As the rotation speed of the rotating shaft 15 increases, the dynamic pressure generated in the dynamic pressure generation region B increases, and together with this, the dynamic pressure generation region B increases.
Also, the amount of heat generated in the heat source increases. When the dynamic pressure has a value sufficient to support the rotary shaft 15, the switching valve 42 operates to supply and discharge the groove 25b.
To the supply pump 40, the working fluid from the supply pump 40 is supplied in parallel not only to the recesses 23 and 223 but also to the supply / discharge groove 25b, and the working fluid passing through these is supplied from the discharge groove 25a to the reservoir 43. It will be discharged. In this state, the rotary shaft 15 is cooled by the working fluid passing through the supply / discharge groove 25b,
The heat generated in the dynamic pressure generation region B prevents the temperature of the rotary shaft 15 from rising.

(発明の効果) 上述の如く、本発明によれば、回転軸の回転数が増大
して動圧発生領域に生じる発熱量が増大した状態におい
ては、給排溝に供給される作動流体により回転軸の温度
上昇が防止されるので熱膨張による軸受隙間の減少を防
止することができる。これにより軸受隙間の過少による
焼付き等のおそれなしに軸受隙間の設定値を充分減少さ
せることができるので軸受剛性を充分高めることがで
き、負荷が加った場合の回転軸の変位を減少させること
ができる。
(Effects of the Invention) As described above, according to the present invention, when the rotation speed of the rotary shaft increases and the amount of heat generated in the dynamic pressure generation region increases, the rotation is performed by the working fluid supplied to the supply / discharge groove. Since the temperature of the shaft is prevented from rising, it is possible to prevent the bearing gap from decreasing due to thermal expansion. As a result, the set value of the bearing gap can be sufficiently reduced without fear of seizure due to the insufficient bearing gap, so that the bearing rigidity can be sufficiently increased and the displacement of the rotating shaft when a load is applied is reduced. be able to.

また給排溝をリザーバと供給ポンプに選択的に連通す
る切換弁を設けて、低速回転時には供給ポンプから圧油
を静圧発生領域に供給して給排溝よりリザーバに排出さ
せることにより通常の静圧支持作用を行い、高速回転時
には供給ポンプから静圧発生領域に供給される圧油の一
部を給排溝に供給して軸受を冷却するようにしたので、
軸受の冷却のために専用の冷却通路を形成するとか、軸
受流体とは別に冷却用流体を用意することが不要とな
り、軸受の冷却を簡単な構成で行うことができる。
In addition, by providing a switching valve that selectively connects the supply / discharge groove to the reservoir and the supply pump, during low speed rotation, the pressure oil is supplied from the supply pump to the static pressure generation region and discharged to the reservoir from the supply / discharge groove. It performs a static pressure support action, and at the time of high speed rotation, part of the pressure oil supplied from the supply pump to the static pressure generation area is supplied to the supply and discharge groove to cool the bearing.
It is not necessary to form a dedicated cooling passage for cooling the bearing or to prepare a cooling fluid separately from the bearing fluid, so that the bearing can be cooled with a simple configuration.

(実施例) 先ず第1図〜第3図に示す第1実施例の説明をする。(Embodiment) First, a first embodiment shown in FIGS. 1 to 3 will be described.

第1図〜第3図に示す如く、軸受本体10に嵌合固定さ
れて回転軸15を支持する軸受金等の軸受部材20内周の軸
受面21には、両端部の円周方向に沿って設けた一対の排
出溝25a,25aと、円周方向等間隔に配置されて両排出溝2
5a,25aを軸方向に接続する4本の給排溝25b〜25bよりな
る流通溝25が形成され、軸受面21を円周方向に間をおい
た4つの部分に区分けしている。この各部分は回転軸15
の回転方向に沿って設けた静圧支持部22とランド部24に
より形成され、ランド部24と回転軸15の間の隙間は静圧
支持部22と回転軸15の間の隙間よりも小である。主とし
て第3図に示す如く、各静圧支持部22には直接隣接する
ランド部24側が開いたコ字状の供給溝よりなる凹部23が
形成され、この供給溝23とランド部24により囲まれた部
分は静圧発生領域Aを形成し、ランド部24の上側部分は
動圧発生領域Bを形成している。各供給溝23内には絞り
30を設けた供給路29、軸受部材20の外周に形成した環状
溝27及び設定圧力が電磁的に2段に切り換えられる減圧
弁41を介して供給ポンプ40からの加圧された作動流体が
導入されて、静圧発生領域Aに静圧を発生させるように
なっている。また、静圧発生領域Aの作動流体の一部は
回転軸15の回転によりランド部24の上に引き込まれて動
圧発生領域Bに動圧を発生させるようになっている。
As shown in FIGS. 1 to 3, the bearing surface 21 of the inner periphery of the bearing member 20 such as the bearing metal that is fitted and fixed to the bearing body 10 to support the rotating shaft 15 is along the circumferential direction of both ends. And a pair of the discharge grooves 25a, 25a provided at
A flow groove 25, which is composed of four supply / discharge grooves 25b to 25b that connect 5a and 25a in the axial direction, is formed, and divides the bearing surface 21 into four portions that are circumferentially spaced. Each of these parts has a rotating shaft 15
Is formed by the static pressure support portion 22 and the land portion 24 provided along the rotation direction of, and the gap between the land portion 24 and the rotary shaft 15 is smaller than the gap between the static pressure support portion 22 and the rotary shaft 15. is there. Mainly as shown in FIG. 3, each static pressure support portion 22 is formed with a concave portion 23 formed of a U-shaped supply groove having an open land portion 24 side directly adjacent to the static pressure support portion 22, and is surrounded by the supply groove 23 and the land portion 24. The closed portion forms a static pressure generation area A, and the upper portion of the land portion 24 forms a dynamic pressure generation area B. A throttle in each supply groove 23
The pressurized working fluid from the supply pump 40 is introduced through the supply passage 29 provided with 30, the annular groove 27 formed on the outer periphery of the bearing member 20, and the pressure reducing valve 41 whose setting pressure is electromagnetically switched between two stages. Thus, the static pressure is generated in the static pressure generation area A. Further, a part of the working fluid in the static pressure generation area A is drawn onto the land portion 24 by the rotation of the rotary shaft 15 to generate dynamic pressure in the dynamic pressure generation area B.

第2図及び第3図に示す如く、各給排溝25b両端の排
出溝25a,25aとの接続部には堰部26,26が設けられ、その
中間部には軸受部材20の外周に形成した環状溝28との間
を連通する給排路31が設けられている。また、軸受部材
20の両側には両排出溝25a,25aの下部を軸受本体10内に
設けた排出路11,12に連通する排出路32,33が設けられ、
静圧発生領域A,動圧発生領域Bから排出溝25a,25aに排
出された作動流体は、排出路32,33,11,12を経て軸受本
体10内の下部あるいはこれに連通されたリザーバ43に排
出される。第1図に示す如く、電磁切換弁42は1個の共
通ポート42aと2個の切換ポート42b,42cを有する3ポー
ト2位置切換弁であり、共通ポート42aは環状溝28及び
給排路31を経て給排溝25bに連通され、一方の切換ポー
ト42bは前述した減圧弁41と環状溝27の間に連通され、
また他方の切換ポート42cはリザーバ43に連通されてい
る。
As shown in FIG. 2 and FIG. 3, weir portions 26, 26 are provided at the connecting portions with the discharge grooves 25a, 25a at both ends of each supply / discharge groove 25b, and are formed on the outer periphery of the bearing member 20 at the intermediate portion thereof. A supply / discharge passage 31 is provided which communicates with the annular groove 28. Also, bearing members
Discharge passages 32, 33 are provided on both sides of 20 so that the lower portions of both discharge grooves 25a, 25a communicate with the discharge passages 11, 12 provided in the bearing body 10.
The working fluid discharged from the static pressure generation area A and the dynamic pressure generation area B to the discharge grooves 25a, 25a passes through the discharge passages 32, 33, 11, 12 and the lower portion in the bearing body 10 or the reservoir 43 communicated with this. Is discharged to. As shown in FIG. 1, the electromagnetic switching valve 42 is a three-port two-position switching valve having one common port 42a and two switching ports 42b and 42c. The common port 42a includes the annular groove 28 and the supply / discharge passage 31. Through the supply and discharge groove 25b, one of the switching port 42b is connected between the pressure reducing valve 41 and the annular groove 27 described above,
The other switching port 42c communicates with the reservoir 43.

次に上記実施例の作動につき説明する。 Next, the operation of the above embodiment will be described.

回転軸15が停止またはその回転速度が小さい間は、第
1図に示す如く、電磁切換弁42の共通ボート42aは切換
ボート42c側に連通されており、また減圧弁41は出口側
圧力が高く(例えば10kgf/cm2)設定されている。この
状態においては供給ポンプ40からの高圧の作動流体は、
第1図及び第2図の実線の矢印に示す如く、環状溝27か
ら絞り30を設けた供給路23を通って供給溝23のみに供給
され、これにより静圧発生領域Aに静圧を生ぜしめて回
転軸15を支持する。静圧発生領域Aから排出される作動
流体は、排出溝25aと給排溝25bよりなり供給溝23とラン
ド部24を囲む流通溝25内に流入し、給排溝25b内の作動
流体は主として給排路31,環状溝28及び電磁切換弁42を
経てリザーバ43に排出され、排出溝25a内の作動流体は
排出路32,33,11,12を経てリザーバ43に排出される。ま
た、この場合の動圧発生部Bに生じる動圧は小である。
As shown in FIG. 1, the common boat 42a of the electromagnetic switching valve 42 is communicated with the switching boat 42c side while the rotary shaft 15 is stopped or the rotation speed is low, and the pressure reducing valve 41 has a high outlet side pressure. (Eg 10 kgf / cm 2 ) is set. In this state, the high-pressure working fluid from the supply pump 40 is
As shown by the solid line arrows in FIGS. 1 and 2, only the supply groove 23 is supplied from the annular groove 27 through the supply passage 23 provided with the throttle 30 to thereby generate a static pressure in the static pressure generation region A. Tightly support the rotating shaft 15. The working fluid discharged from the static pressure generation region A flows into the circulation groove 25 which is composed of the discharge groove 25a and the supply / discharge groove 25b and surrounds the supply groove 23 and the land portion 24, and the working fluid in the supply / discharge groove 25b is mainly The working fluid in the discharge groove 25a is discharged to the reservoir 43 via the supply / discharge passage 31, the annular groove 28 and the electromagnetic switching valve 42, and is discharged to the reservoir 43 via the discharge passages 32, 33, 11, 12. Further, the dynamic pressure generated in the dynamic pressure generating portion B in this case is small.

回転軸15の回転速度が高速の定常状態に達して動圧発
生領域Bに生じる動圧が充分に増大すれば、これが図略
の回転センサ等にて検出され電磁切換弁42が作動して共
通ポート42aを切換ポート42b側に連通するようになり、
また減圧弁41の出口側圧力は低い値(2〜3kgf/cm2)に
設定される。この状態においては、供給ポンプ40からの
作動流体は低圧となって、第1図及び第2図の破線の矢
印に示す如く、大部分が電磁切換弁42から環状溝28及び
給排路31を通って給排溝25b内に流入してその内部に充
満し、両端の堰部26,26と回転軸15の間の隙間を通って
排出溝25a,25a内に排出され、また供給ポンプ40からの
作動流体の一部は環状溝27から供給溝23内に流入した後
排出溝25a,25a内に排出される。静圧発生領域A内に生
じる静圧は僅かであるが、同領域A内の作動流体は回転
軸15の高速回転によりランド部24の間に引き込まれて動
圧発生領域Bに充分大なる動圧を生ぜしめ、これにより
回転軸15を支持する。また、この状態においては、動圧
発生領域B内の作動流体の流体摩擦損失による発熱量は
増大し、回転軸15の温度が上昇されるが、前述の如く給
排溝25bに多量に供給される作動流体により回転軸15が
冷却されて回転軸15及び軸受部材20の温度上昇は防止さ
れる。
If the rotation speed of the rotary shaft 15 reaches a high-speed steady state and the dynamic pressure generated in the dynamic pressure generation region B is sufficiently increased, this is detected by a rotation sensor (not shown) or the like, and the electromagnetic switching valve 42 operates to be common. Port 42a comes to communicate with the switching port 42b side,
The pressure on the outlet side of the pressure reducing valve 41 is set to a low value ( 2 to 3 kgf / cm 2 ). In this state, the working fluid from the supply pump 40 has a low pressure, and most of the fluid flows from the electromagnetic switching valve 42 to the annular groove 28 and the supply / discharge passage 31 as shown by the broken line arrows in FIGS. 1 and 2. Through which it flows into the supply / discharge groove 25b and fills the inside thereof, and is discharged into the discharge groove 25a, 25a through the gap between the dam portions 26, 26 at both ends and the rotating shaft 15, and from the supply pump 40. Part of the working fluid flows into the supply groove 23 from the annular groove 27 and is then discharged into the discharge grooves 25a, 25a. The static pressure generated in the static pressure generation area A is small, but the working fluid in the static pressure generation area A is drawn between the lands 24 by the high speed rotation of the rotating shaft 15 and is sufficiently large in the dynamic pressure generation area B. It produces a pressure, which supports the rotary shaft 15. Further, in this state, the amount of heat generated by the fluid friction loss of the working fluid in the dynamic pressure generation region B increases and the temperature of the rotary shaft 15 rises, but as described above, a large amount is supplied to the supply / discharge groove 25b. The rotating shaft 15 is cooled by the working fluid to prevent the temperature of the rotating shaft 15 and the bearing member 20 from rising.

動圧を発生させるランド部は、上記第1実施例の如く
静圧支持部22からステップ状に立ち上る形状とする代り
に、第4図に示す第2実施例のランド部124の如く、供
給溝23内に位置する静圧支持部122からゆるやかな傾斜
でもって立ち上るような形状としてもよい。また供給溝
の形状も、上記第1実施例の如くコ字状とする代りに、
第5図に示す第3実施例の供給溝223の如く枠形とし、
その内部に互いに段差のある静圧支持部222とランド部2
24を形成してもよい。なお、供給溝23,223内に位置する
静圧支持部22,222は高さを低くし、あるいは供給溝23,2
23の底面と一致させて長方形の大きな凹部を形成するよ
うにしてもよい。
The land portion for generating the dynamic pressure has a shape such as the land portion 124 of the second embodiment shown in FIG. 4 instead of the stepwise rising shape from the static pressure support portion 22 as in the first embodiment. The shape may be such that it stands up from the static pressure support portion 122 located inside 23 with a gentle inclination. Also, instead of the supply groove having a U-shape as in the first embodiment,
A frame shape like the supply groove 223 of the third embodiment shown in FIG.
The static pressure support portion 222 and the land portion 2 having a step inside each other
24 may be formed. The static pressure support portions 22, 222 located in the supply grooves 23, 223 have a low height, or the supply grooves 23, 2
A large rectangular recess may be formed so as to coincide with the bottom surface of 23.

また、第2図に2点鎖線35,36で示す如く、給排溝25b
の一側の堰部26を除くと共にその側の排出溝25a下側の
排出路33,12を除いて上側に排出路36を設けるようにし
てもよい。このようにすれば回転軸15の高速回転時に供
給される作動流体はその側の排出溝25a内に貯留される
ので、堰部26を設けなくとも、給排溝25bに十分に作動
流体を充満させることができる。
Further, as shown by the two-dot chain lines 35 and 36 in FIG.
The weir portion 26 on one side may be removed, and the discharge passage 36 may be provided on the upper side except the discharge passages 33 and 12 on the lower side of the discharge groove 25a on that side. In this way, the working fluid supplied when the rotary shaft 15 rotates at high speed is stored in the discharge groove 25a on that side, so that the supply / discharge groove 25b can be sufficiently filled with the working fluid without providing the dam 26. Can be made.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明による流体軸受装置の第1実施
例を示し、第1図は主要部の横断面図及び作動流体の給
排系路を示す図、第2図は主要部の縦断面図、第3図は
軸受面の一部の展開図、第4図は第2実施例の主要部の
横断面図、第5図は第3実施例の軸受面の一部の展開図
である。 符号の説明 15……回転軸、20……軸受部材、21……軸受面、23,223
……凹部(供給溝)、24,124,224……ランド部、25……
流通溝、25a……排出溝、25b……給排溝、30……絞り、
40……供給ポンプ、42……切換弁(電磁切換弁)、43…
…リザーバ、A……静圧発生領域、B……動圧発生領
域。
1 to 3 show a first embodiment of a hydrodynamic bearing device according to the present invention. FIG. 1 is a cross-sectional view of a main portion and a working fluid supply / discharge system passage, and FIG. 2 is a main portion. FIG. 3 is a developed view of a part of the bearing surface, FIG. 4 is a cross-sectional view of a main part of the second embodiment, and FIG. 5 is a developed view of a part of the bearing surface of the third embodiment. It is a figure. Explanation of code 15 …… Rotary shaft, 20 …… Bearing member, 21 …… Bearing surface, 23,223
...... Concave (supply groove), 24,124,224 …… Land, 25 ……
Distribution groove, 25a ... discharge groove, 25b ... supply / discharge groove, 30 ... throttle,
40 ... Supply pump, 42 ... Switching valve (solenoid switching valve), 43 ...
... reservoir, A ... static pressure generation area, B ... dynamic pressure generation area.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転軸を支持する軸受部材の軸受面に、円
周方向に間隔をおいて設けられ供給ポンプより加圧され
た作動流体が絞りを介して供給されて静圧発生領域を形
成する複数の凹部と、この静圧発生領域に円周方向に隣
接して設けられ前記回転軸の回転により同静圧発生領域
内から流入する作動流体により動圧発生領域を形成する
複数のランド部と、前記凹部とランド部を囲む流通溝を
形成してなる流体軸受装置において、前記流通溝を回転
軸線方向に離間した一対の排出溝と、この一対の排出溝
を互いに連通して前記静圧及び動圧発生領域を円周方向
に区分する円周上複数の給排溝により形成し、前記排出
溝は常にリザーバに連通し、前記給排溝を前記リザーバ
と前記供給ポンプに選択的に連通する切換弁を設け、こ
の切換弁は前記回転軸の回転速度が低速の場合は前記給
排溝を前記リザーバに連通させ、前記回転軸の回転速度
が高速の場合は前記給排溝を前記供給ポンプに連通する
ように構成したことを特徴とする流体軸受装置。
1. A static pressure generating region is formed on a bearing surface of a bearing member that supports a rotary shaft, the working fluid being provided at intervals in a circumferential direction and pressurized by a supply pump is supplied through a throttle. And a plurality of land portions that are provided adjacent to the static pressure generation region in the circumferential direction and that form a dynamic pressure generation region by the working fluid flowing from the static pressure generation region by the rotation of the rotary shaft. A hydrodynamic bearing device having a flow groove surrounding the recess and the land, the pair of discharge grooves having the flow groove separated from each other in the rotation axis direction, and the pair of discharge grooves communicating with each other to form the static pressure. And the dynamic pressure generation region is formed by a plurality of supply / drain grooves on the circumference that divide the region in the circumferential direction, the discharge groove always communicates with the reservoir, and the supply / discharge groove selectively communicates with the reservoir and the supply pump. A switching valve for When the rotation speed of the shaft is low, the supply / drain groove is communicated with the reservoir, and when the rotation speed of the rotation shaft is high, the supply / drain groove is communicated with the supply pump. Hydrodynamic bearing device.
JP62071206A 1987-03-25 1987-03-25 Hydrodynamic bearing device Expired - Lifetime JPH0819938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071206A JPH0819938B2 (en) 1987-03-25 1987-03-25 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071206A JPH0819938B2 (en) 1987-03-25 1987-03-25 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JPS63235723A JPS63235723A (en) 1988-09-30
JPH0819938B2 true JPH0819938B2 (en) 1996-03-04

Family

ID=13453973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071206A Expired - Lifetime JPH0819938B2 (en) 1987-03-25 1987-03-25 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JPH0819938B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743654A (en) * 1987-05-29 1998-04-28 Kmc, Inc. Hydrostatic and active control movable pad bearing
US5066197A (en) * 1990-07-10 1991-11-19 Sundstrand Corporation Hydrodynamic bearing protection system and method
JP4387402B2 (en) 2006-12-22 2009-12-16 株式会社神戸製鋼所 Bearing and liquid-cooled screw compressor
JP5228895B2 (en) * 2008-12-25 2013-07-03 株式会社ジェイテクト Method of manufacturing bearing member of hydrodynamic bearing device and bearing member of hydrodynamic bearing device manufactured by the method
JP2011131289A (en) * 2009-12-22 2011-07-07 Hamai Co Ltd Plane lapping/polishing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166127A (en) * 1982-03-29 1983-10-01 Toyoda Mach Works Ltd Static bearing with cooling function

Also Published As

Publication number Publication date
JPS63235723A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
KR100798045B1 (en) Hydraulic bearing device
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
US4285551A (en) Fluid bearing
US4090743A (en) Fluid bearing including both hydrodynamic and hydrostatic bearings
EP1298335B1 (en) Hydraulic bearing
EP1908971B1 (en) Thrust bearing device
CN102748390A (en) Hydrodynamic axial bearing
US3549215A (en) Hydrostatically supported tilting pad journal bearing
KR100536558B1 (en) Hydraulic bearing device
JPS6325989B2 (en)
JPH0819938B2 (en) Hydrodynamic bearing device
JP2003083325A (en) Squeeze film damper bearing
US4325585A (en) Fluid bearing
JP3465288B2 (en) Fluid bearing device
JP3791729B2 (en) Hydrodynamic bearing device
JP3593372B2 (en) Motor with hydrodynamic bearing means
JP3625884B2 (en) Motor with hydrodynamic bearing
JPH0137610B2 (en)
JP3558709B2 (en) Motor with hydrodynamic bearing means
JPS5814924B2 (en) Hydrodynamic bearing device
JPH042771Y2 (en)
JP3040647B2 (en) bearing
USRE28401E (en) Hydrostatic bearing
JPH04249614A (en) Fluid bearing
JPH03153920A (en) Fluid bearing device