JPH08199210A - Method for measuring piling condition of charged material in blast furnace - Google Patents

Method for measuring piling condition of charged material in blast furnace

Info

Publication number
JPH08199210A
JPH08199210A JP7028807A JP2880795A JPH08199210A JP H08199210 A JPH08199210 A JP H08199210A JP 7028807 A JP7028807 A JP 7028807A JP 2880795 A JP2880795 A JP 2880795A JP H08199210 A JPH08199210 A JP H08199210A
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
sampling
furnace
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7028807A
Other languages
Japanese (ja)
Other versions
JP2962179B2 (en
Inventor
Masahiro Kashiwada
昌宏 柏田
Kohei Sunahara
公平 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7028807A priority Critical patent/JP2962179B2/en
Publication of JPH08199210A publication Critical patent/JPH08199210A/en
Application granted granted Critical
Publication of JP2962179B2 publication Critical patent/JP2962179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE: To accurately grasp the layer thickness and the grain size of charged material in a blast furnace. CONSTITUTION: A sampling device in combination of heat resistant sampling bags 3 and a supporting frame 1 is inserted from manholes 8, 9 for changing a movable armor through wire ropes 4, 5, 6, 7 fitted to both ends in the longitudinal direction of the supporting frame 1. The sampling device is arranged on the surface 11 of the raw material in the radial direction in the blast furnace 2 in suspension of blasting, and thereafter, the raw material 12 is charged and sampling device is pulled up through the wire ropes 4, 5, 6, 7, and the raw materials 12 piled on the sampling bags 3 are sampled to measure the layer thickness and the grain size of the charged material in the radial direction in the blast furnace. By this method, gas flow distribution in the furnace is suitably kept and the stable operation can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉の炉内装入物の
堆積状況を測定するための高炉装入物の堆積状況測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the state of deposit of blast furnace charge for measuring the state of deposit of furnace interior charge of a blast furnace.

【0002】[0002]

【従来の技術】高炉においては、原料である焼結鉱など
の鉄鉱石とコークスとを交互に層状に装入し、炉内で加
熱反応させて溶銑を製造するが、炉内での複雑な諸反応
を高効率でかつ安定的に行わせるためには、高炉内半径
方向のガス流分布を適正化することが重要である。この
高炉内のガス流速分布は、高炉上部に設けたシャフトゾ
ンデ等の炉内センサによって把握し、高炉内半径方向の
ガス流指数(WO/F)、すなわち、鉱石降下量WO
(kg/min)に対するガス上昇量F(Nm3/mi
n)が例えば図5に示すように所定の値(目標)となる
よう調整される。また、炉壁部のガス流指数(WO/
F)は、ムーバブルアーマのコークス(Coke)ノッ
チ、鉄鉱石(Ore)ノッチを調整して装入物の落下位
置を制御し、装入物分布を制御することによって実施し
ている。その制御性を図6に示す。
2. Description of the Related Art In a blast furnace, iron ore such as sintered ore, which is a raw material, and coke are alternately charged in layers and heated to react in the furnace to produce hot metal. In order to carry out various reactions with high efficiency and stability, it is important to optimize the gas flow distribution in the radial direction in the blast furnace. This gas flow velocity distribution in the blast furnace is grasped by an in-furnace sensor such as a shaft sonde provided in the upper part of the blast furnace, and the gas flow index (WO / F) in the radial direction in the blast furnace, that is, the ore fall amount WO
Gas rise F (Nm 3 / mi) with respect to (kg / min)
n) is adjusted to be a predetermined value (target) as shown in FIG. 5, for example. Also, the gas flow index (WO /
F) is carried out by adjusting the coke (Coke) notch and iron ore (Ore) notch of the movable armor to control the falling position of the charge and control the charge distribution. The controllability is shown in FIG.

【0003】この場合の操業アクションは、装入物分布
シミュレーションモデルによってムーバブルアーマによ
る炉内中心および炉壁のガス流指数(WO/F)の感度
の指針を設け、ムーバブルアーマのコークス(Cok
e)ノッチ、鉄鉱石(Ore)ノッチを調整して装入物
の落下位置を調整している。この装入物分布シミュレー
ションモデルは、原料の装入量、粒度、落下位置等の装
入条件から炉頂部での原料堆積角、粒度偏析、流れ込み
等の原料堆積状況をシミュレーションするモデルであ
り、火入れ時の填充調査結果を基に構築されたものが多
く、鉄鉱石とコークスとの層厚、装入量、原料落下距離
が実操業と必ずしも一致せず、さらに測定回数も制限さ
れるため、データとしては十分なものではなく、実際の
操業条件での分布状況、例えば鉱石粒径分布などを十分
に反映したものではない。高炉炉頂部の原料堆積角、堆
積プロフィールは、マイクロ波プロフィール計を用いれ
ば日常計測可能であるが、粒度偏析、コークス層流れ込
みに関しては、前記火入れ時の填充調査結果のみしかな
く、粒度偏析、コークス層流れ込みについて、装入物分
布シミュレーションモデルの精度向上が望まれている。
In the operation action in this case, a guideline for the sensitivity of the gas flow index (WO / F) of the center of the furnace and the wall of the furnace by the movable armor is set by a charge distribution simulation model, and the coke (Cok) of the movable armor is set.
e) The notch and the iron ore (Ore) notch are adjusted to adjust the falling position of the charge. This charge distribution simulation model is a model for simulating raw material deposition conditions such as raw material deposition angle, grain size segregation, and inflow from the charging conditions such as the raw material loading amount, particle size, and dropping position. Many of them were constructed based on the results of the filling survey at the time, the layer thickness of iron ore and coke, the charging amount, the raw material falling distance do not always match the actual operation, and the number of measurements is also limited, so the data However, it does not sufficiently reflect the distribution status under actual operating conditions, such as the ore particle size distribution. The raw material deposition angle and deposition profile at the top of the blast furnace can be measured on a daily basis using a microwave profilometer.However, regarding grain size segregation and coke layer inflow, there are only the filling survey results at the time of firing, grain size segregation, coke With regard to bed inflow, it is desired to improve the accuracy of the charge distribution simulation model.

【0004】また、他の方法としては、磁性体検知コイ
ルを収納した保護管を高炉内に位置させ、前記磁性体検
知コイルのインダクタンス変化に基づいて高炉の炉内装
入物の層厚を測定する装置において、前記保護管内に炉
内装入物中の磁性体の影響を受けない構造とした温度補
償用コイルを収納し、これにより前記磁性体検知コイル
のインダクタンス変化に対する温度の影響を補償する構
造とした層厚測定装置(特開昭59−28507号公
報)、高炉内に積層装入された原料の挙動を励磁型磁気
センサを用いて測定する方法において、前記磁気センサ
が出力する鉱石層波形と、混合層波形との合成波形から
混合層波形のみを波形再生して混合層厚と、その混合比
を求める方法(特開昭63−11851号公報)、下部
に出入口を備えたハウジング体と、ハウジング体内に
正、逆転駆動自在に備えられた昇降ドラムと、前記出入
口より出入り自在なサンプル採取機構を備えてなるサン
プリング体が下端に装着されると共に、該サンプリング
体を装入物表面部に接地させてサンプルを採取させるべ
く、上端側が昇降ドラムに巻取り、巻戻し自在に連結さ
れた昇降索体とを備えてなり、ハウジング体側部に採取
されたサンプル取出用の取出口が設けられたサンプリン
グ装置(実開昭64−51653号公報)が提案されて
いる。
As another method, a protective tube accommodating a magnetic substance detection coil is placed in the blast furnace, and the layer thickness of the furnace interior material of the blast furnace is measured based on the change in the inductance of the magnetic substance detection coil. In the apparatus, a temperature compensating coil having a structure that is not influenced by a magnetic substance contained in a furnace interior is housed in the protective tube, thereby compensating the influence of temperature on the inductance change of the magnetic substance detecting coil. Layer thickness measuring device (Japanese Patent Laid-Open No. 59-28507) and a method for measuring the behavior of raw materials stacked in a blast furnace by using an excitation type magnetic sensor, the ore layer waveform output by the magnetic sensor A method of reproducing only a mixed layer waveform from a composite waveform with a mixed layer waveform to obtain a mixed layer thickness and a mixing ratio thereof (Japanese Patent Laid-Open No. 63-11851), and A sampling body comprising a housing, a lifting drum that is capable of forward and reverse driving in the housing, and a sample collection mechanism that can freely move in and out from the inlet and outlet is attached to the lower end, and the sampling body is inserted. In order to collect a sample by grounding it on the surface part, the upper end side is equipped with an elevating and lowering body which is wound around an elevating drum and rewound freely, and an outlet for sampling taken out on the side part of the housing body is provided. A sampling device provided (Japanese Utility Model Laid-Open No. 64-51653) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭59−28
507号公報、特開昭63−11851号公報に開示の
技術は、鉄鉱石層や混合層の層厚を定量的に評価できる
が、鉄鉱石やコークスの粒度分布まで測定することは不
可能である。また、実開昭64−51653号公報に開
示のサンプリング装置は、実操業に近い状態で堆積した
炉内装入物をサンプリングすることができるが、1回の
採取量や採取深さが一定でないため、半径方向の他のサ
ンプリングポイントと合わせた定量評価が困難である等
の欠点を有している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The techniques disclosed in Japanese Patent Application Laid-Open No. 507/1988 and Japanese Patent Application Laid-Open No. 63-11851 can quantitatively evaluate the layer thickness of the iron ore layer and the mixed layer, but cannot measure the particle size distribution of the iron ore and coke. is there. In addition, the sampling device disclosed in Japanese Utility Model Laid-Open No. 64-51653 can sample the furnace interior material deposited in a state close to actual operation, but the sampling amount and sampling depth per one time are not constant. However, it has drawbacks such as difficulty in quantitative evaluation together with other sampling points in the radial direction.

【0006】この発明の目的は、前記従来技術の欠点を
解消し、高炉の休風中に炉頂装入物を直接サンプリング
して装入物の層厚、粒度を測定できる高炉装入物の堆積
状況測定方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to directly sample the top charge during the rest of the blast furnace to measure the layer thickness and particle size of the blast furnace charge. It is to provide a method for measuring the deposition situation.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、耐熱性
のサンプリング袋とそれを支持する支持枠とを、支持枠
長手方向両端に取付けたワイヤーロープによってムーバ
ブルアーマーの取替え用マンホールから休風中の高炉の
装入物表面に配置し、その後原料を装入したのちワイヤ
ーロープを介してサンプリング装置を引き上げることに
よりサンプリング袋上に堆積した原料を採取でき、高炉
内半径方向の装入物の層厚、粒度分布を測定することに
よって、高炉装入物の堆積状況を正確に把握できること
を究明し、この発明に到達した。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to achieve the above object. As a result, a heat-resistant sampling bag and a supporting frame that supports it are arranged on the charging surface of the blast furnace in a quiescent state from the replacement manhole of the movable armor by wire ropes attached to both ends of the supporting frame in the longitudinal direction, After charging the raw material, the raw material deposited on the sampling bag can be collected by pulling up the sampling device through the wire rope.By measuring the layer thickness and particle size distribution of the radial charge in the blast furnace, the blast furnace The inventors have reached the present invention by investigating that it is possible to accurately grasp the accumulation state of the charge.

【0008】すなわちこの発明は、高炉の炉内装入物の
堆積状況を測定するための高炉装入物の堆積状況測定方
法において、耐熱性のサンプリング袋と支持枠を組合せ
たサンプリング装置を、支持枠長手方向両端に取付けた
ワイヤーロープを介してムーバブルアーマ取替え用マン
ホールから装入し、休風中の高炉内半径方向の原料表面
に配置し、その後原料を装入したのちワイヤーロープを
介してサンプリング装置を引き上げ、サンプリング袋上
に堆積した原料を採取し、高炉内半径方向の装入物の層
厚、粒度を測定することを特徴とする高炉装入物の堆積
状況測定方法である。
That is, according to the present invention, in a method for measuring a deposition state of a blast furnace charge for measuring a deposition state of a furnace interior charge of a blast furnace, a sampling device in which a heat-resistant sampling bag and a support frame are combined is used. It is charged from the manhole for replacing the movable armor via the wire ropes attached to both ends in the longitudinal direction, placed on the raw material surface in the radial direction inside the blast furnace while the air is resting, and then the raw material is charged and then the sampling device via the wire rope. Is taken up, the raw material deposited on the sampling bag is sampled, and the layer thickness and particle size of the charge in the radial direction of the blast furnace are measured.

【0009】[0009]

【作用】この発明においては、耐熱性のサンプリング袋
と支持枠を組合せたサンプリング装置を、支持枠長手方
向両端に取付けたワイヤーロープを介してムーバブルア
ーマ取替え用マンホールから装入し、休風中の高炉内半
径方向の原料表面に配置し、その後原料を装入したのち
ワイヤーロープを介してサンプリング装置を引き上げ、
サンプリング袋上に堆積した原料を採取し、高炉内半径
方向の装入物の層厚、粒度分布を測定することによっ
て、高炉内半径方向の装入原料の層厚、粒度分布を正確
に把握することができ、装入物分布シミュレーションモ
デルのより一層の精度向上を図ることができる。
In the present invention, the sampling device in which the heat-resistant sampling bag and the support frame are combined is loaded from the manhole for replacing the movable armor through the wire ropes attached to both ends of the support frame in the longitudinal direction, and the sampling device is operated while the wind is resting. Placed on the surface of the raw material in the radial direction in the blast furnace, after charging the raw material, pull up the sampling device via the wire rope,
Accurately grasp the layer thickness and particle size distribution of the charged raw material in the blast furnace radial direction by collecting the raw material deposited on the sampling bag and measuring the layer thickness and particle size distribution of the radial charge inside the blast furnace. Therefore, the accuracy of the charge distribution simulation model can be further improved.

【0010】この発明において使用するサンプリング袋
としては、耐熱性(>1200℃)のクロスからなるも
の、鋼の鎖を編んでサンプリング袋としたもの、炭素繊
維からなるサンプリング袋、セラミックス繊維で編組し
たサンプリング袋等を用いることができる。また、サン
プリング袋は、高さ方向に収縮自在となし、原料表面に
配置した際に採取口を上にして収縮させておき、原料を
装入したのちワイヤーロープを介してサンプリング装置
を引き上げることにより、サンプリング袋が高さ方向に
伸長してサンプリング袋上に堆積した原料がサンプリン
グ袋内に採取できるよう構成するのが、原料装入状態を
確保する点から有利である。
The sampling bag used in the present invention comprises a heat-resistant (> 1200 ° C.) cloth, a steel bag knitted into a sampling bag, a carbon fiber sampling bag, and a ceramic fiber braid. A sampling bag or the like can be used. In addition, the sampling bag is not contractible in the height direction, and when it is placed on the surface of the raw material, it is contracted with the sampling port facing upward, and after charging the raw material, the sampling device is pulled up via the wire rope. It is advantageous from the viewpoint of securing the raw material charging state that the sampling bag extends in the height direction and the raw material deposited on the sampling bag can be collected in the sampling bag.

【0011】[0011]

【実施例】【Example】

実施例1 以下にこの発明方法の詳細を実施の一例を示す図1ない
し図2に基づいて説明する。図1はこの発明方法の原料
サンプリング装置の斜視図、図2は炉頂原料サンプリン
グ要領説明のための縦断面図である。図1ないし図2に
おいて、1は高炉2のシャフト部の半径と同じ長さの支
持枠、3は支持枠1に支持された耐熱性(>1200
℃)のクロスからなる多数個のサンプリング袋で、高さ
方向に収縮可能である。4、5、6、7は支持枠1の長
手方向両端に取付けたワイヤーロープ、8、9は高炉2
のシャフト部上部に設けられたムーバブルアーマ取替え
用のマンホールで、該マンホール8、9からワイヤーロ
ープ4、5、6、7を操作すれば、支持枠1と多数のサ
ンプリング袋3からなるサンプリング装置を高炉2内に
挿入できるよう構成されている。10は大ベル、11は
炉内の装入原料表面、12は装入原料表面11上に装入
した原料である。
Embodiment 1 Details of the method of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view of a raw material sampling apparatus according to the method of the present invention, and FIG. 2 is a longitudinal sectional view for explaining a furnace top raw material sampling procedure. 1 and 2, 1 is a support frame having the same length as the radius of the shaft portion of the blast furnace 2, and 3 is heat resistance (> 1200) supported by the support frame 1.
A large number of sampling bags made of cloth (° C) can be contracted in the height direction. 4, 5, 6, and 7 are wire ropes attached to both ends of the support frame 1 in the longitudinal direction, and 8 and 9 are blast furnaces 2.
A manhole for replacing the movable armor provided on the upper part of the shaft part of the above, and by operating the wire ropes 4, 5, 6, and 7 from the manholes 8 and 9, a sampling device including the support frame 1 and a large number of sampling bags 3 can be obtained. It is constructed so that it can be inserted into the blast furnace 2. 10 is a large bell, 11 is the surface of the charged raw material in the furnace, and 12 is the raw material charged on the charged raw material surface 11.

【0012】上記のとおり構成したことによって、高炉
2内の装入原料をサンプリングする場合は、高炉2休風
時、ムーバブルアーマ取替え用のマンホール8、9を開
放したのち、ワイヤーロープ4、5、6、7を操作して
ムーバブルアーマ取替え用のマンホール8、9の何れか
一方から支持枠1と多数のサンプリング袋3からなるサ
ンプリング装置を高炉2内に挿入し、高炉2内の半径方
向にサンプリング袋3を位置させて装入原料表面11上
に設置する。この状態で所定の原料を大ベル10を開放
して炉内に装入すると、装入された原料は、装入原料表
面11上に収縮して設置された支持枠1と多数のサンプ
リング袋3上に堆積する。しかるのち、ワイヤーロープ
4、5、6、7を操作して支持枠1と多数のサンプリン
グ袋3からなるサンプリング装置を引上げると、サンプ
リング装置の収縮したサンプリング袋3上に堆積した装
入原料12は、サンプリング袋3の伸長によって採取さ
れ、ムーバブルアーマ取替え用のマンホール8、9の一
方から炉外に取出すことができ、高炉2の半径方向の装
入原料一層分のサンプルを採取することができる。
With the above construction, when sampling the charging raw material in the blast furnace 2, the manholes 8 and 9 for replacing the movable armor are opened when the blast furnace 2 is in a cold state, and then the wire ropes 4 and 5, 6 and 7 are operated to insert a sampling device composed of the support frame 1 and a large number of sampling bags 3 into the blast furnace 2 from any one of the manholes 8 and 9 for replacing the movable armor, and to sample in the blast furnace 2 in the radial direction. The bag 3 is positioned and placed on the charging material surface 11. In this state, when the predetermined raw material is charged into the furnace by opening the large bell 10, the charged raw material shrinks on the charged raw material surface 11 and the supporting frame 1 and a large number of sampling bags 3 are installed. Deposit on top. After that, when the wire ropes 4, 5, 6, 7 are operated to pull up the sampling device including the support frame 1 and the plurality of sampling bags 3, the charging raw material 12 accumulated on the contracted sampling bag 3 of the sampling device 12 Can be taken out of the furnace through one of the manholes 8 and 9 for replacing the movable armor, and a sample for one layer of the raw material charged in the radial direction of the blast furnace 2 can be taken. .

【0013】したがって、採取した高炉2の半径方向の
各サンプリング袋3の装入原料一層分のサンプルの層
厚、粒度を測定することによって、高炉2の半径方向の
原料の層厚、粒度分布を正確に把握することができ、こ
れを用いて装入物分布シミュレーションモデルのパラメ
ータを修正することにより粒度偏析予想精度を高めて実
測値に近づけ、ムーバブルアーマを操作する際の半径方
向ガス流指数(WO/F)の応答精度を向上させること
ができ、高炉2内のガス流分布が適正化され、高炉2の
安定操業を図ることができる。
Therefore, the layer thickness and particle size distribution of the raw material in the radial direction of the blast furnace 2 are measured by measuring the layer thickness and particle size of the sample for one layer of the raw material charged in each sampling bag 3 in the radial direction of the blast furnace 2. It can be accurately grasped, and by using this to correct the parameters of the charge distribution simulation model, the particle size segregation prediction accuracy can be improved to approach the measured value, and the radial gas flow index when operating the movable armor ( (WO / F) response accuracy can be improved, the gas flow distribution in the blast furnace 2 can be optimized, and stable operation of the blast furnace 2 can be achieved.

【0014】実施例2 前記実施例1のサンプリング装置を用い、炉内容積27
00m3の高炉において、休風時に半径方向の装入鉱石
一層分のサンプルを採取し、半径方向の粒度分布を測定
した。その結果を図3に示す。また、該半径方向の粒度
分布を装入物分布シミュレーションモデルに反映させて
パラメータを修正した場合と、パラメータを修正前のそ
れぞれについて、半径方向の原料鉱石の粒度分布をシミ
ュレーションした演算結果を図3に示す。図3に示すと
おり、装入物分布シミュレーションモデルのパラメータ
を修正することにより粒度偏析効果を強め、実測値に近
づけることが可能である。これによって、図4に示すと
おり、実線で示すパラメータ修正後のシミュレーション
結果は、鎖線で示すパラメータ修正前のシミュレーショ
ン結果に比較して粒度偏析が大きく、実測値とよく一致
している。したがって、ムーバブルアーマのCokeノ
ッチ、Oreノッチを操作する際の半径方向ガス流指数
(WO/F)の応答精度を向上することができた。
Example 2 Using the sampling apparatus of Example 1, the furnace internal volume 27
In a 00 m 3 blast furnace, a sample of a layer of ore charged in the radial direction was taken at the time of rest, and the particle size distribution in the radial direction was measured. The result is shown in FIG. In addition, FIG. 3 shows a calculation result obtained by simulating the particle size distribution of the raw material ore in the radial direction for the case where the parameters are modified by reflecting the particle size distribution in the radial direction on the charge distribution simulation model and before the parameters are modified. Shown in. As shown in FIG. 3, it is possible to strengthen the particle size segregation effect by adjusting the parameters of the charge distribution simulation model and bring it closer to the measured value. As a result, as shown in FIG. 4, the simulation result after the parameter correction shown by the solid line has a larger grain size segregation than the simulation result before the parameter correction shown by the chain line, and is in good agreement with the actually measured value. Therefore, it was possible to improve the response accuracy of the radial gas flow index (WO / F) when operating the Coke notch and the Ore notch of the movable armor.

【0015】[0015]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、高炉内の装入原料の堆積状況を正確に測定すること
が可能となり、高炉内の装入物分布制御や、装入物の種
別、装入量などの制御を的確に実施でき、炉内ガス流分
布を適正に維持して安定した操業を行うことができる。
As described above, according to the method of the present invention, it is possible to accurately measure the deposition state of the charging raw material in the blast furnace, and control the distribution of the charging material in the blast furnace and the charging material. It is possible to precisely control the type, charging amount, etc., and to maintain a proper gas flow distribution in the furnace to perform stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法の原料サンプリング装置の斜視図
である。
FIG. 1 is a perspective view of a raw material sampling apparatus of the method of the present invention.

【図2】炉頂原料サンプリング要領説明のための縦断面
図である。
FIG. 2 is a vertical cross-sectional view for explaining a furnace top material sampling procedure.

【図3】炉頂原料粒度分布(鉱石)を示すもので、休風
時の実測値とパラメータ修正前後の無次元半径と鉱石加
重平均粒径との関係を示すグラフである。
FIG. 3 is a graph showing a particle size distribution (ore) of a furnace top raw material, and is a graph showing a relationship between a measured value at rest, a dimensionless radius before and after parameter correction, and an ore weighted average particle diameter.

【図4】装入物分布シミュレーションモデルの改良例を
示すもので、休風時の実測値とパラメータ修正前後のC
okeノッチ−Oreノッチと炉壁部ガス流指数(WO
/F)との関係を示すグラフである。
FIG. 4 shows an example of improvement of the charge distribution simulation model, which shows measured values during a quiescent period and C before and after parameter correction.
oke notch-Ore notch and furnace wall gas flow index (WO
Is a graph showing the relationship with / F).

【図5】半径方向ガス流指数(WO/F)の目標を示す
もので、(a)図は炉壁部のガス流指数(WO/F)と
>0.3mスリップ回数との関係を示すグラフ、(b)
図は炉中心のガス流指数(WO/F)と>0.3mスリ
ップ回数との関係を示すグラフである。
FIG. 5 shows the target of the radial gas flow index (WO / F), and FIG. 5 (a) shows the relationship between the gas flow index (WO / F) of the furnace wall and the number of slips> 0.3 m. Graph, (b)
The figure is a graph showing the relationship between the gas flow index (WO / F) in the center of the furnace and the number of slips> 0.3 m.

【図6】ムーバブルアーマによる炉中心、炉壁部のガス
流指数(WO/F)の感度を示すもので、Cokeノッ
チ−Oreノッチとガス流指数(WO/F)との関係を
示すグラフである。
FIG. 6 is a graph showing the sensitivity of the gas flow index (WO / F) at the center of the furnace and the wall of the furnace by the movable armor, and is a graph showing the relationship between the Coke notch-Ore notch and the gas flow index (WO / F). is there.

【符号の説明】[Explanation of symbols]

1 支持枠 2 高炉 3 サンプリング袋 4、5、6、7 ワイヤーロープ 8、9 マンホール 10 大ベル 11 装入原料表面 12 原料 1 Support Frame 2 Blast Furnace 3 Sampling Bag 4, 5, 6, 7 Wire Rope 8, 9 Manhole 10 Large Bell 11 Charged Raw Material Surface 12 Raw Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉の炉内装入物の堆積状況を測定する
ための高炉装入物の堆積状況測定方法において、耐熱性
のサンプリング袋と支持枠を組合せたサンプリング装置
を、支持枠長手方向両端に取付けたワイヤーロープを介
してムーバブルアーマ取替え用マンホールから装入し、
休風中の高炉内半径方向の原料表面に配置し、その後原
料を装入したのちワイヤーロープを介してサンプリング
装置を引き上げ、サンプリング袋上に堆積した原料を採
取し、高炉内半径方向の装入物の層厚、粒度を測定する
ことを特徴とする高炉装入物の堆積状況測定方法。
1. A method for measuring a deposition state of a blast furnace charge for measuring a deposition state of a furnace interior charge of a blast furnace, wherein a sampling device in which a heat-resistant sampling bag and a support frame are combined is used. Insert from the manhole for moving armor replacement via the wire rope attached to
It is placed on the surface of the raw material in the radial direction inside the blast furnace in a quiescent state, after which the raw material is charged, and then the sampling device is pulled up via a wire rope to collect the raw material deposited on the sampling bag, and the radial direction is charged in the blast furnace. A method for measuring the state of deposition of blast furnace charges, characterized by measuring the layer thickness and particle size of a product.
JP7028807A 1995-01-24 1995-01-24 Measuring method of blast furnace charge Expired - Lifetime JP2962179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7028807A JP2962179B2 (en) 1995-01-24 1995-01-24 Measuring method of blast furnace charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7028807A JP2962179B2 (en) 1995-01-24 1995-01-24 Measuring method of blast furnace charge

Publications (2)

Publication Number Publication Date
JPH08199210A true JPH08199210A (en) 1996-08-06
JP2962179B2 JP2962179B2 (en) 1999-10-12

Family

ID=12258700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7028807A Expired - Lifetime JP2962179B2 (en) 1995-01-24 1995-01-24 Measuring method of blast furnace charge

Country Status (1)

Country Link
JP (1) JP2962179B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170298A (en) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp Sampling method and sampling device of blast furnace charging material
CN107356453A (en) * 2017-06-23 2017-11-17 江苏省沙钢钢铁研究院有限公司 Sampling device and method for measuring radial particle size distribution of experimental blast furnace
WO2021085221A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170298A (en) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp Sampling method and sampling device of blast furnace charging material
CN107356453A (en) * 2017-06-23 2017-11-17 江苏省沙钢钢铁研究院有限公司 Sampling device and method for measuring radial particle size distribution of experimental blast furnace
WO2021085221A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method
JPWO2021085221A1 (en) * 2019-10-31 2021-11-25 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2962179B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
CN109991125B (en) Method and equipment for testing variable-pressure type reflow dripping performance
GB2116733A (en) Proximate analyzer
CN107064149A (en) Coke oven recovery project wall working face detection means and method
JPH08199210A (en) Method for measuring piling condition of charged material in blast furnace
CN111141866B (en) Test device and method for simulating spontaneous combustion process of coal seam and detection of high-temperature abnormal area
CN212410353U (en) Visual sintering process comprehensive detection device
JP5733236B2 (en) Sampling method and sampling apparatus for blast furnace charge
CN115032113A (en) Method for measuring deterioration process of coke for hydrogen-rich blast furnace
JPH11310810A (en) Method for sampling charged material in blast furnace and sampling device therefor
JP3522511B2 (en) Blast furnace operation method
JP2832104B2 (en) Charge sampling equipment in blast furnace
KR20180055488A (en) Apparatus for testing reduction of iron ore
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JP2998613B2 (en) Layer top material sampling method and apparatus
CN220438211U (en) Iron ore and coke coupling metallurgical performance detection device
JP3514120B2 (en) Distribution control method of blast furnace top charge
JPS6240402B2 (en)
JPH0586446B2 (en)
WO1997012064A9 (en) A method for the determination of the gas flux distribution in a blast furnace
WO1997012064A1 (en) A method for the determination of the gas flux distribution in a blast furnace
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
GB1574834A (en) Monitoring a blast furnace during operation and controlling operation of the furnace accordingly
JPS63195205A (en) Method for charging raw material in bell type blast furnace
JPH05186811A (en) Method for operating blast furnace
JPS6038446B2 (en) Method for detecting burden deposition distribution in blast furnace