JPH08199317A - High strength and high rigidity aluminum-base alloy - Google Patents

High strength and high rigidity aluminum-base alloy

Info

Publication number
JPH08199317A
JPH08199317A JP26876295A JP26876295A JPH08199317A JP H08199317 A JPH08199317 A JP H08199317A JP 26876295 A JP26876295 A JP 26876295A JP 26876295 A JP26876295 A JP 26876295A JP H08199317 A JPH08199317 A JP H08199317A
Authority
JP
Japan
Prior art keywords
alloy
phase
aluminum
base alloy
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26876295A
Other languages
Japanese (ja)
Other versions
JP3504401B2 (en
Inventor
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Hiromaro Horio
裕磨 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP26876295A priority Critical patent/JP3504401B2/en
Publication of JPH08199317A publication Critical patent/JPH08199317A/en
Application granted granted Critical
Publication of JP3504401B2 publication Critical patent/JP3504401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To produce an Al-base alloy having high strength and high rigidity by preparing an Al-base alloy constituted from Al, V, Mo or the like shown by a specified formula and allowing quasi-crystal phases to lie in the alloy structure. CONSTITUTION: An Al-base alloy having a compsn. shown by the general formula of Al100-(a+b) Qa Mb [in the formula, Q denotes one or >= two kinds of metallic elements selected from V, Mo, Fe, W, Nb and Pd, M denotes one or >= two kinds of metallic elements selected from Mn, Fe, Co, Ni and Cu and (a) and (b) satisfy, by atomic%, 1<=a<=10, 0<b<5 and 3<=a+b<12[ is prepd. The cooling rate of the molten metal of the same Al-base alloy is controlled to form a mixed structure of Al phases and quasi-crystal phases in the alloy structure. Thus, the Al-base alloy excellent in corrosion resistance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高比強度かつ高剛性
を有するアルミニウム基合金に関する。
TECHNICAL FIELD The present invention relates to an aluminum base alloy having high specific strength and high rigidity.

【0002】[0002]

【従来の技術】従来のアルミニウム基合金には、Al-
Cu系、Al-Si系、Al-Mg系、Al-Cu-Si
系、Al-Cu-Mg系、Al-Zn-Mg系などの種々の
成分系の合金が知られており、いずれの系のものにおい
ても軽量で耐食性に優れていることから、それらの個々
の材料特性に応じて、車両、船舶、航空機などの機械構
造部材用として、または、建築用外装材、サッシ、屋根
葺材、LNGタンク用構造材などとして広く使用されて
いる。
2. Description of the Related Art Al-based conventional aluminum-based alloys are
Cu-based, Al-Si-based, Al-Mg-based, Al-Cu-Si
System, Al-Cu-Mg system, Al-Zn-Mg system, and other alloys of various component types are known, and all of these systems are lightweight and have excellent corrosion resistance. Depending on the material characteristics, it is widely used for mechanical structural members such as vehicles, ships, and aircraft, or as exterior materials for construction, sashes, roofing materials, structural materials for LNG tanks, and the like.

【0003】ところが、従来のアルミニウム基合金は、
Fe系の材料に比較して一般に硬度が低く、また耐熱性
も低い欠点がある。また、Cu、MgあるいはZnなど
の元素を添加して強度を高めたもののなかには、耐食性
に欠点を有するものがある。
However, conventional aluminum-based alloys are
Compared with Fe-based materials, they generally have the drawbacks of low hardness and low heat resistance. Further, among those in which the strength is increased by adding an element such as Cu, Mg or Zn, there are some which have a drawback in corrosion resistance.

【0004】一方、近来、アルミニウム基合金を溶湯状
態から急冷凝固させることにより組織の微細化を図り、
機械強度と耐食性の両面で優れさせた特性を発揮させる
試みもなされている。このような背景において、特開平
1ー275732号公報に開示されているように、特定
の組成比のAlM1X系(M1は、V、Cr、Mn、F
e、Co、Ni、Cu、Zrなどの元素を示し、Xは、
La、Ce、Sm、Ndなどの希土類元素、Y、Nb、
Ta、Mm(ミッシュメタル)などを示す。)の組成で
あって、組織が非晶質または非晶質と微細結晶質とから
なるアルミニウム基合金が特許出願されている。
On the other hand, recently, by refining and solidifying an aluminum-based alloy from a molten state, the structure is refined,
Attempts have also been made to exhibit excellent properties in terms of both mechanical strength and corrosion resistance. Against this background, as disclosed in Japanese Patent Application Laid-Open No. 1-275732, AlM 1 X system (M 1 is V, Cr, Mn, F) having a specific composition ratio.
e, Co, Ni, Cu, Zr and other elements, and X is
Rare earth elements such as La, Ce, Sm, Nd, Y, Nb,
Ta, Mm (Misch metal), etc. are shown. Patent application has been made for an aluminum-based alloy having a composition of (1) and having an amorphous structure or an amorphous structure and a fine crystalline structure.

【0005】[0005]

【発明が解決しようとする課題】前記特許出願のアルミ
ニウム基合金は、高硬度材料、高強度材料、高電気抵抗
材料、耐摩耗材料、ろう付け材料などとして有用であ
り、結晶化温度近傍における超塑性現象を利用して押出
加工やプレス加工も可能であって、耐熱材料としても優
れているものである。ところが、前記のアルミニウム基
合金は、高価な希土類元素や高活性なYなどの金属元素
を多く含有するために、コスト高になる欠点がある。即
ち、高価な原料を用いる必要があるとともに、高活性で
取り扱いの面で難点のある原料を用いる必要があるため
に、製造設備の規模が大きくなって費用が高くなり、人
件費もかかる問題がある。更に前記組成のアルミニウム
基合金は、耐酸化性、耐食性の面で不足を生じる傾向が
ある。
The aluminum-based alloy of the above patent application is useful as a high hardness material, a high strength material, a high electrical resistance material, a wear resistant material, a brazing material, etc. It is also excellent as a heat-resistant material because it can be extruded or pressed using the plastic phenomenon. However, the aluminum-based alloy contains a large amount of expensive rare earth elements and highly active metal elements such as Y, and thus has a drawback of high cost. That is, since it is necessary to use expensive raw materials, and also to use raw materials having high activity and difficulty in handling, there is a problem that the scale of manufacturing equipment becomes large, the cost becomes high, and the labor cost is also high. is there. Further, the aluminum-based alloy having the above composition tends to be insufficient in terms of oxidation resistance and corrosion resistance.

【0006】本発明は前記事情に鑑みてなされたもので
あり、希土類元素やYなど高活性元素を含まない組成と
し、低コスト化、低活性化を実現するとともに、高強
度、高剛性、かつ、耐食性に優れさせたアルミニウム基
合金を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a composition that does not contain a highly active element such as a rare earth element or Y, realizes low cost and low activation, and has high strength, high rigidity, and An object of the present invention is to provide an aluminum-based alloy having excellent corrosion resistance.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、一般式 Al100-(a+b)QaMb(ただしQは、V、Mo、Fe、
W、Nb、Pdの中から選択される1種または2種以上
の金属元素を示し、Mは、Mn、Fe、Ni、Co、C
uの中から選択される1種または2種以上の金属元素を
示す。)で示される組成を有し、組成比を示すa,bは、
原子%で1≦a≦10、0<b<5、3≦a+b≦12なる
関係を満足し、かつ、合金組織中に準結晶相を有してな
るものである。
In order to solve the above-mentioned problems, the invention according to claim 1 has the general formula Al 100- ( a + b ) QaMb (wherein Q is V, Mo, Fe,
One or more metal elements selected from W, Nb and Pd are shown, and M is Mn, Fe, Ni, Co and C.
One or more metal elements selected from u are shown. ), And a and b showing composition ratios are
It satisfies the relations of 1 ≦ a ≦ 10, 0 <b <5, 3 ≦ a + b ≦ 12 in atomic%, and has a quasicrystalline phase in the alloy structure.

【0008】請求項2記載の発明は前記課題を解決する
ために、請求項1記載の組成と組成比とを有し、アルミ
ニウム相と準結晶相の混相組織、アルミニウムマトリッ
クスからなる金属固溶体と準結晶相の混相組織、準結晶
相と安定または準安定な金属間化合物相の混相組織、ア
ルミニウムマトリックスからなる金属固溶体と非晶質相
と準結晶相の混相組織の少なくとも1つの組織を有して
なるものである。
In order to solve the above-mentioned problems, the invention according to claim 2 has the composition and composition ratio according to claim 1, and has a mixed phase structure of an aluminum phase and a quasi-crystalline phase, and a metal solid solution consisting of an aluminum matrix and a quasi-phase. It has at least one structure of a mixed phase structure of a crystalline phase, a mixed phase structure of a quasicrystalline phase and a stable or metastable intermetallic compound phase, a solid solution of an aluminum matrix, and a mixed phase structure of an amorphous phase and a quasicrystalline phase. It will be.

【0009】[0009]

【発明の実施の形態】次に、本願発明合金の各成分の組
成限定理由について説明する。Al(アルミニウム)含
有量は、原子%で88≦Al≦97、好ましくは92≦
Al≦97、特に好ましくは94≦Al≦97の範囲で
ある。これは、88原子%未満であると脆化するととも
に、97原子%を超えると強度と硬度が低下するからで
ある。V(バナジウム)、Mo(モリブデン)、Fe
(Fe)、W(タングステン)、Nb(ニオブ)、Pd
(パラジウム)の中から選択される1種または2種以上
の含有量は、1原子%以上10原子%以下で、好ましく
は2原子%以上8原子%以下、特に好ましくは2原子%
以上6原子%以下である。これは、これらの含有量が1
原子%未満であると準結晶相が形成されず強度が著しく
低下し、10原子%を超えると準結晶相が粗大化(粒径
500nm以上)し、著しく脆化し、(破断)強度が低
下するからである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reasons for limiting the composition of each component of the present invention alloy will be explained. The content of Al (aluminum) in atomic% is 88 ≦ Al ≦ 97, preferably 92 ≦
Al ≦ 97, particularly preferably 94 ≦ Al ≦ 97. This is because if it is less than 88 atom%, it becomes brittle, and if it exceeds 97 atom%, the strength and hardness are reduced. V (vanadium), Mo (molybdenum), Fe
(Fe), W (tungsten), Nb (niobium), Pd
The content of one or more selected from (palladium) is 1 atom% or more and 10 atom% or less, preferably 2 atom% or more and 8 atom% or less, particularly preferably 2 atom%
It is 6 atomic% or less. This means that their content is 1
If it is less than 10% by atom, no quasicrystalline phase is formed and the strength is remarkably reduced. Because.

【0010】Mn(マンガン)、Fe(鉄)、Co(コ
バルト)、Ni(ニッケル)、Cu(銅)の中から選択
される1種または2種以上の含有量は、5原子%未満、
好ましくは1〜3原子%、特に好ましくは1〜2原子%
である。これは、これらの含有量が5原子%を越えると
金属間化合物が生成、粗大化(粒径500nm以上)
し、著しく脆化し、強度が低下するからである。
The content of one or more selected from Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), and Cu (copper) is less than 5 atomic%.
Preferably 1 to 3 atomic%, particularly preferably 1 to 2 atomic%.
Is. This is because when the content of these exceeds 5 atom%, intermetallic compounds are formed and coarsened (particle size of 500 nm or more).
However, it is significantly brittle and the strength is reduced.

【0011】また、不可避不純物としては、Fe、S
i、Cu、Zn、Ti、O、C、Nなどが挙げられ、そ
の合計含有量は0.3重量%以下、好ましくは0.15
重量%以下、特に好ましくは0.10重量%以下であ
る。これは、0.3重量%を越えると急冷効果を低減
し、準結晶形成能を低下させるためである。なお、不可
避不純物のうち、特にOは0.1重量%以下、C、Nは
0.03重量%以下であることが好ましい。
Fe and S are unavoidable impurities.
i, Cu, Zn, Ti, O, C, N, etc., and the total content thereof is 0.3% by weight or less, preferably 0.15.
It is not more than wt%, particularly preferably not more than 0.10 wt%. This is because if it exceeds 0.3% by weight, the quenching effect is reduced and the quasicrystal forming ability is reduced. Among the unavoidable impurities, it is preferable that O is 0.1% by weight or less and C and N are 0.03% by weight or less.

【0012】前記アルミニウム基合金は、前記組成の合
金溶湯を液体急冷法で急冷凝固させて製造することがで
きる。この液体急冷法とは、溶融した合金を急速に冷却
させる方法をいい、例えば、単ロール法、双ロール法、
回転液中紡糸法などが特に有効であり、これらの方法で
は104〜106 K/sec程度の冷却速度が容易に得られ
る。この単ロール法、双ロール法などにより薄帯材料を
製造するには、溶湯を入れた石英管などの収納容器に、
石英管先端のノズル孔を通して約300〜10000rp
mの範囲の一定速度で回転している直径30〜300mm
の例えば銅あるいは銅合金製のロールなどに溶湯を噴出
する。これにより、幅が約1〜300mmで厚さが約5〜
500μmの各種薄帯材料を容易に得ることができる。
The aluminum-based alloy can be manufactured by rapidly solidifying the molten alloy having the above composition by a liquid quenching method. The liquid quenching method refers to a method of rapidly cooling a molten alloy, for example, a single roll method, a twin roll method,
The spinning liquid spinning method and the like are particularly effective, and a cooling rate of about 10 4 to 10 6 K / sec can be easily obtained by these methods. In order to manufacture a ribbon material by this single roll method, twin roll method, etc., in a storage container such as a quartz tube containing molten metal,
Approximately 300 to 10,000 rp through the nozzle hole at the tip of the quartz tube
Diameter 30 ~ 300mm rotating at constant speed in the range of m
The molten metal is ejected onto a roll made of, for example, copper or copper alloy. As a result, the width is about 1 to 300 mm and the thickness is about 5
Various ribbon materials of 500 μm can be easily obtained.

【0013】一方、回転液中紡糸法により、細線材料を
製造するには、ノズル孔を通じ、アルゴンガス背圧に
て、約50〜500rpmで回転する中空ドラム内に遠心
力により保持された深さ約1〜10cmの溶液冷媒層中に
溶湯を噴出して細線材料を容易に得ることができる。こ
の際のノズルからの噴出溶湯と冷媒面とのなす角度は、
約60〜90度、噴出溶湯と溶液冷媒面の相対速度比
は、約0.7〜0.9であることが好ましい。また、前記
の方法によらずに、スパッタリング法などの成膜法によ
り前記組成のアルミニウム基合金の薄膜を得ることがで
き、また高圧ガス噴霧法などの各種アトマイズ法やスプ
レー法により溶湯を急冷して前記組成のアルミニウム基
合金粉末を得ることができる。
On the other hand, in order to produce a fine wire material by the rotating submerged spinning method, a depth held by a centrifugal force in a hollow drum rotating at about 50 to 500 rpm through a nozzle hole and a back pressure of argon gas. A fine wire material can be easily obtained by jetting a molten metal into a solution refrigerant layer of about 1 to 10 cm. At this time, the angle formed by the molten metal ejected from the nozzle and the refrigerant surface is
About 60 to 90 degrees, the relative velocity ratio between the ejected molten metal and the solution refrigerant surface is preferably about 0.7 to 0.9. Further, instead of the above method, a thin film of the aluminum-based alloy having the above composition can be obtained by a film forming method such as a sputtering method, and the molten metal is rapidly cooled by various atomizing methods such as a high pressure gas atomizing method and a spray method. Thus, the aluminum-based alloy powder having the above composition can be obtained.

【0014】前記の方法により得られたアルミニウム基
合金の組織状態の例を以下に示す。 (1)アルミニウム相と準結晶相の混相組織。 (2)アルミニウムマトリックスからなる金属固溶体と
準結晶相の混相組織。 (3)準結晶相と安定または準安定な金属間化合物相の
混相組織。 (4)アルミニウムマトリックスからなる金属固溶体と
非晶質相と準結晶相の混相組織。 本願発明でいう微細結晶質相とは、結晶粒の最大径の平
均が1μm以下である結晶質相のことである。前記
(1)〜(4)に記載の各組織は、合金溶湯の冷却速度
を制御することで任意のものが得られる。
An example of the microstructure of the aluminum-based alloy obtained by the above method is shown below. (1) Mixed phase structure of aluminum phase and quasicrystalline phase. (2) A mixed phase structure of a metal solid solution composed of an aluminum matrix and a quasicrystalline phase. (3) A mixed phase structure of a quasicrystalline phase and a stable or metastable intermetallic compound phase. (4) A mixed phase structure of a metal solid solution composed of an aluminum matrix, an amorphous phase and a quasi-crystalline phase. The fine crystalline phase referred to in the present invention is a crystalline phase in which the average of the maximum diameters of crystal grains is 1 μm or less. Any of the structures described in (1) to (4) above can be obtained by controlling the cooling rate of the molten alloy.

【0015】前記各組織状態の合金の特性 (1)と(2)に示す混相組織状態の合金は、高強度を
有し、良好な曲げ延性を有する。(3)に示す混相組織
状態の合金は、(1)と(2)に示す混相組織状態の合
金よりも高強度であるが、延性は劣る。しかし、高強度
ではある。(4)に示す混相組織状態の合金は、高強
度、高靱性、高延性である。
Properties of Alloys in Various Structures The alloys in mixed phase structure shown in (1) and (2) have high strength and good bending ductility. The alloy in the mixed phase structure state shown in (3) has higher strength than the alloys in the mixed phase structure state shown in (1) and (2), but the ductility is inferior. However, it has high strength. The alloy in the mixed phase structure state shown in (4) has high strength, high toughness, and high ductility.

【0016】前記の各組織状態は、通常のX線回折法や
透過電子顕微鏡観察によって容易に知ることができる。
準結晶が存在する場合は、準結晶相特有のなだらかなピ
ークを示す。前記(1)〜(3)に記載した混相組織状
態は合金溶湯の冷却速度を制御することで任意のものが
得られる。前記(4)に記載した組織状態の合金は、A
lリッチの組織(例えば、Al≧92原子%)の合金溶
湯を急冷することで任意のものが得られる。
Each of the above-mentioned tissue states can be easily known by a usual X-ray diffraction method or observation with a transmission electron microscope.
When a quasicrystal is present, it exhibits a gentle peak peculiar to the quasicrystal phase. Any of the multiphase microstructure states described in (1) to (3) above can be obtained by controlling the cooling rate of the molten alloy. The textured alloy described in (4) above is A
Arbitrary alloys can be obtained by rapidly cooling an alloy melt having an l-rich structure (for example, Al ≧ 92 atomic%).

【0017】本発明のアルミニウム合金は、結晶化温度
近傍(結晶化温度±50℃)または微細結晶相の安定温
度領域内の高温域において、超塑性現象を示すので、容
易に押出加工やプレス加工、熱間鍛造等の加工を行なう
ことができる。従って、薄帯、線、板状あるいは粉末の
形態で得られた前記組成のアルミニウム基合金を前記温
度で押出加工、プレス加工、熱間鍛造加工することで、
容易にバルク材を得ることができる。更に前記組成のア
ルミニウム基合金は、高度の粘さを有するので、180
度曲げ可能なものとなる。
Since the aluminum alloy of the present invention exhibits a superplastic phenomenon in the vicinity of the crystallization temperature (crystallization temperature ± 50 ° C.) or in the high temperature range within the stable temperature range of the fine crystal phase, it is easily extruded or pressed. Processing such as hot forging can be performed. Therefore, by extruding, pressing, hot forging the aluminum-based alloy of the above composition obtained in the form of ribbon, wire, plate or powder,
A bulk material can be easily obtained. Further, since the aluminum-based alloy having the above composition has a high degree of viscosity,
It will be bendable.

【0018】また、希土類元素を含んでいると、その希
土類元素の活性のために合金表面の不動態膜に不均一性
を生じやすく、その部分から内部への腐蝕が進行する欠
点があるが、前記構造の合金にあっては希土類元素を含
んでいないためにその点の問題も解決されている。
If the rare earth element is contained, the passivation film on the surface of the alloy is likely to be nonuniform due to the activity of the rare earth element, and there is a drawback that corrosion from that portion to the inside proceeds. Since the alloy having the above structure does not contain a rare earth element, the problem in that respect has been solved.

【0019】次に前記組成のアルミニウム基合金につい
て、バルク(塊)状の部材を製造する場合について説明
する。本発明に係るアルミニウム基合金は、加熱すると
微細結晶相を析出して結晶化するとともに、アルミニウ
ムマトリックス(α相)を析出し、それ以上の温度に加
熱すると金属間化合物も析出するので、これらの性質を
利用して高強度と延性を有するバルク化を行なうことが
できる。具体的には、急冷法により製造した薄帯合金を
ボールミルにて粉砕し、真空ホットプレスにより真空下
(例えば、10-3Torr)、結晶化温度よりも多少低い
温度で(例えば470K程度で)圧粉することにより直
径数十mm、長さ数十mmの押出し用ビレットを作成する。
このビレットを押出機のコンテナ内にセットし、結晶化
温度よりも若干高い温度で数十分保持した後、押出加工
を行なって丸棒などの所望の形状の押出材を得ることが
できる。 (本発明の作用)AlにV、Mo、Fe、W、Nb、P
dのいずれか1種を所定量添加することで、準結晶相形
成能が向上し、合金の強度、硬度、靱性が向上する。更
に、Mn、Fe、Co、Ni、Cuを所定量添加するこ
とで急冷効果が向上し、組織の熱的安定性が向上し、か
つ、強度および硬度が向上する。
Next, with respect to the aluminum-based alloy having the above composition, a case of manufacturing a bulk (lump) member will be described. The aluminum-based alloy according to the present invention precipitates a fine crystalline phase when heated and crystallizes, and also precipitates an aluminum matrix (α phase), and when heated to a temperature higher than that, an intermetallic compound also precipitates. By utilizing the properties, bulking having high strength and ductility can be performed. Specifically, the ribbon alloy produced by the quenching method is crushed by a ball mill, and is vacuum hot pressed under a vacuum (for example, 10 −3 Torr) at a temperature slightly lower than the crystallization temperature (for example, at about 470 K). An extruding billet having a diameter of several tens of millimeters and a length of several tens of millimeters is prepared by pressing.
This billet can be set in a container of an extruder, held at a temperature slightly higher than the crystallization temperature for several tens of minutes, and then extruded to obtain an extruded material having a desired shape such as a round bar. (Operation of the present invention) V, Mo, Fe, W, Nb, P on Al
By adding a predetermined amount of any one of d, the quasi-crystal phase forming ability is improved, and the strength, hardness and toughness of the alloy are improved. Furthermore, by adding Mn, Fe, Co, Ni, and Cu in a predetermined amount, the quenching effect is improved, the thermal stability of the structure is improved, and the strength and hardness are improved.

【0020】[0020]

【実施例】高周波溶解炉により所定の成分組成を有する
溶融合金を製造し、これを図1に示すような先端に小孔
5(孔径:0.2〜0.5mm)を有する石英管1に装入
し、加熱溶解した後、その石英管1を銅製のロール2の
直上に設置し、ロール2を回転数4000rpmで高速回
転させ、石英管1にアルゴンガス圧(0.7kg/cm3)を
かけて石英管1の小孔5から溶湯をロール2の表面に噴
射して急冷することにより急冷凝固させて合金薄帯4を
得た。前記製造条件により、表1ないし表24に示す組
成(原子%)の多数の合金薄帯試料(幅1mm、厚さ20
μm)を作成し、各薄帯試料につき、硬度(Hv)と引
張破断強度(σf:MPa)を測定し、表1ないし表24
に示す結果を得た。硬度は、微小ビッカース硬度計によ
る測定値(DPN:Diamond Pyramid Number)である。
更に、各薄帯試料について、コ字状になるように180
度折り曲げて端部どうしを密着させる180度密着曲げ
試験を行なった結果、破断しない程度の延性を示すもの
をDucで示し、破断したものをBriで示した。
EXAMPLE A molten alloy having a predetermined composition was manufactured in a high frequency melting furnace, and this was applied to a quartz tube 1 having a small hole 5 (hole diameter: 0.2 to 0.5 mm) at the tip as shown in FIG. After charging and melting by heating, the quartz tube 1 is placed directly above the copper roll 2, the roll 2 is rotated at a high speed at 4000 rpm, and the quartz tube 1 is supplied with an argon gas pressure (0.7 kg / cm 3 ). Then, the molten metal was sprayed from the small holes 5 of the quartz tube 1 onto the surface of the roll 2 to be rapidly cooled and rapidly solidified to obtain an alloy ribbon 4. Depending on the manufacturing conditions, a large number of alloy ribbon samples (width 1 mm, thickness 20) having compositions (atomic%) shown in Tables 1 to 24
μm) was prepared, and the hardness (Hv) and the tensile breaking strength (σ f : MPa) of each ribbon sample were measured, and Table 1 to Table 24
The results shown in are obtained. The hardness is a value measured by a micro Vickers hardness meter (DPN: Diamond Pyramid Number).
Furthermore, for each ribbon sample, make 180
As a result of a 180 degree close contact bending test in which the end portions are brought into close contact with each other by bending, the one showing ductility that does not break is shown by Duc, and the broken one is shown by Bri.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】[0027]

【表7】 [Table 7]

【0028】[0028]

【表8】 [Table 8]

【0029】[0029]

【表9】 [Table 9]

【0030】[0030]

【表10】 [Table 10]

【0031】[0031]

【表11】 [Table 11]

【0032】[0032]

【表12】 [Table 12]

【0033】[0033]

【表13】 [Table 13]

【0034】[0034]

【表14】 [Table 14]

【0035】[0035]

【表15】 [Table 15]

【0036】[0036]

【表16】 [Table 16]

【0037】[0037]

【表17】 [Table 17]

【0038】[0038]

【表18】 [Table 18]

【0039】[0039]

【表19】 [Table 19]

【0040】[0040]

【表20】 [Table 20]

【0041】[0041]

【表21】 [Table 21]

【0042】[0042]

【表22】 [Table 22]

【0043】[0043]

【表23】 [Table 23]

【0044】[0044]

【表24】 [Table 24]

【0045】表1ないし表24に示す結果から、Alー
V2元系、AlーMo2元系、AlーW2元系、Alー
Fe2元系、AlーNb2元系、あるいはAl-Pd2
元系合金に対し、元素Mとして、Mn、Fe、Co、N
i、Cuの1種を添加してなる合金においては、原子%
でAlbalQaMb、1≦a≦10、0<b<5、3≦a+b
≦12、Q=V、Mo、Fe、W、Nb、Pd、M=M
n、Fe、Co、Ni、Cuなる関係を満足させること
によって、耐力が高く、硬度が高く、曲げにも強く加工
が可能なアルミニウム基合金を得ることができることが
明らかになった。
From the results shown in Tables 1 to 24, Al-V binary system, Al-Mo binary system, Al-W binary system, Al-Fe binary system, Al-Nb binary system, or Al-Pd2 system.
Mn, Fe, Co, N as element M for the original alloy
In alloys containing one of i and Cu, atomic%
With Al bal QaMb, 1 ≦ a ≦ 10, 0 <b <5, 3 ≦ a + b
≦ 12, Q = V, Mo, Fe, W, Nb, Pd, M = M
By satisfying the relationship of n, Fe, Co, Ni, and Cu, it has been revealed that an aluminum-based alloy having high yield strength, high hardness, and strong bending resistance can be obtained.

【0046】表1ないし表9に示す本発明に係る試料に
おいては、通常のアルミニウム基合金がHv:50〜1
00DPN程度であるのに対して295〜375DPN
と極めて 高い硬度を示している。次に、引張破断強度
(σf)に関しては、通常の時効硬化型アルミニウム基
合金(Al-Si-Fe系)の値が、200〜600MP
aであるのに対し、本発明試料のものは630〜135
0MPaの範囲になり、極めて優れていることが明らか
になった。なお、引張強さに関し、JIS規定の600
0系あるいは7000系のアルミニウム基合金において
は、250〜300MPa程度であり、Fe系の構造用
鋼板で400MPa程度、Fe系の高張力鋼板で800
〜980MPa程度であることを考慮すると、本発明に
係るアルミニウム基合金が極めて優れていることが明ら
かである。
In the samples according to the present invention shown in Tables 1 to 9, the usual aluminum-based alloy has Hv: 50-1.
Approximately 00DPN, but 295-375DPN
And shows extremely high hardness. Next, regarding the tensile breaking strength (σf), the value of a usual age hardening type aluminum-based alloy (Al-Si-Fe system) is 200 to 600MP.
In contrast to a, the sample of the present invention has 630 to 135
It was in the range of 0 MPa, which proved to be extremely excellent. Regarding tensile strength, JIS standard 600
In the 0-based or 7000-based aluminum-based alloy, the pressure is about 250 to 300 MPa, the Fe-based structural steel sheet is about 400 MPa, and the Fe-based high-tensile steel sheet is 800 MPa.
Considering that it is about 980 MPa, it is clear that the aluminum-based alloy according to the present invention is extremely excellent.

【0047】図2は、Al944Fe2なる組成の合金試
料のX線回折図形を示し、図3は Al95Mo3Ni2なる
組成の合金試料のX線回折図形を示し、図4は Al91
6Co3なる組成の合金試料のX線回折図形を示すもの
で、これらの図は、3つの合金試料がfcc構造の微細な
Al結晶相と微細な正20面体準結晶との混相 組織と
なっていることを示している。図中において、(11
1)、(200)、(220)、(311)で示すピー
クは、fcc構造のAlの結晶ピークであり、 (2111
11)、(221001)で示すピークは、正20面体
準結晶のなだらかなピークである。図5はAl944
2なる組成の合金試料を0.67k/sの昇温速度で
加熱した場合のDSC(示差走査熱量測定)曲線を示す
ものである。この図においては、高温側において、準結
晶相が安定な結晶相に変化するときのなだらかな発熱ピ
ークが現われている。
FIG. 2 shows Al94VFourFe2Alloy composition
The X-ray diffraction pattern of the material is shown in FIG. Al95Mo3Ni2Become
The X-ray diffraction pattern of the alloy sample having the composition is shown in FIG. Al91N
b6Co3Showing the X-ray diffraction pattern of alloy samples of different composition
In these figures, the three alloy samples show fine fcc structure.
Mixed phase structure of Al crystal phase and fine icosahedral quasicrystal and
It has become. In the figure, (11
1), (200), (220), and (311)
Is a crystal peak of Al of the fcc structure, (2111
The peaks shown in 11) and (221001) are regular icosahedrons.
It is a gentle peak of a quasicrystal. Figure 5 shows Al94VFourN
i2Alloy composition of the following composition at a heating rate of 0.67 k / s
The DSC (differential scanning calorimetry) curve when heated is shown.
Things. In this figure, on the high temperature side
When the crystal phase changes to a stable crystal phase, a gentle heat generation
Is appearing.

【0048】[0048]

【発明の効果】以上説明したように本発明に係るアルミ
ニウム基合金は、高硬度材料、高強度材料、高剛性材料
として有用であるとともに、曲げにも強いので機械加工
もできるなどの優れた特性を有する。以上のことから本
発明に係るアルミニウム基合金は、航空機、車両、船舶
などの構造用部材、あるいはエンジン部分の構造用部
材、または、建築用外装材、サッシ、屋根材として、更
には、海水機器用部材、原子炉用部材などとして広く使
用することができる。
INDUSTRIAL APPLICABILITY As described above, the aluminum-based alloy according to the present invention is useful as a high hardness material, a high strength material, and a high rigidity material, and has excellent characteristics that it can be machined because it is strong against bending. Have. From the above, the aluminum-based alloy according to the present invention is used as a structural member for aircraft, vehicles, ships, etc., or a structural member for an engine part, or as a building exterior material, sash, roof material, and further, seawater equipment. It can be widely used as a member for a reactor, a member for a nuclear reactor, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明合金を急冷凝固して薄帯を製造する際
に使用した単ロール装置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a single roll device used when a ribbon is produced by rapidly solidifying the alloy of the present invention.

【図2】 Al944Fe2なる組成の合金のX線回折分
析結果を示す図である。
FIG. 2 is a diagram showing an X-ray diffraction analysis result of an alloy having a composition of Al 94 V 4 Fe 2 .

【図3】 Al95Mo3Ni2なる組成の合金のX線回折
分析結果を示す図である。
FIG. 3 is a view showing an X-ray diffraction analysis result of an alloy having a composition of Al 95 Mo 3 Ni 2 .

【図4】 Al91Nb6Co3なる組成の合金のX線回折
分析結果を示す図である。
FIG. 4 is a diagram showing an X-ray diffraction analysis result of an alloy having a composition of Al 91 Nb 6 Co 3 .

【図5】 Al944Ni2なる組成の合金の熱的特性を
示す図である。
FIG. 5 is a diagram showing thermal characteristics of an alloy having a composition of Al 94 V 4 Ni 2 .

【符号の説明】[Explanation of symbols]

1・・・石英管、2・・・ロール、3・・・溶湯、4・・・薄帯、5
・・・ノズル孔。
1 ... Quartz tube, 2 ... Roll, 3 ... Molten metal, 4 ... Thin strip, 5
... Nozzle holes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 木村 久道 宮城県亘理郡亘理町荒浜字藤平橋44 (72)発明者 堀尾 裕磨 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Inoue Kawauchi Muzen, Aoba-ku, Sendai City, Miyagi Prefecture 11-806 (72) Inventor Hisami Kimura 44, Fujiwara Bridge, Watarihama, Watari-gun, Miyagi Prefecture (72) Invention Yuma Horio 10-1 Nakazawa-machi, Hamamatsu City, Shizuoka Prefecture Yamaha Stock Company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式 Al100-(a+b)QaMb (ただしQは、V、Mo、Fe、W、Nb、Pdの中か
ら選択される1種または2種以上の金属元素を示し、M
は、Mn、Fe、Co、Ni、Cuの中から選択される
1種または2種以上の金属元素を示す。)で示される組
成を有し、 組成比を示すa,bは、原子%で、1≦a≦10、0<b<
5、3≦a+b≦12なる関係を満足し、かつ合金組織中
に準結晶相を有することを特徴とする高強度高剛性アル
ミニウム基合金。
1. The general formula Al 100- ( a + b ) QaMb (wherein Q represents one or more metal elements selected from V, Mo, Fe, W, Nb and Pd, M
Indicates one or more metal elements selected from Mn, Fe, Co, Ni and Cu. ), The composition ratios a and b are atomic% and 1 ≦ a ≦ 10, 0 <b <
5, a high-strength and high-rigidity aluminum-based alloy, which satisfies the relationship of 5 and 3 ≦ a + b ≦ 12 and has a quasicrystalline phase in the alloy structure.
【請求項2】 請求項1記載の組成と組成比とを有し、
アルミニウム相と準結晶相の混相組織、アルミニウムマ
トリックスからなる金属固溶体と準結晶相の混相組織、
準結晶相と安定または準安定な金属間化合物相の混相組
織、アルミニウムマトリックスからなる金属固溶体と非
晶質相と準結晶相の混相組織の少なくとも1つの組織を
有することを特徴とする高強度高剛性アルミニウム基合
金。
2. The composition and the composition ratio according to claim 1,
Mixed phase structure of aluminum phase and quasicrystalline phase, mixed phase structure of metal solid solution consisting of aluminum matrix and quasicrystalline phase,
High strength and high characteristics characterized by having at least one structure of a mixed phase structure of a quasicrystalline phase and a stable or metastable intermetallic compound phase, a metal solid solution consisting of an aluminum matrix, and a mixed phase structure of an amorphous phase and a quasicrystalline phase Rigid aluminum base alloy.
JP26876295A 1994-11-02 1995-10-17 High strength and high rigidity aluminum base alloy Expired - Fee Related JP3504401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26876295A JP3504401B2 (en) 1994-11-02 1995-10-17 High strength and high rigidity aluminum base alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27006294 1994-11-02
JP6-270062 1994-11-02
JP26876295A JP3504401B2 (en) 1994-11-02 1995-10-17 High strength and high rigidity aluminum base alloy

Publications (2)

Publication Number Publication Date
JPH08199317A true JPH08199317A (en) 1996-08-06
JP3504401B2 JP3504401B2 (en) 2004-03-08

Family

ID=26548467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26876295A Expired - Fee Related JP3504401B2 (en) 1994-11-02 1995-10-17 High strength and high rigidity aluminum base alloy

Country Status (1)

Country Link
JP (1) JP3504401B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334911B2 (en) 1997-02-20 2002-01-01 Ykk Corporation High-strength, high-ductility aluminum alloy
JP2008231519A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Quasi-crystal-particle-dispersed aluminum alloy and production method therefor
JP2008248343A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Aluminum-based alloy
WO2010087605A3 (en) * 2009-01-28 2010-11-04 자동차부품연구원 Heat resistant aluminum alloy, and method for manufacturing same
KR101254570B1 (en) * 2009-01-28 2013-04-15 자동차부품연구원 Fe-Ni solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101254569B1 (en) * 2009-01-28 2013-04-15 자동차부품연구원 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101295807B1 (en) * 2013-05-06 2013-08-12 자동차부품연구원 Fe-Ni solid solution phase strengthened aluminum alloys and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334911B2 (en) 1997-02-20 2002-01-01 Ykk Corporation High-strength, high-ductility aluminum alloy
JP2008231519A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Quasi-crystal-particle-dispersed aluminum alloy and production method therefor
JP2008248343A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Aluminum-based alloy
WO2010087605A3 (en) * 2009-01-28 2010-11-04 자동차부품연구원 Heat resistant aluminum alloy, and method for manufacturing same
CN102301020A (en) * 2009-01-28 2011-12-28 自动车部品研究院 Heat resistant aluminum alloy, and method for manufacturing same
KR101254570B1 (en) * 2009-01-28 2013-04-15 자동차부품연구원 Fe-Ni solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101254569B1 (en) * 2009-01-28 2013-04-15 자동차부품연구원 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101295807B1 (en) * 2013-05-06 2013-08-12 자동차부품연구원 Fe-Ni solid solution phase strengthened aluminum alloys and manufacturing method thereof

Also Published As

Publication number Publication date
JP3504401B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
US5858131A (en) High strength and high rigidity aluminum-based alloy and production method therefor
US5509978A (en) High strength and anti-corrosive aluminum-based alloy
EP0339676B1 (en) High strength, heat resistant aluminum-based alloys
JP2538692B2 (en) High strength, heat resistant aluminum base alloy
JPH0637696B2 (en) Method for manufacturing high-strength, heat-resistant aluminum-based alloy material
EP0361136A1 (en) High strength magnesium-based alloys
EP0584596A2 (en) High strength and anti-corrosive aluminum-based alloy
EP0333216B1 (en) High strength, heat resistant aluminum-based alloys
JPH07268528A (en) High strength aluminum-based alloy
JPH07238336A (en) High strength aluminum-base alloy
EP0558977B1 (en) High-strength, rapidly solidified alloy
JPH09263915A (en) High strength and high ductility aluminum base alloy
JP2703481B2 (en) High strength and high rigidity aluminum base alloy
JP3504401B2 (en) High strength and high rigidity aluminum base alloy
US5240517A (en) High strength, heat resistant aluminum-based alloys
JPH05239583A (en) High strength heat resistant aluminum alloy, its compacted and caked material and its production
EP0710730B1 (en) High strength and high rigidity aluminium based alloy and production method therefor
US6017403A (en) High strength and high rigidity aluminum-based alloy
JPH10237607A (en) Aluminum alloy with high strength and high ductility
JPH0748646A (en) High strength magnesium base alloy and production thereof
JP2583718B2 (en) High strength corrosion resistant aluminum base alloy
JPH05306424A (en) High strength magnesium-base alloy and its laminated and solidified material
JP2703480B2 (en) High strength and high corrosion resistance aluminum base alloy
JPH0693394A (en) Aluminum-base alloy with high strength and corrosion resistance
JP3485961B2 (en) High strength aluminum base alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees