JPH08198608A - Method for purifying phosphorus oxychloride - Google Patents

Method for purifying phosphorus oxychloride

Info

Publication number
JPH08198608A
JPH08198608A JP6689895A JP6689895A JPH08198608A JP H08198608 A JPH08198608 A JP H08198608A JP 6689895 A JP6689895 A JP 6689895A JP 6689895 A JP6689895 A JP 6689895A JP H08198608 A JPH08198608 A JP H08198608A
Authority
JP
Japan
Prior art keywords
phosphorus oxychloride
impurities
ppm
elements
pcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6689895A
Other languages
Japanese (ja)
Other versions
JP3697704B2 (en
Inventor
Giichi Genda
義一 源田
Atsuo Watanabe
敦夫 渡辺
Shuji Miyazaki
修治 宮崎
Makoto Miyayoshi
誠 宮喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP06689895A priority Critical patent/JP3697704B2/en
Publication of JPH08198608A publication Critical patent/JPH08198608A/en
Application granted granted Critical
Publication of JP3697704B2 publication Critical patent/JP3697704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To easily separate off impurities difficult to separate and to obtain high-grade phosphorus oxychloride without conducting distillation, etc., by bringing groups 4 and 5 elements into contact with the phosphorus oxychloride contg. the impurities. CONSTITUTION: Groups 4 and 5 elements such as Cu are brought into contact with the phosphorus oxychloride contg. such impurities as the impurities in the raw material and the impurities (e.g. AsCl3 ) by-produced in the production to separate off the contained impurities. The elements are appropriately used in the form of powder and also used in the form of wire or sheet. As the appropriate method to bring the phosphorus oxychloride contg. impurities into contact with the elements, the elements are added to the product liq. reactant of phosphorus oxychloride, or the gaseous phosphorus oxychloride is passed through the packed elements. When the elements are added to the product liq. reactant of phosphorus oxychloride, the molar ratio of the elements to the total impurities is preferably controlled to 4 to 10. Consequently, the impurities are reduced to the order of <= severa ppm in terms of As and S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオキシ塩化燐の製造にお
いて原料黄燐中の不純物、主に硫黄や砒素等から副生す
る不純物及び黄燐、塩素、酸素のモルバランスの変動か
ら副生する三塩化燐、五塩化燐を除去する方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to impurities in the raw material yellow phosphorus in the production of phosphorus oxychloride, impurities by-produced mainly from sulfur and arsenic, and trichloride by-produced from variations in the molar balance of yellow phosphorus, chlorine and oxygen. The present invention relates to a method for removing phosphorus and phosphorus pentachloride.

【0002】[0002]

【従来の技術】黄燐に塩素ガスと酸素ガスを吹き込んで
オキシ塩化燐を製造する方法は既に良く知られており、
数々の製造方法が公知である。原料黄燐中には黄燐と硫
黄、砒素の他Al,Fe,Ca,Si,Fe,Pb等の
元素を含む不純物が含まれておりオキシ塩化燐を製造す
る過程で例えばSやAsは塩素ガスと反応してAsCl
3 とPSCl3 が副生することが知られている。また、
原料のモルバランスがくずれたり、温度コントロールの
若干のズレ等により、三塩化燐,五塩化燐が副生した
り、未反応として残ったりすることがある。これらの不
純物がオキシ塩化燐中に混入するので、一般的には蒸留
などによって精製されている。しかし、これらの不純物
を蒸留操作で完全に除去するためには高段数蒸留装置を
用いた精留が必要であった。
2. Description of the Related Art A method for producing phosphorus oxychloride by blowing chlorine gas and oxygen gas into yellow phosphorus is well known.
A number of manufacturing methods are known. The raw material yellow phosphorus contains yellow phosphorus, sulfur, arsenic, and other impurities including elements such as Al, Fe, Ca, Si, Fe, and Pb. In the process of producing phosphorus oxychloride, for example, S and As are chlorine gas. React to AsCl
It is known that 3 and PSCl 3 are by-produced. Also,
The molar balance of the raw materials may be disrupted, and due to slight deviations in temperature control, phosphorus trichloride and phosphorus pentachloride may be by-produced or may remain unreacted. Since these impurities are mixed in phosphorus oxychloride, they are generally purified by distillation or the like. However, in order to completely remove these impurities by distillation, rectification using a high-stage distillation apparatus was necessary.

【0003】また、AsCl3 やPSCl3 等の副生を
防ぐため原料黄燐中の硫黄や砒素は黄燐の段階で精製し
て除去する方法もあるが、この方法は非常に危険であ
る。
There is also a method of purifying and removing sulfur and arsenic in the raw material yellow phosphorus in order to prevent by-products such as AsCl 3 and PSCl 3 , but this method is very dangerous.

【0004】本発明者等はオキシ塩化燐中の不純物の分
離方法について化学工学的分離以外の化学反応による除
去方法について鋭意検討を行った結果、オキシ塩化燐を
製造した後の反応液に周期律表第4〜5周期の元素を添
加することにより、Asとして、Sとして、PCl3
PCl5 等の不純物を数ppmオーダー以下の濃度まで
減らすことができることを見出し本発明を完成するに至
った。
The inventors of the present invention have made extensive studies as to a method for separating impurities in phosphorus oxychloride by a chemical reaction other than chemical engineering separation. As a result, the periodic solution is added to the reaction solution after the production of phosphorus oxychloride. By adding elements of the 4th to 5th periods in the table, As, S, PCl 3 ,
The inventors have found that impurities such as PCl 5 can be reduced to a concentration of several ppm or less, and have completed the present invention.

【0005】即ち、本発明はオキシ塩化燐を製造する
際、不純物を含有するオキシ塩化燐と周期律表第4〜5
周期の元素とを接触させることを特徴とするオキシ塩化
燐の精製方法である。
That is, according to the present invention, when producing phosphorus oxychloride, phosphorus oxychloride containing impurities and Periodic Tables 4 to 5 are used.
It is a method for purifying phosphorus oxychloride, which comprises contacting with a periodic element.

【0006】本発明に使用される元素として周期律表第
4〜5周期の遷移元素または典型元素内の1種類または
2種類以上、例えば、Cu,Ni,Ag,Zn,Snな
ど、好ましくはCuが使用される。勿論、これら以外の
元素を使用しても差し支えない。使用に際して、元素の
形態は粉末、線、板のどの形態でもよいが通常は粉末を
使用すると良い除去結果が得られる。不純物を含有する
オキシ塩化燐と元素とを接触させる方法としてはオキシ
塩化燐の反応液に元素を添加するか、元素の充填物中に
オキシ塩化燐ガスが通過する様にして行う。反応液中に
元素を添加する場合、元素の添加量はオキシ塩化燐反応
液中の不純物含量で違うが通常は不純物の合計モル数に
対して1〜20モル比程度、好ましくは4〜10モル比
である。金属元素は単品の添加が原則であるが混合使用
してもよい。除去効果がある処理温度は常温〜110℃
程度であるがオキシ塩化燐の沸点(108℃)で実施す
るのが最も良い。処理時間は処理温度で違うが沸点で処
理する場合は0.5〜10時間、経済的で効果的な処理
時間は1〜6時間である。
As the element used in the present invention, one or more kinds of transition elements or typical elements of the 4th to 5th periods of the periodic table, for example, Cu, Ni, Ag, Zn, Sn, etc., preferably Cu Is used. Of course, other elements may be used. At the time of use, the form of the element may be any form of powder, wire and plate, but use of powder usually gives good removal results. As a method of bringing the phosphorus oxychloride containing impurities into contact with the element, the element is added to the reaction solution of phosphorus oxychloride, or the phosphorus oxychloride gas is passed through the packing of the element. When an element is added to the reaction solution, the addition amount of the element varies depending on the content of impurities in the phosphorus oxychloride reaction solution, but is usually about 1 to 20 mole ratio, preferably 4 to 10 moles with respect to the total number of moles of impurities. Is a ratio. In principle, the metal elements are added individually, but they may be mixed and used. The removal temperature has a processing temperature of room temperature to 110 ° C.
It is best to carry out at the boiling point of phosphorus oxychloride (108 ° C.), although the degree is low. The treatment time varies depending on the treatment temperature, but when the treatment is carried out at the boiling point, it is 0.5 to 10 hours, and the economical and effective treatment time is 1 to 6 hours.

【0007】本発明に使用される元素、特に粉末の場合
の粒子平均径は、例えば銅粉なら0.1〜30ミクロ
ン、好ましくは2〜10ミクロンが良い。また、粉末の
比表面積は例えば銅粉なら0.05〜5.0m2 〜g、
好ましくは0.5〜2.0m2/gが良い。また、粒径
の大きい、例えば0.1〜5mm程度の金属粒子を使用
してもよいが比表面積がとれないので使用量が多くなり
反応槽のガラスライニングに悪影響を及ぼすので推奨で
きない。
The element used in the present invention, in particular, the average particle size in the case of powder is 0.1 to 30 μm, preferably 2 to 10 μm for copper powder. The specific surface area of the powder is, for example, 0.05 to 5.0 m 2 to g for copper powder,
It is preferably 0.5 to 2.0 m 2 / g. Also, metal particles having a large particle size, for example, about 0.1 to 5 mm may be used, but since the specific surface area cannot be taken, the amount used is large and the glass lining of the reaction tank is adversely affected, and therefore it is not recommended.

【0008】更に、本発明をより効率的に実施するには
金属元素の粉末を添加してから攪拌しオキシ塩化燐の沸
点まで昇温するか、沸騰したのち金属元素の粉末を添加
するかどちらの方法でも良い。無攪拌でもよいが時間を
要することや金属粉末が槽内で固まるなど後処理が煩雑
になり推奨される方法でない。また、金属の添加量を2
〜3分割して実施しても差し支えない。添加した金属の
粉末は、例えば銅粉なら薄いピンク色の光沢が消え黒色
粉末に変化する。この粉末を再生使用もできるが通常は
使用しない。沸騰下で一定時間反応したら常法に従って
後処理を行う。処理粉末を分離したオキシ塩化燐反応液
のAsとして、Sとして、PCl3 、PCl5 等の含量
は数ppm以下のオーダーまで減少する。反応液はその
ままでも使用できるが若干着色しているので通常の蒸留
を行うことで不純物をほとんど含まない高純度のオキシ
塩化燐がほぼ定量的に得られる。
Further, in order to carry out the present invention more efficiently, either the powder of the metal element is added and then stirred and the temperature is raised to the boiling point of phosphorus oxychloride, or the powder of the metal element is added after boiling. The method of is also good. It is not recommended to use without stirring, but it requires time and the post-treatment is complicated such that the metal powder is hardened in the tank. The amount of metal added is 2
There is no problem even if the operation is divided into three parts. If the added metal powder is, for example, copper powder, the light pink luster disappears and the powder changes to black powder. This powder can be recycled, but it is not normally used. After reacting for a certain period of time under boiling, post-treatment is carried out according to a conventional method. As S of the phosphorus oxychloride reaction solution from which the treated powder has been separated, the content of PCl 3 , PCl 5, etc. as S is reduced to the order of several ppm or less. Although the reaction solution can be used as it is, it is slightly colored, so that high-purity phosphorus oxychloride containing almost no impurities can be obtained almost quantitatively by performing ordinary distillation.

【0009】また、元素の充填物にオキシ塩化燐ガスを
通過させる場合には充填物内でオキシ塩化燐が凝縮しな
い様にスチーム加熱するか、電気的に加熱するかの方法
をとりガスで循環させることが必要で有る。それ以外処
理方法は液中処理と同様である。
When phosphorus oxychloride gas is passed through the packing of elements, steam heating or electrical heating is used so that phosphorus oxychloride does not condense in the packing and is circulated by gas. It is necessary to let Otherwise, the treatment method is the same as the submerged treatment.

【0010】次に実施例を挙げて本発明を更に詳細に説
明する。 実施例 1 AsCl3 とPSCl3 を含むオキシ塩化燐の反応液
(Asとして200ppm、Sとして74ppmを含
む)550gを温度計、テフロン攪拌翼とジムロートコ
ンデンサーがセットされた500mlの4頸フラスコに
仕込み、次いで平均粒径2.13ミクロン、比表面積
0.703m2 /gの粉末銅粉1.22g(Cuモル数
/As+S合計モル数=7.0モル比)を仕込み攪拌し
ながらゆっくりとマントルヒーターで加熱してオキシ塩
化燐の沸点まで昇温した。昇温をはじめて内温が70℃
位(約30分経過)から銅粉末は次第に黒く変色し始め
た。沸点時では全体が黒ずんで分散攪拌していた。10
7〜108.2℃で2時間攪拌を継続した後、空冷して
常温まで冷却した。反応液の一部を採取して銅粉を濾過
した。この液を高周波誘導結合プラズマ発光分析装置
(ICP)で測定したら、Asとして0.2ppm、S
として、2ppmの値を得た。
Next, the present invention will be described in more detail with reference to examples. Example 1 A reaction solution of phosphorus oxychloride containing AsCl 3 and PSCl 3 (containing 200 ppm of As and 74 ppm of S) (550 g) was charged into a 500 ml four-necked flask equipped with a thermometer, a Teflon stirring blade and a Dimroth condenser, Next, 1.22 g of powdered copper powder having an average particle size of 2.13 microns and a specific surface area of 0.703 m 2 / g (Cu mole number / As + S total mole number = 7.0 mole ratio) was charged and slowly stirred with a mantle heater. The temperature was raised to the boiling point of phosphorus oxychloride by heating. The internal temperature is 70 ℃
The copper powder gradually began to turn black from the position (approx. 30 minutes). At the boiling point, the whole was dark and was dispersed and stirred. 10
After continuing stirring at 7 to 108.2 ° C. for 2 hours, it was cooled to room temperature by air cooling. A part of the reaction solution was collected and the copper powder was filtered. When this liquid was measured by a high frequency inductively coupled plasma optical emission spectrometer (ICP), As was 0.2 ppm, S
As a result, a value of 2 ppm was obtained.

【0011】実施例 2 不純物としてAsCl3 (Asとして190ppm)と
PSCl3 (Sとして76ppm)を含有するオキシ塩
化燐反応液250gを温度計、攪拌翼とジムロートコン
デンサーをセットした4頸フラスコに仕込んだ。次に電
解銅粉(樹枝状粉末)0.55gを仕込んだ。(Cuモ
ル数/As+Sモル数=7.0モル比) 銅粉の平均直径は5.64ミクロン、比表面積は0.2
65m2 /gであった。攪拌しながらマントルヒーター
加熱で昇温した。60℃位から薄いピンク色の銅粉は次
第に黒くなった。オキシ塩化燐の沸点で4時間攪拌した
後、常温まで冷却した。反応液の一部を採取し銅粉末を
濾過した液についてICP分析し、Asとして0.2p
pm、Sとして2.6ppmの値を得た。この黄色処理
液(銅粉末はそのまま)をウイグリー蒸留塔(長さ20
cm)でゆっくり蒸留して無色のオキシ塩化燐247g
を得た。(蒸留回収率98.8w/w%) この製品をICPにかけてAsとして未検出、Sとして
0.5ppmの分析値を得た。
Example 2 250 g of a phosphorus oxychloride reaction solution containing AsCl 3 (190 ppm as As) and PSCl 3 (76 ppm as S) as impurities was charged in a 4-necked flask equipped with a thermometer, a stirring blade and a Dimroth condenser. . Next, 0.55 g of electrolytic copper powder (dendritic powder) was charged. (Cu mole number / As + S mole number = 7.0 mole ratio) The average diameter of the copper powder is 5.64 microns and the specific surface area is 0.2.
It was 65 m 2 / g. The temperature was raised by heating the mantle heater while stirring. From around 60 ° C, the light pink copper powder gradually became black. After stirring at the boiling point of phosphorus oxychloride for 4 hours, the mixture was cooled to room temperature. A liquid obtained by collecting a part of the reaction liquid and filtering the copper powder was subjected to ICP analysis to obtain 0.2 p as As.
A value of 2.6 ppm was obtained as pm and S. This yellow processing liquid (copper powder as it is) was used for a Wiggly distillation column (length 20
247 g of colorless phosphorus oxychloride after slowly distilling
I got (Distillation recovery rate 98.8 w / w%) This product was subjected to ICP to obtain an analytical value of not detected as As and 0.5 ppm as S.

【0012】実施例 3 実施例1と同様な処理装置を使用してAsとして15p
pm、Sとして15ppmを含むオキシ塩化燐反応液4
00gに一ケの平均重さが0.0119gの銅粒子5
7.3gを仕込み、比表面積を考慮して6時間還流下で
反応した。常温まで冷却した後、上澄み液をサンプリン
グしICP分析をし、As:0.5ppm、S:1.2
ppmの結果を得た。銅粒子は表面はピンク色から黒色
に変色していた。
Example 3 Using the same processing apparatus as in Example 1, 15 p as As
Phosphorus oxychloride reaction solution 4 containing 15 ppm as pm and S
One copper particle 5 having an average weight of 0.0119 g per 00 g
7.3 g was charged, and the reaction was performed under reflux for 6 hours in consideration of the specific surface area. After cooling to room temperature, the supernatant was sampled and subjected to ICP analysis, As: 0.5 ppm, S: 1.2
A ppm result was obtained. The surface of the copper particles was changed from pink to black.

【0013】実施例 4 実施例1と同様な処理装置を使用して、Asとして20
0ppm、Sとして80ppmを含有するオキシ塩化燐
反応液500gに平均直径2.13ミクロン、比表面積
0.703m2 /gの片状銅粉末0.49g(3.0モ
ル比)を常温で攪拌下に仕込み、約26分で沸騰まで昇
温した。2時間還流させ反応液の一部をサンプリング
し、銅粉を濾過してからICP分析をしたら、As:3
7ppm、S:65ppmであった。次に同じ銅粉0.
65g(4.0モル)を沸騰下に仕込み2時間還流させ
冷却した後、反応液の一部をサンプリングし同様にIC
P分析したら、As:0.1ppm、S:1ppmであ
った。
Example 4 The same processing apparatus as in Example 1 was used to obtain 20 As.
To 500 g of phosphorus oxychloride reaction liquid containing 0 ppm and 80 ppm as S, 0.49 g (3.0 mol ratio) of flaky copper powder having an average diameter of 2.13 microns and a specific surface area of 0.703 m 2 / g was stirred at room temperature. And heated to boiling in about 26 minutes. Reflux for 2 hours, sample a part of the reaction solution, filter the copper powder, and perform ICP analysis.
It was 7 ppm and S: 65 ppm. Next, the same copper powder
After charging 65 g (4.0 mol) under boiling and refluxing for 2 hours and cooling, a part of the reaction solution was sampled and IC
As a result of P analysis, As was 0.1 ppm and S was 1 ppm.

【0014】実施例 5 攪拌翼つきの5頸フラスコを作り、その一つの頸に球形
ガラス管を取り付けガラスウールとガラスウールの間に
粒径1.45mmの銅粒子を63.5g(比表面積が
0.268m2 /gの銅粉と比表面積を同じになる様に
した。)詰めたものをセットした。この銅粒子の比表面
積は352cm2 /gであった。この球の先を別の頸に
セットしたジムロートコンデンサーと接続し気化したオ
キシ塩化燐がフラスコ内に戻る様にし、シーズヒーター
を巻き途中コンデスしない様にした。また、途中に液シ
ールを設けて逆流しない様にした。この中にAs:12
ppm、S:11ppmが含まれるオキシ塩化燐700
gを仕込んだ。攪拌しながらフラスコの温度をゆっくり
上げた。沸騰点まで温度を上げ液がゆっくり循環する様
に温度コントロールしながら気相反応を5時間した。循
環している液の一部をサンプリングして、ICPで分析
したら、As:0.3ppm、S:0.9ppmであっ
た。
Example 5 A 5-necked flask equipped with a stirring blade was prepared, a spherical glass tube was attached to one of the necks, and 63.5 g (specific surface area: 0) of copper particles having a particle size of 1.45 mm was placed between the glass wools. The specific surface area was made to be the same as that of copper powder of .268 m 2 / g.) The filled one was set. The specific surface area of the copper particles was 352 cm 2 / g. The tip of the ball was connected to a Dimroth condenser set on another neck so that the vaporized phosphorus oxychloride could return to the inside of the flask, and the sheath heater was wound so as not to cause a condes on the way. Also, a liquid seal was provided on the way to prevent backflow. In this: As: 12
ppm, S: phosphorus oxychloride 700 containing 11 ppm
I charged g. The temperature of the flask was slowly raised with stirring. The gas phase reaction was carried out for 5 hours while controlling the temperature so that the temperature was raised to the boiling point and the liquid was slowly circulated. When a part of the circulating liquid was sampled and analyzed by ICP, As: 0.3 ppm and S: 0.9 ppm were obtained.

【0015】実施例 6 Asとして22ppm、Sとして16ppmを含むオキ
シ塩化燐の反応液5000リットルが仕込まれている6
3 の攪拌機付きGL反応槽に平均直径2.13ミクロ
ン、比表面積0.703m2 /gの片状銅粉末3.0k
gを常温で攪拌しながら添加した。次いでスチームを通
しながら約70分を要して沸騰まで昇温した。還流下で
4時間攪拌してから冷却した。銅粉末は常法によって処
理し反応液の一部をサンプリングしてICP分析した。
除去処理したオキシ塩化燐反応液のAs,S含量は、A
sが0.1ppm、Sが0.6ppmであった。この液
を還流比0.5で蒸留して得た蒸留製品のAsは未検
出、Sは0.2ppmであった。
Example 6 5000 liters of a reaction solution of phosphorus oxychloride containing 22 ppm of As and 16 ppm of S was charged.
3.0 g of flaky copper powder having an average diameter of 2.13 microns and a specific surface area of 0.703 m 2 / g in a GL reactor equipped with a stirrer of m 3.
g was added at room temperature with stirring. Then, while passing steam, it took about 70 minutes to raise the temperature to boiling. The mixture was stirred under reflux for 4 hours and then cooled. The copper powder was treated by a conventional method and a part of the reaction solution was sampled for ICP analysis.
The As and S contents of the removed phosphorus oxychloride reaction solution are A
s was 0.1 ppm and S was 0.6 ppm. As was not detected in the distilled product obtained by distilling this liquid at a reflux ratio of 0.5, and S was 0.2 ppm.

【0016】実施例 7 実施例1と同様な反応装置を使用してAsとして69p
pm、Sとして66ppmを含むオキシ塩化燐反応液8
50gを仕込み、銅粉末8.0g(5.0モル比)、亜
鉛粉末5.0g(3.0モル比)を添加し沸騰下で同様
な時間還流したのち常法に従って処理した。液の一部を
分析したらAsとして0.7ppm、Sとして3.1p
pmの値を得た。ppmであった。
Example 7 Using the same reactor as in Example 1, 69 p as As
Phosphorus oxychloride reaction solution 8 containing 66 ppm as pm and S
50 g was charged, 8.0 g (5.0 mol ratio) of copper powder and 5.0 g (3.0 mol ratio) of zinc powder were added, and the mixture was refluxed under boiling for the same time and then treated according to a conventional method. When a part of the liquid is analyzed, 0.7 ppm as As and 3.1 p as S
The value of pm was obtained. It was ppm.

【0017】実施例 8 PCl3 を1.2wt%含有するオキシ塩化燐の反応液
600gをテフロン攪拌翼とバリテール型コンデンサー
がセットされた500mlの4頸フラスコに仕込み、次
いで平均粒径2.13ミクロン、比表面積0.703m
2 /gの銅粉末23.3g(Cu/PCl3 モル比=
7.0)を仕込み攪拌しながら、ゆっくりとマントルヒ
ーターで加熱してオキシ塩化燐の沸点まで昇温した。沸
騰してから約20分経過から銅粉末が次第に黒ずんで変
色し始めた。その後、銅粉は全体が黒色になり固形して
固まることもなく攪拌下で均一分散していた。106〜
108℃で5時間攪拌をした後、空冷して常温まで攪拌
下冷却した。反応液の一部をサンプリングして銅粉をヒ
ダ付き濾紙で濾過した。この液を燐化合物測定用に変更
したプローブを用いてFT−NMR(31P)で測定した
ところ、PCl3 は検出されなかった。また、GC分析
ではPCl3 含有量はNDであった。一方、古典的な容
量分析結果ではPCl3 含量は0.006wt%であっ
た。
The charged reaction solution 600g of phosphorous oxychloride containing Example 8 PCl 3 1.2 wt% to 4 necked flask 500ml Teflon stirring blade and Bariteru type capacitor is set, then the average particle size of 2.13 microns , Specific surface area 0.703m
23.3 g of 2 / g copper powder (Cu / PCl 3 molar ratio =
7.0) was charged and slowly heated with a mantle heater while stirring to raise the temperature to the boiling point of phosphorus oxychloride. Approximately 20 minutes after boiling, the copper powder gradually became dark and began to change color. Thereafter, the entire copper powder became black and solidly solidified without being solidified under stirring. 106 ~
After stirring at 108 ° C. for 5 hours, the mixture was air-cooled and cooled to room temperature with stirring. A part of the reaction solution was sampled and the copper powder was filtered through a filter paper with folds. When this solution was measured by FT-NMR ( 31 P) using a probe modified for measuring phosphorus compounds, PCl 3 was not detected. The GC analysis revealed that the PCl 3 content was ND. On the other hand, the classical volumetric analysis result showed that the PCl 3 content was 0.006 wt%.

【0018】実施例 9 不純物としてPCl3 を192ppm含んだオキシ塩化
燐反応液500gをバリテール型コンデンサーと温度
計、攪拌翼がセットされた500mlの4頸フラスコに
仕込んだ。次いで片状銅粉末0.32g(Cu/PCl
3 =7モル比)を仕込んだ。銅粉の平均粒径は5.68
ミクロン、比表面積は0.273m2 /gであった。攪
拌を開始してマントルヒーターで加熱して昇温した。沸
騰した後、約15分後に光沢のある銅粉は黒色になって
いた。オキシ塩化燐の沸点で5時間攪拌した後、常温ま
で冷却した。反応液の一部を採取し銅粉末を濾過して除
きFT−NMR(31P)でPCl3 を定量したら未検出
であった。容量分析では0.004wt%の値を得た。
Example 9 500 g of a phosphorus oxychloride reaction solution containing 192 ppm of PCl 3 as an impurity was charged into a 500 ml four-necked flask equipped with a Varitail condenser, a thermometer and a stirring blade. Next, 0.32 g of flaky copper powder (Cu / PCl
3 = 7 molar ratio) was charged. The average particle size of copper powder is 5.68.
Micron, specific surface area was 0.273 m 2 / g. Stirring was started and the temperature was raised by heating with a mantle heater. About 15 minutes after boiling, the shiny copper powder turned black. After stirring at the boiling point of phosphorus oxychloride for 5 hours, the mixture was cooled to room temperature. A part of the reaction solution was collected, the copper powder was removed by filtration, and PCl 3 was quantified by FT-NMR ( 31 P), which was not detected. A volumetric analysis gave a value of 0.004 wt%.

【0019】実施例 10 PCl3 528ppmを含んでいるオキシ塩化燐反応液
560gを温度計、攪拌翼とジムロートコンデンサー、
シリカゲル管をセットした500ml−4頸フラスコに
仕込んだ。次に電解銅(樹枝状粉末)1.00g(Cu
/PCl3 モル比=7.0)を仕込んだ。銅粉の平均粒
径は5.66ミクロン、比表面積は0.306m2 /g
であった。攪拌下マントルヒーターで加熱、昇温した。
108℃で沸騰してから約20分後に銅粉は黒色に変化
していた。この沸点で5時間攪拌加熱した後、常温まで
空冷した。反応液の一部をサンプリングし銅粉末を濾過
した液について実施例1と同様にPCl3 の含量分析を
したら未検出であった。
Example 10 560 g of a phosphorus oxychloride reaction solution containing 528 ppm of PCl 3 was thermometered, a stirring blade and a Dimroth condenser,
The mixture was placed in a 500 ml-4 neck flask with a silica gel tube set. Next, 1.00 g of electrolytic copper (dendritic powder) (Cu
/ PCl 3 molar ratio = 7.0). Copper powder has an average particle size of 5.66 microns and a specific surface area of 0.306 m 2 / g
Met. The mixture was heated with a mantle heater while stirring and heated.
About 20 minutes after boiling at 108 ° C., the copper powder turned black. After stirring and heating at this boiling point for 5 hours, it was cooled to room temperature by air. When the content of PCl 3 was analyzed in the same manner as in Example 1 with respect to the liquid obtained by sampling a part of the reaction liquid and filtering the copper powder, it was not detected.

【0020】実施例 11 PCl3 を0.002wt%含むオキシ塩化燐反応液5
200リットルが仕込まれている6m3 の攪拌機付きG
L反応槽に平均直径2.20ミクロン、比表面積0.7
1m2 /gの片状銅粉末0.573kgを仕込み攪拌下
でスチーム加熱しオキシ塩化燐の沸点まで昇温し6時間
還流下で攪拌加熱した。反応槽を冷却し常温にして、銅
粉末は常法により除去、反応液の一部をサンプリングし
て、31P−NMRで定量して残存PCl3 は未検出であ
った。一方、容量分析で0.001wt%の値を得た。
Example 11 Phosphorus oxychloride reaction solution 5 containing 0.002 wt% of PCl 3
200 liters of 6m 3 with a stirrer G
L reactor with an average diameter of 2.20 microns and a specific surface area of 0.7
0.573 kg of 1 m 2 / g flaky copper powder was charged and heated with steam under stirring to raise the temperature to the boiling point of phosphorus oxychloride, and then under reflux with stirring for 6 hours. The reaction tank was cooled to normal temperature, copper powder was removed by a conventional method, a part of the reaction solution was sampled, and quantitatively determined by 31 P-NMR, and residual PCl 3 was not detected. On the other hand, a value of 0.001 wt% was obtained by volumetric analysis.

【0021】実施例 12 5頸フラスコを製作しその一つの頸にガラス管(長さ1
0cm、径1.6cm)をセットし両端をガラスウール
で詰めその間に粒径1.45mmの銅粒子86gを詰
た。(比表面積:552cm2 /g)その他の頸には温
度計、攪拌翼をセットした。ガラス管の上部はコンデン
サーを接続し気化したオキシ塩化燐がフラスコ内に戻る
様にして途中で液化させないためシーズヒーターを巻い
てコントロールした。このフラスコの中にPCl3 が9
2ppm含まれるオキシ塩化燐680gを入れた。攪拌
しながらゆっくり温度を上げ沸騰して液が気化、循環す
る様にマントルヒーターで温度コントロールしながら銅
粒子とオキシ塩化燐のガスを気相接触させ7時間反応さ
せた。循環している反応液の一部をサンプリングし31
−NMRで定量したらPCl3 残存量は未検出であっ
た。一方、容量分析では0.001wt%以下であっ
た。
Example 12 A 5-neck flask was prepared and a glass tube (length 1
0 cm, diameter 1.6 cm) was set, and both ends were packed with glass wool, and 86 g of copper particles having a particle size of 1.45 mm were packed between them. (Specific surface area: 552 cm 2 / g) A thermometer and a stirring blade were set on the other neck. A condenser was connected to the upper part of the glass tube so that vaporized phosphorus oxychloride could return to the inside of the flask so as not to be liquefied on the way, and a sheath heater was wound to control. 9 mL of PCl 3 in this flask
680 g of phosphorus oxychloride containing 2 ppm was added. While stirring, the temperature was slowly raised to boiling and the liquid was vaporized and circulated, while controlling the temperature with a mantle heater, the copper particles and the gas of phosphorus oxychloride were brought into gas phase contact with each other and reacted for 7 hours. Sampling a part of the circulating reaction solution, 31 P
PCl 3 residual amount Once you have quantified by -NMR was undetected. On the other hand, the volumetric analysis was 0.001 wt% or less.

【0022】実施例 13 PCl3 0.011wt%を含むオキシ塩化燐反応液
1.0リットルを2.0リットル4頸フラスコに仕込
み、攪拌下に銅粉末0.600g、錫粉末1.120g
を仕込み沸騰点まで昇温し5時間還流下で保持した。反
応終了後空冷して常温まで冷却ののち、反応液の一部を
サンプリングし金属粉を濾過して容量分析により残存P
Cl3 を測定して9ppmの値を得た。
Example 13 A 2.0-liter 4-neck flask was charged with 1.0 liter of a phosphorus oxychloride reaction solution containing 0.011 wt% of PCl 3, and 0.600 g of copper powder and 1.120 g of tin powder were stirred.
Was charged to a boiling point, and the mixture was kept under reflux for 5 hours. After the reaction is complete, the mixture is air-cooled and cooled to room temperature, a part of the reaction solution is sampled, the metal powder is filtered, and the residual P
Cl 3 was measured and a value of 9 ppm was obtained.

【0023】実施例 14 PCl3 0.053wt%を含むオキシ塩化燐反応液6
00gを500ml4頸フラスコに仕込み攪拌下に亜鉛
末1.10gを仕込み、昇温してオキシ塩化燐の沸点で
6時間還流下に保持した。反応終了後、空冷して常温ま
で冷却したのち反応液の一部をサンプリングし亜鉛末を
分離して容量分析により残存PCl3 を測定したら、
0.0009wt%であった。
Example 14 Phosphorus oxychloride reaction solution 6 containing 0.053 wt% of PCl 3
A 500 ml 4-necked flask was charged with 00 g, and 1.10 g of zinc powder was charged with stirring, the temperature was raised, and the mixture was kept under reflux at the boiling point of phosphorus oxychloride for 6 hours. After completion of the reaction, after air cooling and cooling to room temperature, a part of the reaction solution was sampled, zinc powder was separated, and residual PCl 3 was measured by volumetric analysis.
It was 0.0009 wt%.

【0024】実施例 15 PCl3 が0.92wt%とAsCl3 (Asとして1
10ppm)、PSCl3 (Sとして58ppm)を含
むオキシ塩化燐の反応液1200gをテフロン攪拌翼と
バリテール型コンデンサーがセットされた1000ml
の4頸フラスコに仕込み、次に平均径2.20ミクロ
ン、比表面積0.723m2 /gの銅粉末38.0g
(Cu/PCl3 +As+Sモル比=7.0)を仕込み
攪拌しながら、ゆっくりマントルヒーターで加熱してオ
キシ塩化燐の沸点まで昇温した。昇温はじめてから約2
5分が経過した頃、添加した銅粉末が次第に黒ずんで変
色し始めた。その後、銅粉末は全体が黒色になったが固
まることもなく攪拌下で均一に分散した状態であった。
106〜108℃で5時間攪拌を続けた後、空冷して常
温まで冷却した。この液を燐化合物測定用に変更したプ
ローブを用いてFT−NMR(31P)で測定したとこ
ろ、PCl3 含量は未検出であった。また、容量分析で
はPCl3 の残存量は0.003wt%以下であった。
一方、AsとSの残量を確認するため別途、反応液をサ
ンプリングしてICP分析を行ったら、Asとして0.
2ppm、Sとして2ppmであった。
[0024] is Example 15 PCl 3 as 0.92% and AsCl 3 (As 1
1200ppm of phosphorus oxychloride reaction solution containing 10ppm) and PSCl 3 (58ppm as S) 1000ml with Teflon stirring blade and Varitail condenser
In a 4-necked flask, and then 38.0 g of copper powder having an average diameter of 2.20 microns and a specific surface area of 0.723 m 2 / g.
(Cu / PCl 3 + As + S molar ratio = 7.0) was charged and slowly heated with a mantle heater while stirring to raise the temperature to the boiling point of phosphorus oxychloride. About 2 after the temperature starts
After 5 minutes, the added copper powder gradually became dark and began to change color. After that, the copper powder became black in its entirety but did not solidify and was in a state of being uniformly dispersed under stirring.
After continuing stirring at 106 to 108 ° C. for 5 hours, the mixture was air-cooled and cooled to room temperature. When this solution was measured by FT-NMR ( 31 P) using a probe modified for measuring phosphorus compounds, no PCl 3 content was detected. Further, in the volume analysis, the residual amount of PCl 3 was 0.003 wt% or less.
On the other hand, in order to confirm the remaining amounts of As and S, the reaction solution was separately sampled and subjected to ICP analysis.
It was 2 ppm and S was 2 ppm.

【0025】実施例 16 200ml4頸フラスコにAsCl3 (Asとして46
ppm)、PSCl3(Sとして33ppm)とPCl
5 27.15g(0.130モル)を含むオキシ塩化燐
液を調製した。この液を攪拌、還流下に1時間保持した
のち、Cu粉末82g(1.29モル、Cu/As+S
+PCl5 =7.5モル比)を添加した。引き続き還流
下(104〜106℃)で4時間保持した。添加した銅
粉は黒色になっていた。反応液を冷却した後、一部をサ
ンプリングし、ICP測定でAsとして0.7ppm、
Sとして2.0ppmを、31P−NMR測定でPCl5
は未検出であった。
Example 16 A 200 ml 4-necked flask was charged with AsCl 3 (as As 46
ppm), PSCl 3 (33 ppm as S) and PCl
5 A phosphorus oxychloride solution containing 27.15 g (0.130 mol) was prepared. After this liquid was stirred and kept under reflux for 1 hour, 82 g of Cu powder (1.29 mol, Cu / As + S
+ PCl 5 = 7.5 molar ratio) was added. Then, it was kept under reflux (104 to 106 ° C.) for 4 hours. The added copper powder was black. After cooling the reaction solution, a part of it was sampled and 0.7 ppm as As was measured by ICP.
2.0 ppm as S, PCl 5 by 31 P-NMR measurement
Was not detected.

【0026】比較例1 Asとして52ppm、Sとして36ppmを含むオキ
シ塩化燐反応液を500mlを三角フラスコに仕込み、
30cmウイドマー精溜塔を用いて5時間かけてゆっく
りと全溜出させた。この液をICPにて分析したらAs
として12ppm、Sとして16ppmの値を得た。
Comparative Example 1 500 ml of a phosphorus oxychloride reaction solution containing 52 ppm as As and 36 ppm as S was charged in an Erlenmeyer flask,
Using a 30 cm Widmer rectification column, the whole solution was slowly distilled over 5 hours. If this liquid is analyzed by ICP, As
Of 12 ppm and S of 16 ppm were obtained.

【0027】比較例2 Asとして31ppm、Sとして18ppmを含むオキ
シ塩化燐反応液6000リットルを30mの充填塔を使
用し還流比3で13時間かけて蒸留した。蒸留収率は9
9.2%であった。得られた製品5950リットルの一
部をICP分析したらAsとして、5.0ppm、Sと
して10ppmを含んでいた。
Comparative Example 2 6000 liters of a phosphorus oxychloride reaction solution containing 31 ppm as As and 18 ppm as S was distilled at a reflux ratio of 3 for 13 hours using a 30 m packed column. Distillation yield is 9
It was 9.2%. ICP analysis of a part of 5950 liters of the obtained product revealed that it contained 5.0 ppm as As and 10 ppm as S.

【0028】比較例3 AsCl3 として0.1%含んでいるオキシ塩化燐の反
応液5500リットルを10mの充填塔を用いて還流比
3で12時間を要して精留した。本留4000リットル
の時点で一部をサンプリングしICPで分析したらAs
として72ppm含まれていた。留出液は釜残700リ
ットルを残して4800リットルであったがこの液をサ
ンプリングしICP分析を行ったらAsとして0.7%
であった。
Comparative Example 3 5500 liters of a reaction solution of phosphorus oxychloride containing 0.1% AsCl 3 was rectified using a 10 m packed column at a reflux ratio of 3 for 12 hours. At the time of 4000 liters of Hondome, part of the sample was sampled and analyzed by ICP.
It was contained as 72 ppm. The distillate was 4800 liters, leaving 700 liters remaining in the kettle, but when this solution was sampled and ICP analysis was performed, it was 0.7% as As.
Met.

【0029】比較例4 実施例1と同様な反応方法でCuOを7.0モル比使用
して同様に反応したがAs,Sは全く除去されなかっ
た。
Comparative Example 4 The same reaction method as in Example 1 was repeated except that CuO was used in a molar ratio of 7.0, but As and S were not removed at all.

【0030】比較例5 実施例8と同様な装置と仕込み量によってCuCl7.
5モル比使用してPCl3 の除去を行い同様に分析を行
ったがPCl3 は全く除去されなかった。
COMPARATIVE EXAMPLE 5 CuCl7.
PCL 3 was removed using a 5 molar ratio and a similar analysis was conducted, but PCL 3 was not removed at all.

【0031】[0031]

【発明の効果】本発明の精製方法は比較例からも明らか
な様に分離することが困難な不純物を蒸留などの操作を
することなく容易に分離除去して高品位のオキシ塩化燐
をほぼ定量的に得ることができるので工業的に非常に優
れた方法である。
EFFECTS OF THE INVENTION According to the purification method of the present invention, as is apparent from the comparative examples, impurities that are difficult to separate can be easily separated and removed without performing operations such as distillation, and high-quality phosphorus oxychloride can be almost quantified. This is a very excellent method industrially because it can be obtained in a desired manner.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮喜 誠 富山県高岡市向野本町300 日本曹達株式 会社高岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Miyaki 300 Mukaihonmachi, Takaoka City, Toyama Prefecture Inside the Takaoka Factory of Nippon Soda Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オキシ塩化燐の製造において、不純物を
含有するオキシ塩化燐と周期律表第4〜5周期の元素と
を接触させることを特徴とするオキシ塩化燐の精製方
法。
1. A method for purifying phosphorus oxychloride, which comprises contacting phosphorus oxychloride containing impurities with an element of the 4th to 5th periods of the periodic table in the production of phosphorus oxychloride.
【請求項2】 周期律表第4〜5周期の元素がCu,A
g,Zn,Sn,Niである請求項1のオキシ塩化燐の
精製方法。
2. The elements of the 4th to 5th periods of the periodic table are Cu and A.
The method for purifying phosphorus oxychloride according to claim 1, which is g, Zn, Sn, or Ni.
JP06689895A 1994-11-24 1995-03-01 Method for purifying phosphorus oxychloride Expired - Lifetime JP3697704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06689895A JP3697704B2 (en) 1994-11-24 1995-03-01 Method for purifying phosphorus oxychloride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-314096 1994-11-24
JP31409694 1994-11-24
JP06689895A JP3697704B2 (en) 1994-11-24 1995-03-01 Method for purifying phosphorus oxychloride

Publications (2)

Publication Number Publication Date
JPH08198608A true JPH08198608A (en) 1996-08-06
JP3697704B2 JP3697704B2 (en) 2005-09-21

Family

ID=26408105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06689895A Expired - Lifetime JP3697704B2 (en) 1994-11-24 1995-03-01 Method for purifying phosphorus oxychloride

Country Status (1)

Country Link
JP (1) JP3697704B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117583A3 (en) * 2008-03-20 2009-11-19 Sigma-Aldrich, Co Purification and preparation of phosphorus-containing compounds
US8906340B2 (en) 2011-02-23 2014-12-09 E I Du Pont De Nemours And Company Purification of TiCl4 through the production of new co-products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117583A3 (en) * 2008-03-20 2009-11-19 Sigma-Aldrich, Co Purification and preparation of phosphorus-containing compounds
CN101977920A (en) * 2008-03-20 2011-02-16 西格玛-奥吉奇公司 Purification and preparation of phosphorus-containing compounds
US8906340B2 (en) 2011-02-23 2014-12-09 E I Du Pont De Nemours And Company Purification of TiCl4 through the production of new co-products

Also Published As

Publication number Publication date
JP3697704B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
EP0675077B1 (en) Method for recovering metal chlorides from silicon or ferrosilicon alloys which have been reacted with chlorinating agents
US2416191A (en) Method for the purification of titanium tetrachloride
US4732996A (en) Treatment of alkoxysilanes
DE19507841B4 (en) Treatment of exhaust gas to remove hydrogen chloride
JPH08198608A (en) Method for purifying phosphorus oxychloride
JP3725765B2 (en) Germanium recovery method and apparatus
US3216785A (en) Process for the purification of halogenated volatile compounds of germanium and silicon
RU2537302C1 (en) Method of tetraethoxysilane purification
KR20170027824A (en) Method for purifying chlorosilane
EP1585707B1 (en) Purification of titanium tetrachloride
AU2012220662B2 (en) Purification of TiCl4 through the production of new co-products
EP0113139B1 (en) Process for the preparation of boric acid as well as process for the preparation of silica using boric acid thus obtained
US2457917A (en) Purification of titanium halides by treatment with metal hydrides and distillation
JP7313270B2 (en) Method for purifying high-purity trichlorosilane
JPS63203731A (en) Production of high-purity metal bismuth
US4305889A (en) Process for producing α, α, α-trifluoro-o-toluic fluoride
US2758009A (en) Purification of titanium tetrachloride
US20130302228A1 (en) PURIFICATION OF TiCl4 THROUGH THE PRODUCTION OF NEW CO-PRODUCTS
JPS63203730A (en) Production of high-purity metal bismuth
US5993609A (en) Process for the purification of phosphorus oxychloride
CN113831213A (en) Method for preparing ethyl iodide by recycling iodine ion-containing solution
WO2020114609A1 (en) Process for reducing the content of boron compounds in halosilane-containing compositions
JPS5913618A (en) Method for purifying silicon tetrachloride
EP2678274A1 (en) PURIFICATION OF TiCl4 THROUGH THE PRODUCTION OF NEW CO-PRODUCTS
JPH0931080A (en) High-purity tetramethoxysilane and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050626

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

EXPY Cancellation because of completion of term