KR101254569B1 - Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof - Google Patents

Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof Download PDF

Info

Publication number
KR101254569B1
KR101254569B1 KR1020090006694A KR20090006694A KR101254569B1 KR 101254569 B1 KR101254569 B1 KR 101254569B1 KR 1020090006694 A KR1020090006694 A KR 1020090006694A KR 20090006694 A KR20090006694 A KR 20090006694A KR 101254569 B1 KR101254569 B1 KR 101254569B1
Authority
KR
South Korea
Prior art keywords
heat
aluminum
aluminum alloy
manganese
iron
Prior art date
Application number
KR1020090006694A
Other languages
Korean (ko)
Other versions
KR20100087588A (en
Inventor
성시영
한범석
유용문
노상호
Original Assignee
자동차부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자동차부품연구원 filed Critical 자동차부품연구원
Priority to KR1020090006694A priority Critical patent/KR101254569B1/en
Priority to US13/146,304 priority patent/US20120020829A1/en
Priority to CN201080005911.3A priority patent/CN102301020B/en
Priority to EP10735996.0A priority patent/EP2383358A4/en
Priority to PCT/KR2010/000454 priority patent/WO2010087605A2/en
Publication of KR20100087588A publication Critical patent/KR20100087588A/en
Application granted granted Critical
Publication of KR101254569B1 publication Critical patent/KR101254569B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 알루미늄에 철(Fe)와 망간(Mn)의 합금원소가 전율고용체 강화상을 이루며 결합된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금에 관한 것으로, 본 발명에 따른 내열 알루미늄 합금은 서로 전율고용체를 형성하고, 기지금속인 알루미늄과는 고용한이 없는 관계로 형성된 전율고용체 강화상이 300℃ 이상의 고온에서도 알루미늄과 반응하여 조대화되거나 상분해가 일어나지 않는 혁신적인 내열특성을 갖는다.The present invention relates to a Fe-Mn high-temperature high-strength reinforced heat-resistant aluminum alloy, characterized in that the alloying elements of iron (Fe) and manganese (Mn) in aluminum to form a high-temperature solid solution strengthening phase, the heat-resistant aluminum according to the present invention The alloys form a thermally solid solution with each other, and the thermally conductive solidified phase formed without a solid solution with aluminum, which is a base metal, reacts with aluminum even at a high temperature of 300 ° C. or higher, so that it does not coarsen or phase-degrade.

철, 망간, 전율고용체, 내열 알루미늄 합금 Iron, Manganese, Electrolytic Solid, Heat Resistant Aluminum Alloy

Description

Fe­Mn전율고용 강화형 내열 알루미늄 합금 및 그 제조방법{Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof}Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof}

본 발명은 내열 알루미늄 합금에 관한 것으로, 보다 상세하게는 알루미늄 기지에 철(Fe)과 망간(Mn)을 합금원소로 첨가하여 고온에서도 안정한 Fe-Mn 전율고용 강화형 내열 알루미늄 합금 및 그 제조방법에 관한 것이다.The present invention relates to a heat-resistant aluminum alloy, and more particularly, to the Fe-Mn electrification-employed reinforced heat-resistant aluminum alloy stable in high temperature by adding iron (Fe) and manganese (Mn) as an alloying element to an aluminum base, and a method of manufacturing the same. It is about.

일반적으로 현재까지 개발된 내열 알루미늄 합금은 알루미늄 및 알루미늄 합금 기지에 Al-Si-천이원소 금속간 화합물 또는 Al-X(Fe, Fe, Cr, Mn, Ti) 금속간 화합물을 액상에서 고상으로의 상변태인 응고시 형성되는 정출상과 열처리를 통하여 고상에서 형성된 석출상의 형태로 분산 제어함으로써 내열특성을 구현하도록 하고 있다. In general, heat-resistant aluminum alloys developed to date are phase transformations of Al-Si-transition intermetallic compounds or Al-X (Fe, Fe, Cr, Mn, Ti) intermetallic compounds from liquid to solid phase on aluminum and aluminum alloy bases. By controlling the dispersion in the form of the precipitated phase formed in the solid phase through the crystallized phase and heat treatment formed during phosphorus solidification to implement the heat resistance characteristics.

그러나 이와 같이 알루미늄 및 알루미늄 합금 기지에 금속간 화합물을 정출 및 석출로 내열특성을 향상시켜온 합금은 200℃이상의 환경에서 내열특성이 저하되는 문제점이 있다.However, the alloy that has improved the heat resistance characteristics by the crystallization and precipitation of the intermetallic compound on the aluminum and aluminum alloy base as described above has a problem that the heat resistance properties are deteriorated in an environment of 200 ℃ or more.

도 1은 종래 내열 알루미늄 합금에 첨가된 원소들의 고온거동을 나타낸 개념 도로, 이에 도시된 바와 같이 종래 내열 알루미늄 합금은 200℃이상에서 장시간 유지된 경우 정출 및 석출된 금속간 화합물이 열역학적 평형을 유지하기 위하여 기지인 알루미늄과 반응하여 새로운 중간상을 형성하거나, 금속간 화합물이 조대화되어 crack의 발생 및 전이가 일어나는 문제점이 있으며, 이로 인해 내열특성이 저하되므로 200℃이상의 환경에서 사용의 제한을 받게 된다. 1 is a conceptual diagram showing the high temperature behavior of the elements added to the conventional heat-resistant aluminum alloy, as shown in the conventional heat-resistant aluminum alloy to maintain the thermodynamic equilibrium of the precipitated and precipitated intermetallic compound is maintained for a long time at 200 ℃ or more In order to form a new intermediate phase by reacting with a known aluminum, or coarsening of intermetallic compounds, there is a problem that occurs the generation and transition of the crack, this is because the heat-resistant properties are deteriorated is limited to use in the environment above 200 ℃.

한편, 알루미늄 복합재료의 경우에는 알루미늄 합금의 기지에 질화물, 붕화물, 산화물 및 탄화물을 강화상으로 분산시켜 내열특성을 구현하도록 하고 있다. 이러한 알루미늄 기지 복합재료는 금속간 화합물을 이용한 내열합금보다 내열 특성이 우수하다.Meanwhile, in the case of an aluminum composite material, nitrides, borides, oxides, and carbides are dispersed in a reinforced phase on the base of an aluminum alloy to realize heat resistance characteristics. The aluminum matrix composite material has better heat resistance than the heat resistant alloy using an intermetallic compound.

그러나 이들 알루미늄 기지 복합재료는 강화상을 균일하게 제어하는 것이 어렵고, 분말을 이용한 복합재료의 경우 가격경쟁력이 없으며, 기지금속 알루미늄 및 알루미늄 합금과 강화상간에 계면반응이 발생될 경우에는 그 특성이 급격하게 저하되는 근본적인 문제점이 있다. However, these aluminum matrix composites are difficult to control the reinforcement phase uniformly, and there is no price competitiveness in the composite materials using powder, and the characteristics of the aluminum matrix composites are drastically when an interfacial reaction occurs between the base metal aluminum and the aluminum alloy and the reinforcement phase. There is an underlying problem that is degraded.

즉, 상기와 같은 금속간 화합물 및 복합재료 강화상 제어 내열합금은 200℃ 이상의 고온에서는 내열특성을 나타내는 금속간 화합물이나 강화상이 불필요한 반응을 함에 따라 오히려 상기 내열합금의 내열특성이 급격하게 저하되는 문제점이 있었다.That is, the above-described intermetallic compound and composite material-reinforced phase control heat-resistant alloy has a problem in that the heat-resistant property of the heat-resistant alloy is rapidly deteriorated as the intermetallic compound or the reinforcement phase exhibits heat resistance at high temperature of 200 ° C. or more. There was this.

아울러 현재까지 개발된 내열 알루미늄 합금을 비롯하여 대부분의 상용 알루미늄 합금은 대부분 10종 이상의 첨가원소를 포함하고 있어 알루미늄 합금을 재활용할 경우 재용융시 알루미늄과 첨가원소간의 불필요한 반응 등으로 인하여 능동적 인 선별이 어렵기 때문에 재활용에 제한이 따르고 있다. In addition, most commercial aluminum alloys, including heat-resistant aluminum alloys developed to date, contain more than 10 additive elements. Therefore, when recycling aluminum alloys, active screening is difficult due to unnecessary reaction between aluminum and the additive elements. Because of this, there are restrictions on recycling.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, The present invention is to solve the above problems,

철(Fe)와 망간(Mn)을 합금원소로 하여 고온에서도 기지금속인 알루미늄과 반응하여 조대화되거나 상분해가 발생하지 않는 안정한 강화상을 형성하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금 및 그 제조방법을 제공하는 것을 목적으로 한다.Fe-Mn electrified tempered reinforced heat-resistant aluminum alloy that uses iron (Fe) and manganese (Mn) as an alloying element to form a stable reinforcement phase that does not coarsen or phase-degrade when reacted with aluminum as a base metal even at high temperatures It is an object to provide a manufacturing method.

또한, 본 발명은 200℃는 물론 1245℃까지의 고온에서도 안정하며, 알루미늄과의 비중이 2.8배 차이가 나는 강화상을 갖는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금 및 그 제조방법을 제공하는 것을 목적으로 한다.In addition, the present invention is stable even at high temperature up to 200 ℃ as well as 1245 ℃, and provides a Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy having a reinforcement phase that differs from the specific gravity with aluminum by 2.8 times, and a method of manufacturing the same The purpose.

상기와 같은 목적을 달성하기 위하여 본 발명은,According to an aspect of the present invention,

알루미늄에 철(Fe)와 망간(Mn)의 합금원소가 전율고용체 강화상을 이루며 결합된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금을 제공한다.An alloy element of iron (Fe) and manganese (Mn) in aluminum provides an electrothermal solid-solution strengthening heat-resistant aluminum alloy, which is characterized in that it is combined.

또한, 본 발명은 Fe-Mn 전율고용 강화형 내열 알루미늄 합금을 제조하기 위하여 알루미늄을 융해한 알루미늄 용탕에 합금원소로서 철(Fe)와 망간(Mn)을 각각 첨가하거나 Fe-Mn 모합금의 형태로 첨가한 후, 상기 합금원소가 용해되면 주조하여 제조하는 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 제조방법을 제공한다.In addition, the present invention is to add Fe (Mn) and manganese (Mn) as an alloying element to the molten aluminum molten aluminum in order to manufacture the Fe-Mn thermally strengthening reinforced heat-resistant aluminum alloy, or in the form of a Fe-Mn mother alloy After addition, when the alloying element is dissolved, the present invention provides a method for producing a Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy, which is produced by casting.

상술한 바와 같이 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 철(Fe)와 망간(Mn)은 서로 전율고용체를 형성하고, 기지금속인 알루미늄과는 고용한이 없는 관계로 형성된 전율고용체 강화상이 300℃ 이상의 고온에서도 알루미늄과 반응하여 조대화되거나 상분해가 일어나지 않는 혁신적인 내열특성을 갖는다. As described above, in the Fe-Mn electrification-employment enhanced heat-resistant aluminum alloy according to the present invention, iron (Fe) and manganese (Mn) form an electrified solid with each other, and the electrothermal modulus formed without a solid solution with aluminum as a base metal The solid solution strengthening phase has innovative heat resistance characteristics that do not coarsen or phase-degrade by reacting with aluminum even at a high temperature of 300 ° C or higher.

또한, 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 1245℃까지 고온에서도 안정하기 때문에 내열알루미늄의 한계로 인하여 200℃ 이상에서는 경량합금인 알루미늄 합금을 적용할 수 없었던 디젤엔진 블럭에 적용함으로써 경량화효과를 극대화 할 수 있고, 현재 사용하고 있는 자동차 엔진의 내열한계를 높여서 연비향상을 추구할 수 있으며, 철(Fe)와 망간(Mn)으로 형성된 전율고용체의 융점은 알루미늄의 약 2배 가량이고, 비중은 알루미늄의 2.8배 이상인 특성을 이용하여 알루미늄과 철(Fe) 및 망간(Mn)의 합금원소를 재활용시 능동적으로 선별할 수 있는 특성을 바탕으로 다양한 분야에 환경친화적으로 널리 적용할 수 있다. In addition, since the Fe-Mn electrification-employment reinforced heat-resistant aluminum alloy according to the present invention is stable even at high temperatures up to 1245 ° C, it is applicable to diesel engine blocks in which aluminum alloys, which are light alloys, cannot be applied at 200 ° C or higher due to the limitation of heat-resistant aluminum. By maximizing the weight reduction effect, it is possible to pursue the fuel efficiency improvement by raising the heat resistance limit of the currently used car engine, and the melting point of the electrified solid formed of iron (Fe) and manganese (Mn) is about twice that of aluminum. Its specific gravity is 2.8 times higher than that of aluminum, and it can be applied to various fields in an environmentally-friendly manner based on the characteristic that it can actively select alloy elements of aluminum, iron (Fe) and manganese (Mn) during recycling. have.

이하에서는 본 발명에 대하여 좀 더 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

도 2는 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금에 첨가된 합금원소들의 안정한 고온거동을 나타낸 개념도로, 본 발명은 도 2에 도시된 바와 같이 알루미늄 기지에 서로 전율고용체를 형성하면서 알루미늄과는 고용한이 전혀 없는 합금원소 철(Fe)와 망간(Mn)을 첨가함으로써 고온에서도 분해되거나 조대화 되지 않는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금에 관한 것이다.Figure 2 is a conceptual diagram showing the stable high temperature behavior of the alloying elements added to the Fe-Mn electrification employment-enhanced heat-resistant aluminum alloy according to the present invention, while the present invention forms the electromechanical solid solution on the aluminum base as shown in FIG. It is related with the Fe-Mn conductivity-enhanced heat-resistant aluminum alloy that does not decompose or coarsen even at high temperatures by adding iron (Fe) and manganese (Mn).

이러한 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 알루미늄에 철(Fe)와 망간(Mn)의 합금원소가 전율고용체 강화상을 이루며 결합된 것이다.In the Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy according to the present invention, the alloying elements of iron (Fe) and manganese (Mn) are combined with aluminum to form a temporal solid solution strengthening phase.

상기 합금원소인 철(Fe)와 망간(Mn)은 서로 전율고용체를 형성하는 원소로서, 단상으로 존재하는 열역학적으로 안정한 전율고용체 강화상을 형성하게 된다.The alloy elements iron (Fe) and manganese (Mn) are elements that form a tremor solid solution, and form a thermodynamically stable tremor solid phase strengthening phase present in a single phase.

따라서 상기 철(Fe)와 망간(Mn)의 전율고용체(이하, Fe-Mn 전율고용체) 강화상은 200℃이상의 고온에서도 알루미늄과 전혀 반응하지 않는 안정한 강화상으로 존재하기 때문에 강화상이 분해되거나 조대화되지 않으며, 알루미늄의 융점까지 가열하여도 알루미늄에 형성된 전율고용체가 안정적으로 존재하며, 제조된 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금을 재용융하더라도 형성된 전율고용체 강화상이 안정적으로 존재할 수 있으며, 이는 후술되는 실험결과를 통해 확인할 수 있다. Therefore, the strengthening phase of the iron (Fe) and manganese (Mn), the strengthening phase (hereinafter, Fe-Mn tremor solid) solid phase is present as a stable strengthening phase that does not react with aluminum at all at a high temperature of more than 200 ℃ because the reinforced phase is not decomposed or coarsened And, even when heated to the melting point of aluminum, there is a stable presence of the solid-solution solid formed in the aluminum, even if the re-melting the Fe-Mn conductivity-enhanced heat-resistant aluminum alloy prepared according to the present invention can be stably formed a solid-state solid solution strengthening phase formed , This can be confirmed through the experimental results described below.

한편, 상기 합금원소의 총합은 알루미늄에 대하여 0.5중량%~10중량%가 함유된 것이 바람직하다. 이는 상기 합금원소의 총합이 알루미늄에 대하여 0.5 중량% 이하인 경우 함유된 합금원소의 양이 충분하지 않아 Fe-Mn 전율고용체의 강화효과가 적으며, 10 중량% 이상인 경우에는 Fe-Mn 전율고용체 강화상이 조대화 되며, 조대화된 강화상의 비중으로 인하여 주조성 및 편석의 문제를 야기시킬 수 있다.On the other hand, the total of the alloying elements is preferably contained 0.5% to 10% by weight relative to aluminum. This is because when the total amount of the alloying elements is less than 0.5% by weight with respect to aluminum, the amount of alloying elements contained is not sufficient, so the reinforcing effect of the Fe-Mn conductivity solid solution is less. Coarse and coarsened reinforcements can cause castability and segregation problems.

또한, 상기 합금원소를 구성하는 철(Fe)와 망간(Mn)은 전율고용체를 형성하는 원소들이기 때문에 혼합비율에 대하여 한정되지 않으나, 본 발명에서 상기 전체 합금원소에서 철(Fe)이 10~90중량%, 망간(Mn)이 90~10중량% 포함된 것이 더욱 바람직하다.In addition, iron (Fe) and manganese (Mn) constituting the alloying elements are not limited to the mixing ratio because they are the elements forming the tremor solid solution, iron (Fe) in the total alloying elements in the present invention 10 ~ 90 More preferably, 90% to 10% by weight of manganese (Mn) is included.

한편, 상기 전율고용체 강화상은 1245℃까지의 온도에서도 전율고용체의 안정한 화합물을 유지하는 것을 특징으로 하는데, 이는 후술하는 실험을 통해 Fe-Mn 전율고용체 강화상이 300℃이상 온도 및 재용융시에도 단상으로 존재하여 안정함을 확인할 수 있다. On the other hand, the modulus solidified solid phase is characterized in that to maintain a stable compound of the modulus solids at a temperature up to 1245 ℃, which is a Fe-Mn tremor solidified phase as a single phase at a temperature and remelting more than 300 ℃ through the experiment described below It can be confirmed that it exists and is stable.

이와 같은 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 알루미늄을 융해한 알루미늄 용탕에 합금원소로서 철(Fe)와 망간(Mn)을 각각 첨가하거나 Fe-Mn 모합금의 형태로 첨가한 후, 상기 합금원소가 용해되면 주조함으로서 제조되는 것이 바람직하며, 이때 상기 알루미늄을 융해하는 온도는 열손실을 감안하여 알루미늄의 융점인 660℃보다 30~40℃ 높은 700℃에서 이루어지는 것이 바람직하다.The Fe-Mn electrified tempered reinforced heat-resistant aluminum alloy according to the present invention is added to the molten aluminum molten aluminum in the form of an alloy element of iron (Fe) and manganese (Mn), respectively, or in the form of a Fe-Mn mother alloy After the melting of the alloying element is preferably produced by casting, wherein the temperature of melting the aluminum is preferably made at 700 30 ~ 40 ℃ higher than the melting point of aluminum 660 ℃ in consideration of heat loss.

여기서 Fe-Mn 모합금은 통상적으로 사용되는 다양한 용해법을 이용하여 제조가능하나, 열원으로 플라즈마 아크를 사용하며, 저진공에서 대기압까지 넓은 범위에 걸쳐 용해가 가능한 플라즈마 아크 용해법(Plasma Arc Melting, PAM)이나 전자유도 작용에 의하여 도체에 코일의 전류와 반대 방향의 와전류(eddyFerrent)가 흘러 발생하는 줄열(Joule heat)에 의하여 금속도체를 가열, 용해하는 것으로, 용탕의 강한 교반작용에 의하여 성분과 온도 제어가 용이한 진공 유도 용해법(MnaFeum Induction Melting, MnIM)에 의해 제조되는 것이 보다 바람직하다Here, the Fe-Mn master alloy can be manufactured using various melting methods commonly used, but using plasma arc as a heat source, plasma arc melting method (Plasma Arc Melting, PAM) that can be dissolved in a wide range from low vacuum to atmospheric pressure Or melting and heating the metal conductor by Joule heat, which is caused by the eddy current of the coil in the opposite direction to the current of the coil due to the electromagnetic induction action. More preferably, it is prepared by easy vacuum induction melting (MnIM).

또한, 상기 합금원소의 총합은 알루미늄에 대하여 0.5중량%~10중량%가 첨가된 것이 보다 바람직한데, 이는 상기 제조방법을 통해 제조되는 내열 알루미늄 합금의 Fe-Mn 전율고용체 강화상의 조대화로 인한 편석을 방지하면서 그 강화효과를 발휘할 수 있는 범위로 전술한 바 있다.In addition, the total of the alloying elements is more preferably added to 0.5% by weight to 10% by weight relative to aluminum, which is segregation due to the coarsening of the Fe-Mn electrolytic solid-solid reinforcement phase of the heat-resistant aluminum alloy prepared through the manufacturing method It has been described above to the extent that it can exert its reinforcing effect while preventing.

또한, 상기 합금원소로 첨가되는 철(Fe)와 망간(Mn)은 전율고용체를 형성하는 원소들이기 때문에 혼합비율에 대하여 한정되지 않으나, 본 발명에서 상기 전체 합금원소에서 철(Fe)이 10~90중량%, 망간(Mn)이 90~10중량% 첨가된 것이 더욱 바람직하다.Further, iron (Fe) and manganese (Mn) added as the alloying elements are not limited to the mixing ratio because they are the elements forming the solid-state solid solution, iron (Fe) in the total alloying elements in the present invention 10 ~ 90 More preferably, 90% to 10% by weight of manganese (Mn) is added.

삭제delete

이하 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 효과를 입증하기 위하여 다음과 같은 실험을 시행하였다.Hereinafter, the following experiments were conducted to prove the effect of the Fe-Mn electrification employment-enhanced heat-resistant aluminum alloy according to the present invention.

먼저, 도 3은 Fe-Mn의 이원계 상태도를 나타낸 그림으로, 이에 나타난 바와 같이 철(Fe)와 망간(Mn)은 서로 전율고용체를 형성하며, 알루미늄의 융점인 660℃보다 높은 1245℃까지 형성된 전율고용체가 고상으로 안정하게 존재하고 있는 것을 확인할 수 있었다.First, Figure 3 is a diagram showing a binary state diagram of Fe-Mn, as shown in the iron (Fe) and manganese (Mn) forms an electric solid solution to each other, the electrical conductivity formed to 1245 ℃ higher than the melting point of aluminum 660 ℃ It was confirmed that the solid solution exists stably in solid state.

즉, 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 알루미늄 의 융점보다 약 2배가량 높은 온도에서도 단상을 유지하고 있음을 확인할 수 있으며, 이를 통해 안정함을 보이고 있으며, 이를 통해 1245℃의 높은 온도에서도 Fe-Mn 전율고용체 강화상의 조대화나 분해가 발생하지 않는 특성을 이용하여 디젤엔진블럭에 용이하게 적용될 수 있다. In other words, it can be seen that the Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy according to the present invention maintains a single phase even at a temperature about 2 times higher than the melting point of aluminum, and shows stability through this, and thus 1245 ° C. It can be easily applied to diesel engine blocks by utilizing the characteristics that coarsening and decomposition of Fe-Mn electrolytic solid-solution strengthening phase does not occur even at high temperature.

<실시예 1>&Lt; Example 1 >

알루미늄을 700℃에서 융해한 알루미늄 용탕을 700℃를 유지한 상태에서 철(Fe)와 망간(Mn)을 각각 1.5중량%씩 용탕에 직접 첨가한 후, 첨가한 철(Fe)와 망간(Mn)이 모두 용해되도록 약 30분~60분간 유지한 뒤, 주조하여 내열 알루미늄 합금의 시편을 제조하였다.The aluminum molten aluminum melted at 700 ° C. was added to iron (Fe) and manganese (Mn) by 1.5 wt%, respectively, at 700 ° C., and then iron (Fe) and manganese (Mn) were added. After maintaining for about 30 minutes to 60 minutes to dissolve all, and cast to prepare a specimen of a heat-resistant aluminum alloy.

도 4는 상기 실시예 1에서 제조된 시편의 미세조직을 관찰한 광학 현미경 조직사진을 나타낸 것으로, 상기 시편을 SiC Emery paper #200, 400, 600, 800, 1000, 1500, 2400로 연마한 후, Al2O3 1㎛ 분말을 이용하여 미세연마한 후에 광학 현미경으로 조직을 관찰한 것으로, 도 4를 통해 본 발명의 제조방법에 따른 내열 알루미늄 합금은 30-50 ㎛ 정도 크기의 패시트(Facet) 형상의 강화상이 존재하고 있음을 확인할 수 있었다.Figure 4 shows an optical microscope histology of observing the microstructure of the specimen prepared in Example 1, after polishing the specimen with SiC Emery paper # 200, 400, 600, 800, 1000, 1500, 2400, After micropolishing using Al 2 O 3 1㎛ powder, the structure was observed by an optical microscope. Through the heat-resistant aluminum alloy according to the manufacturing method of the present invention through Figure 4 is a facet (Facet) of 30-50 ㎛ size It was confirmed that the reinforcement phase of the shape exists.

도 5는 상기 실시예 1에서 제조된 시편의 미세조직을 EPMA(Electron Probe Micro-Analyzer)로 맵핑(mapping)한 결과를 나타낸 것으로, 상기 도 4에서 확인된 facet 형상의 강화상은 Fe-Mn 전율고용체임을 확인할 수 있었다.FIG. 5 shows the results of mapping the microstructure of the specimen prepared in Example 1 to an Electron Probe Micro-Analyzer (EPMA). The facet-reinforced phase identified in FIG. 4 is a Fe-Mn electrolytic solid solution. I could confirm that.

다음은 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 고온 안정성을 확인하기 위한 것으로, 상기 실시예 1에서 제조된 시편을 300℃에서 200시간 열처리한 후, 열처리된 시편의 미세조직을 광학현미경으로 관찰한 결과를 도 6에 나타내었다.The following is to confirm the high temperature stability of the Fe-Mn electrification employment-enhanced heat-resistant aluminum alloy according to the present invention, after the specimen prepared in Example 1 was heat-treated at 300 ℃ for 200 hours, the microstructure of the heat-treated specimen The results observed with an optical microscope are shown in FIG. 6.

도 6에 나타난 바와 같이 Fe-Mn 전율고용체로 이루어진 강화상은 고온에서 알루미늄 기지내에서 조대화되거나 상분해가 발생되는 기존의 금속간화합물과 달리 상기 도 4에 나타난 미세조직과 동일한 facet 형상의 강화상을 확인할 수 있었으며, 상기 강화상의 조대화나 상분해는 관찰되지 않아 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 Fe-Mn 전율고용체 강화상은 300℃에서도 안정함을 확인할 수 있었다. As shown in FIG. 6, the reinforcing phase made of the Fe-Mn electrolytic solid solution has the same facet shape as the microstructure shown in FIG. 4, unlike the existing intermetallic compound in which coarsening or phase decomposition occurs in an aluminum matrix at high temperature. The coarsening and phase decomposition of the reinforcement phase were not observed, and thus the Fe-Mn tremor solid-solution solidified phase of the Fe-Mn tremor employment tempered aluminum alloy according to the present invention was found to be stable at 300 ° C.

도 7은 상기 실시예 1에서 제조된 시편의 재용융후 주조한 시편의 미세조직을 광학현미경으로 관찰한 사진으로, 여기서 재용융후 주조한 시편은 상기 실시예 1에서 제조된 시편을 알루미늄의 융점까지 재용융시킨 후 주조한 것이다.Figure 7 is a photograph of the microstructure of the specimen prepared by re-melting the specimen prepared in Example 1 by optical microscopy, where the specimen melted after re-melting the specimen prepared in Example 1 melting point of aluminum After remelting until casting.

도 7에 나타난 바와 같이 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금에 형성된 전율고용체는 도 3에 나타낸 상태도에서 예상할 수 있었던 것과 마찬가지로 재용융시에도 전혀 조대화 되거나 분해되지 않고, 강화상을 유지하고 있음을 확인할 수 있었으며, 이러한 특성 및 Fe-Mn 전율고용체의 비중이 알루미늄의 2.8배 이상인 특성을 이용하여 내열 알루미늄 합금의 재활용시 기지금속인 알 루미늄과 합금원소인 철(Fe)와 망간(Mn)을 친환경의 Virgin의 수준으로 능동적으로 선별하여 재활용하는데 활용될 수 있을 것으로 예상된다.  As shown in FIG. 7, the electrified solid formed in the Fe-Mn electrification-employment-reinforced heat-resistant aluminum alloy according to the present invention is not coarsened or decomposed at all during remelting, as is expected in the state diagram shown in FIG. It was confirmed that the phase was maintained, and that the characteristics and the specific gravity of the Fe-Mn electrolytic solids were 2.8 times or more than that of aluminum, the base metal aluminum and the alloy elements iron (Fe) and alloys were recycled when the heat-resistant aluminum alloy was recycled. Manganese (Mn) is expected to be used to actively sort and recycle to the level of eco-friendly virgin.

<실시예 2> <Example 2>

알루미늄을 700℃에서 융해한 알루미늄 용탕을 700℃를 유지한 상태에서 Plasma arc melting 법을 이용하여 철(Fe):망간(Mn)이 50중량%:50중량% 비율이 되도록 제조한 Fe-Mn 모합금을 알루미늄에 대하여 각각 0.5중량%, 1중량%, 3중량%, 5중량%, 7중량%, 9중량%, 10중량%, 11중량% 용탕에 첨가한 후에 첨가한 Fe-Mn 모합금이 완전히 용해될때 까지 약 30분~60분 정도 유지한 후, 주조하여 내열 알루미늄 합금의 시편을 제조하였다.The molten aluminum melted at 700 ° C. using a Plasma arc melting method at a temperature of 700 ° C., and the Fe-Mn matrix prepared so that the iron (Fe): manganese (Mn) ratio was 50% by weight to 50% by weight. The Fe-Mn master alloy added after the alloy was added to the molten metal by 0.5 wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, 9 wt%, 10 wt% and 11 wt%, respectively. After maintaining about 30 minutes to 60 minutes until complete dissolution, and cast to prepare a specimen of a heat-resistant aluminum alloy.

도 8은 실시예 2에서 제조된 각 시편에 첨가된 합금원소의 함량에 따른 전율고용체의 평균크기를 나타낸 그래프로, 실시예 2에서 제조된 각 시편의 미세조직을 광학현미경으로 측정한 이미지를 이미지 분석기를 이용하여 각 함량(0.5중량%, 1중량%, 3중량%, 5중량%, 7중량%, 9중량%, 10중량%, 11중량%)에 따른 전율고용체의 평균크기를 측정하였다.FIG. 8 is a graph showing the average size of the electrolytic solid solution according to the content of alloying elements added to each specimen prepared in Example 2. Image of the microstructure of each specimen prepared in Example 2 measured by optical microscope Using an analyzer, the average size of the electrifying solids was measured according to each content (0.5 wt%, 1 wt%, 3 wt%, 5 wt%, 7 wt%, 9 wt%, 10 wt%, 11 wt%).

그 결과, 0.5중량%의 Fe-Mn 모합금을 첨가한 경우 형성된 전율고용체의 양이 작았고, 그 크기는 5μm이하로 작음을 알 수 있었으며, 10중량%이상에서는 전율고용체의 크기가 약 250μm이상으로 너무 조대화됨을 확인할 수 있다. 따라서 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금은 알루미늄에 대하여 첨가되는 합금원소의 함량이 0.5중량%~10중량%일 때, 합금으로서의 효과를 발휘할 수 있는 충분한 양의 전율고용체가 형성될 수 있으며, 그 크기의 조대화로 인한 편석 등의 문제가 발생하는 것을 방지할 수 있음을 예측할 수 있다.As a result, when the 0.5 wt% Fe-Mn mother alloy was added, the amount of the emulsified solid formed was small, and the size of the emulsified solid was found to be less than 5 μm. You can see that it is too coarse. Therefore, in the Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy according to the present invention, when the content of the alloying element added to the aluminum is 0.5% by weight to 10% by weight, a sufficient amount of the electrolytic solution is formed to exert the effect as an alloy. It can be predicted that problems such as segregation due to the coarsening of the size can be prevented from occurring.

도 1은 종래 내열 알루미늄 합금에 첨가된 원소들의 고온거동을 나타낸 개념도.1 is a conceptual diagram showing the high temperature behavior of elements added to a conventional heat-resistant aluminum alloy.

도 2는 본 발명에 따른 Fe-Mn 전율고용 강화형 내열 알루미늄 합금에 첨가된 합금원소들의 안정한 고온거동을 나타낸 개념도.Figure 2 is a conceptual diagram showing the stable high temperature behavior of the alloying elements added to the Fe-Mn electrification employment-enhanced heat-resistant aluminum alloy according to the present invention.

도 3은 Fe-Mn의 이원계 상태도를 나타낸 그림.Figure 3 is a diagram showing a binary system state diagram of Fe-Mn.

도 4는 실시예 1에서 제조된 시편의 미세조직을 관찰한 광학 현미경 조직사진.Figure 4 is an optical microscope histology of observing the microstructure of the specimen prepared in Example 1.

도 5는 실시예 1에서 제조된 시편의 미세조직을 EPMA(Electron Probe Micro-Analyzer)로 맵핑(mapping)한 결과를 나타낸 사진.Figure 5 is a photograph showing the results of mapping the microstructure of the specimen prepared in Example 1 with an Electron Probe Micro-Analyzer (EPMA).

도 6은 실시예 1에서 제조된 시편을 300℃에서 200시간 열처리한 후, 열처리된 시편의 미세조직을 광학현미경으로 관찰한 사진.6 is a photograph of the specimen prepared in Example 1 after the heat treatment at 300 ℃ for 200 hours, the microstructure of the heat-treated specimen with an optical microscope.

도 7은 실시예 1에서 제조된 시편의 재용융후 주조한 시편의 미세조직을 광학현미경으로 관찰한 사진.Figure 7 is a photograph of the microstructure of the specimens cast after remelting the specimen prepared in Example 1 by optical microscope.

도 8은 실시예 2에서 제조된 각 시편에 첨가된 합금원소의 함량에 따른 전율고용체의 평균크기를 나타낸 그래프.Figure 8 is a graph showing the average size of the electrification solid solution according to the content of the alloying elements added to each specimen prepared in Example 2.

Claims (9)

삭제delete 알루미늄 기지에 철(Fe)와 망간(Mn)의 합금원소가 전율고용체 강화상을 이루며 결합되되,The alloying elements of iron (Fe) and manganese (Mn) are combined to form an electrifying solidified phase on the aluminum base, 상기 합금원소의 총합은 상기 알루미늄 기지에 대하여 0.5중량%~10중량%가 함유된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금.The total amount of the alloying elements is Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy, characterized in that containing 0.5% by weight to 10% by weight relative to the aluminum base. 청구항 2에 있어서,The method according to claim 2, 상기 전체 합금원소에서 철(Fe)이 10~90중량%, 망간(Mn)이 90~10중량% 포함된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금.Iron-Fe is 10 ~ 90% by weight, the manganese (Mn) 90 to 10% by weight in the total alloying elements Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy. 청구항 3에 있어서, The method of claim 3, 상기 전율고용체 강화상은 1245℃까지의 온도에서도 내열특성을 갖으며, 30~50μm의 크기인 패시트(Facet) 형상으로 형성된 것을 특징으로 하는 Fe-Mn전율고용 강화형 내열 알루미늄 합금.The electrified solid-solution reinforced phase has a heat-resistant property even at a temperature up to 1245 ℃, characterized in that formed in a facet shape (Facet) of the size of 30 ~ 50μm Fe-Mn electrification employment-enhanced heat-resistant aluminum alloy. 청구항 2의 Fe-Mn 전율고용 강화형 내열 알루미늄 합금을 제조하기 위하여 알루미늄을 융해한 알루미늄 용탕에 합금원소로서 철(Fe)와 망간(Mn)을 각각 첨가하거나 Fe-Mn 모합금의 형태로 첨가한 후, 상기 합금원소가 용해되면 주조하여 제조하는 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 제조방법.In order to manufacture the Fe-Mn electrification-employment reinforced heat-resistant aluminum alloy of claim 2, iron (Fe) and manganese (Mn) were respectively added as alloy elements or added in the form of a Fe-Mn master alloy to the molten aluminum molten aluminum. Thereafter, when the alloying element is dissolved, the method for producing the Fe-Mn electrified employment-enhanced heat-resistant aluminum alloy, which is manufactured by casting. 청구항 5에 있어서,The method of claim 5, 상기 Fe-Mn 모합금은 플라즈마 아크 용해법(Plasma Arc Melting, PAM)이나 진공 유도 용해법(MnaFeum Induction Melting, MnIM)에 의해 제조된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 제조방법.The Fe-Mn master alloy is a method of manufacturing a Fe-Mn conductivity-enhanced heat-resistant aluminum alloy, characterized in that produced by plasma arc melting (Plasma Arc Melting, PAM) or vacuum induction melting (MnaFeum Induction Melting, MnIM). 삭제delete 삭제delete 청구항 5 내지 6 중 어느 한 항에 있어서,The method according to any one of claims 5 to 6, 상기 전체 합금원소에서 철(Fe)이 10∼90중량%, 망간(Mn)이 90∼10중량%이 첨가된 것을 특징으로 하는 Fe-Mn 전율고용 강화형 내열 알루미늄 합금의 제조방법.10 to 90% by weight of iron (Fe) and 90 to 10% by weight of manganese (Mn) are added to all the alloying elements.
KR1020090006694A 2009-01-28 2009-01-28 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof KR101254569B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020090006694A KR101254569B1 (en) 2009-01-28 2009-01-28 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
US13/146,304 US20120020829A1 (en) 2009-01-28 2010-01-25 Heat-resistant aluminum alloy and method for manufacturing the same
CN201080005911.3A CN102301020B (en) 2009-01-28 2010-01-25 Heat resistant aluminum alloy, and method for manufacturing same
EP10735996.0A EP2383358A4 (en) 2009-01-28 2010-01-25 Heat resistant aluminum alloy, and method for manufacturing same
PCT/KR2010/000454 WO2010087605A2 (en) 2009-01-28 2010-01-25 Heat resistant aluminum alloy, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090006694A KR101254569B1 (en) 2009-01-28 2009-01-28 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20100087588A KR20100087588A (en) 2010-08-05
KR101254569B1 true KR101254569B1 (en) 2013-04-15

Family

ID=42754100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090006694A KR101254569B1 (en) 2009-01-28 2009-01-28 Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR101254569B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388922B1 (en) * 2010-07-28 2014-04-24 자동차부품연구원 Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
KR102333996B1 (en) * 2016-04-21 2021-12-03 한국자동차연구원 Aluminium cast-wrought alloy and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199317A (en) * 1994-11-02 1996-08-06 Masumoto Takeshi High strength and high rigidity aluminum-base alloy
JPH1030145A (en) 1996-07-18 1998-02-03 Ykk Corp High strength aluminum base alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199317A (en) * 1994-11-02 1996-08-06 Masumoto Takeshi High strength and high rigidity aluminum-base alloy
JPH1030145A (en) 1996-07-18 1998-02-03 Ykk Corp High strength aluminum base alloy

Also Published As

Publication number Publication date
KR20100087588A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
KR102609409B1 (en) casting alloy
ES2397636B1 (en) Alloy for casting of AlMgSi type
Nagase et al. Development of Fe-Co-Cr-Mn-Ni-C high entropy cast iron (HE cast iron) available for casting in air atmosphere
Vinod Kumar et al. Effect of TiAl 3 particles size and distribution on their settling and dissolution behaviour in aluminium
Mitrica et al. Influence of composition and as-cast structure on the mechanical properties of selected high entropy alloys
KR101254569B1 (en) Fe-Mn solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
Fang et al. Effect of Mn on microstructure and mechanical properties of Al-4Ni Alloy
KR20100087586A (en) Co-ni solid solution strengthened high temperature aluminum alloys and manufacturing method thereof
He et al. Microstructure and mechanical properties of the Zr66. 4Cu10. 5Ni8. 7Al8Ta6. 4 metallic glass-forming alloy
Qasim et al. Enhancement the mechanical properties of aluminum casting alloys (A356) by adding nanorods structures from zinc oxide
KR101254570B1 (en) Fe-Ni solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
US20120020829A1 (en) Heat-resistant aluminum alloy and method for manufacturing the same
KR101205792B1 (en) Mn-V solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101205793B1 (en) Cu-Ni solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101164898B1 (en) Cr-W solid solution strengthened high temperature aluminum alloys and Manufacturing Method Thereof
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
Letyagin et al. Effect of thermodeformation treatment on the structure and mechanical properties of the Al3Ca1Cu1. 5Mn alloy
KR101295808B1 (en) Fe-Cr solid solution phase strengthened aluminum alloys and manufacturing method thereof
KR20100087590A (en) Fe-cr solid solution strengthened high temperature aluminum alloys and manufacturing method thereof
KR20100087583A (en) Cu-mn solid solution strengthened high temperature aluminum alloys and manufacturing method thereof
KR101295809B1 (en) Cr-W solid solution phase strengthened aluminum alloys and manufacturing method thereof
KR101295807B1 (en) Fe-Ni solid solution phase strengthened aluminum alloys and manufacturing method thereof
Guo et al. Effects of Er Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of the Al‐0.4 Fe‐0.05 Si Alloy
KR20120011268A (en) Fe-Cr solid solution phase strengthened aluminum alloys and manufacturing method thereof
Rahman et al. Effect of Cu content on the microstructure evolution and fracture behavior of Al–Mg–Si–xCu (x= 0, 1, 2 and 4 wt.%) alloys

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160406

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 7