JPS63203731A - Production of high-purity metal bismuth - Google Patents

Production of high-purity metal bismuth

Info

Publication number
JPS63203731A
JPS63203731A JP62034547A JP3454787A JPS63203731A JP S63203731 A JPS63203731 A JP S63203731A JP 62034547 A JP62034547 A JP 62034547A JP 3454787 A JP3454787 A JP 3454787A JP S63203731 A JPS63203731 A JP S63203731A
Authority
JP
Japan
Prior art keywords
bismuth
hydrochloric acid
soln
purity
bicl3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034547A
Other languages
Japanese (ja)
Inventor
Toshiaki Ito
寿章 伊藤
Yuichi Owa
大輪 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP62034547A priority Critical patent/JPS63203731A/en
Publication of JPS63203731A publication Critical patent/JPS63203731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce metal Bi having extremely high purity by dissolving crude Bi2O3 in concd. hydrochloric acid to prepare an aq. Bi2Cl3 soln., evaporating away the moisture, hydrochloric acid component and low boiling matter contained therein by rectification, then subjecting the soln. further to distillation and refining, forming BiOCl by hydrolysis and subjected to same to hydrogen reduction in succession thereto. CONSTITUTION:After the Bi2O3 having about 99.9% purity is dissolved with the concd. hydrochloric acid, the residues contained therein are removed by suction filtration and the BiCl3-contg. soln. is recovered. The soln. is put into a rectification apparatus and is heated to evaporate away the moisture, hydrochloric acid component and low boiling matter contained therein; thereafter, the soln. is distilled at the temp. near the b.p. to produce refined BiCl3. The BiCl3 is dropped into pure water to form BiOCl by the hydrolysis reaction and after the BiOCl is cleaned and dried, the same is subjected to the hydrogen reduction at 700-900 deg.C in gaseous hydrogen flow. The metal Bi which has extremely high purity and is usable as a raw material for various electronic materials is thus stably produced at a high yield of the raw material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粗酸化ビスマスから純度99.9989重量%
以上の高純度金属ビスマスを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is based on crude bismuth oxide with a purity of 99.9989% by weight.
The present invention relates to a method for producing the above-mentioned high-purity metal bismuth.

〔従来の技術〕[Conventional technology]

電気光学効果、光伝導特性機能を持っB112SiOz
B112SiOz with electro-optic effect and photoconductive properties
.

や、シンチレータ用材料のB14GesOt2、Bi 
、、GeO2゜なとの酸化物結晶の原料として、できる
だ客す高純度の酸化ビスマス(Bi12:s )が必要
てあり、この酸化ビスマスの原料となる金属ビスマス(
Bi)の高純度化が求められている。
, scintillator materials B14GesOt2, Bi
As a raw material for oxide crystals such as GeO2°, bismuth oxide (Bi12:s) of as high purity as possible is required, and metal bismuth (Bi12:s), which is the raw material for this bismuth oxide, is required.
Bi) is required to be highly purified.

金属ビスマスは粗金属ビスマスの電解精製又は酸化ビス
マスの還元で得るのが一般的で、その純度は99.99
重量%程度が限度であり、さらに純度を高めるため従来
はゾーン精製法が用いられている。この方法によれば0
L99911量%程度の金属ビスマスを得ることができ
るが、この方法ではコスト、量産などの面から難点があ
り、また分配係敢が1に近い元素や、1より大きい元素
については精製が困難で、さらに高純度のものを得るこ
とができなかった。
Bismuth metal is generally obtained by electrolytic refining of crude metal bismuth or reduction of bismuth oxide, and its purity is 99.99.
The limit is about % by weight, and in order to further increase the purity, a zone purification method has conventionally been used. According to this method, 0
Although it is possible to obtain metallic bismuth with a concentration of about 99911% by mass, this method has drawbacks in terms of cost and mass production, and it is difficult to purify elements whose partition coefficient is close to 1 or larger than 1. Even higher purity could not be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来法の欠点を解消し、電子材料
等の原料に使用される純度99.9999重量%以上の
高純度の金属ビスマススを収串良(、巨つ低コストで得
ることができる高純度金属ビスマスの製造方法を提供す
ることにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional methods described above, and to obtain highly pure metal bismuth at a high purity (and extremely low cost) with a purity of 99.9999% by weight or more, which is used as a raw material for electronic materials, etc. The purpose of the present invention is to provide a method for producing high-purity metal bismuth.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この目的を達成するために本発明の方法は、粗酸化ビス
マスを濃塩酸で溶解し、残渣を濾別して三塩化ビスマス
水溶液を回収し、該三塩化ビスマス水溶液を蒸留器又は
精留器に入れて水分、塩酸及び低沸点物を蒸発させた後
、三塩化ビスマスの沸点近くの温度で蒸留して精製三塩
化ビスマスを回収し、該精製三塩化ビスマスを加水分解
してオキシ塩化ビスマスとした後、該オキシ塩化ビスマ
スを700〜900℃の水素気流中で還元するように構
成したものである。
To achieve this objective, the method of the present invention involves dissolving crude bismuth oxide in concentrated hydrochloric acid, filtering off the residue to recover a bismuth trichloride aqueous solution, and putting the bismuth trichloride aqueous solution into a distiller or rectifier. After evaporating water, hydrochloric acid, and low-boiling substances, distillation is performed at a temperature near the boiling point of bismuth trichloride to recover purified bismuth trichloride, and the purified bismuth trichloride is hydrolyzed to bismuth oxychloride. It is configured to reduce the bismuth oxychloride in a hydrogen stream at 700 to 900°C.

〔作用〕[Effect]

本発明では粗酸化ビスマスを1.1・5〜1.3当量の
濃塩酸(約35%)で攪拌溶解し、チーゲル等を用いて
吸引濾過を行い、不溶解残渣を除いて三塩化ビスマス水
溶液を得る。
In the present invention, crude bismuth oxide is stirred and dissolved in 1.1.5 to 1.3 equivalents of concentrated hydrochloric acid (approximately 35%), and suction filtration is performed using a Ziegel etc. to remove the undissolved residue and form a bismuth trichloride aqueous solution. get.

(Bia03+ 6 HCI→2 BiCl3+ 3 
B20 )この溶解工程で濃塩酸は1.15〜1.3当
量使用するのが好ましい、!、3当量以上だと蒸留又は
精留工程で水、塩酸などを除去するため過剰の塩酸は効
率的に良くないからである。また1、15当量以下だと
酸化ビスマスの未溶解分が残ったり、溶解に長時間かか
る。
(Bia03+ 6 HCI→2 BiCl3+ 3
B20) It is preferable to use 1.15 to 1.3 equivalents of concentrated hydrochloric acid in this dissolution step! This is because if the amount is 3 equivalents or more, water, hydrochloric acid, etc. are removed in the distillation or rectification process, so excess hydrochloric acid is not efficient. If the amount is less than 1.15 equivalents, undissolved bismuth oxide may remain or it will take a long time to dissolve.

この三塩化ビスマス水溶液を石英製の蒸留器、好ましく
は精留器を用い常圧で精製を行う、始めは100〜ll
O℃で水、塩酸及び低沸点物を蒸発させ、温度が急激に
上昇し蒸留器又は精留器の塔頂温度が三塩化ビスマスの
沸点である約450℃になってから全還瀉させ、塔内を
平衡状態に到達させた後留出を開始し、三塩化ビスマス
重量の5〜lO%を初留として分離し、その後の留分8
0〜90%を水留として回収する。
This bismuth trichloride aqueous solution is purified at normal pressure using a quartz distiller, preferably a rectifier.
Water, hydrochloric acid and low-boiling substances are evaporated at 0°C, and the temperature rises rapidly until the top temperature of the distiller or rectifier reaches about 450°C, which is the boiling point of bismuth trichloride, and then the mixture is completely refluxed. Distillation is started after reaching an equilibrium state in the column, and 5 to 10% of the weight of bismuth trichloride is separated as the first distillation, and the subsequent fraction 8
0-90% is recovered as water fraction.

蒸留又は精留で初留の量を三塩化ビスマス重量の5〜l
O%とするのは低沸点物の混入を避けるためであり、1
0%以上とすると収率が悪くなるので好ましくない、ま
た水留を80〜90%に止めたのも高沸点物が混入しな
いようにしたためである。
Distillation or rectification reduces the amount of initial distillation to 5 to 1 liters of bismuth trichloride weight.
The reason for setting O% is to avoid contamination with low boiling point substances, and 1
If it is more than 0%, the yield will be poor, which is not preferable, and the reason why the water distillation was limited to 80 to 90% was to prevent high boiling point substances from being mixed in.

得られた精製三塩化ビスマスは過剰の純水(5MΩ以上
)中に滴下しオキシ塩化ビスマスとする。
The obtained purified bismuth trichloride is dropped into excess pure water (5 MΩ or more) to obtain bismuth oxychloride.

(8iC1a  +  1120  →B10C1+ 
2 HCI  )三塩化ビスマスを加水分解してオキシ
塩化ビスマスとするのは、三塩化ビスマスのままで水素
還元を行うと回収率が悪いためである。
(8iC1a + 1120 →B10C1+
2 HCI) The reason why bismuth trichloride is hydrolyzed to produce bismuth oxychloride is because hydrogen reduction of bismuth trichloride as it is results in poor recovery.

得られたオキシ塩化ビスマスは洗浄乾燥後700〜90
0’ICの水素気流中で水素還元を行い金属ビスマスを
得る。
The obtained bismuth oxychloride has a molecular weight of 700 to 90 after washing and drying.
Hydrogen reduction is performed in a hydrogen stream at 0'IC to obtain metal bismuth.

<2 B10C1+ 3 +12→2 Bi” + 2
 HCI + 2 Had)ここで得た金属ビスマスは
酸洗して表面酸化物を除去することにより高純度金属ビ
スマスを得ることができる。オキシ塩化ビスマスの還元
温度を700〜900℃としたのは、700℃以下では
還元速度が遅<、900℃以上では金属ビスマスの回収
率が悪くなるからである。
<2 B10C1+ 3 +12→2 Bi” + 2
HCI + 2 Had) High purity metal bismuth can be obtained by pickling the metal bismuth obtained here to remove surface oxides. The reason why the reduction temperature of bismuth oxychloride is set to 700 to 900°C is that below 700°C, the reduction rate is slow, and above 900°C, the recovery rate of bismuth metal becomes poor.

〔実施例〕〔Example〕

実施例1 不純物を含有した純度99.8%の醸化ビスマスtoo
o gを試薬1級の濃塩酸1.8 H中に入れて攪拌溶
解し、チーゲルを用いて吸引減退を行い不溶解IFII
 tfiを除いて三塩化ビスマス水溶液を得る。この三
塩化ビスマス水溶液を石英製の内容量2ヰの精留フラス
コに入れ、高さ60口の充填式カラム精留器を用いて精
製を行った。始めは100 N110℃で水、塩酸及び
低沸点物を蒸発させ、温度が急激に上昇して塔頂温度が
約450℃になってから10分間全還流を行い、次いで
10分間初留を回収し、以後70分間本水壷回収した。
Example 1 Brewed bismuth too with a purity of 99.8% containing impurities
0g in 1.8 H of concentrated hydrochloric acid of grade 1 reagent, stirred and dissolved, and reduced by suction using Ziegel to remove undissolved IFII.
A bismuth trichloride aqueous solution is obtained by removing tfi. This bismuth trichloride aqueous solution was placed in a rectifying flask made of quartz and having an internal capacity of 2 mm, and purified using a packed column rectifier with a height of 60 necks. Initially, water, hydrochloric acid, and low-boiling substances were evaporated at 100 N and 110°C, and after the temperature rose rapidly and the top temperature reached approximately 450°C, total reflux was performed for 10 minutes, and then the initial distillate was collected for 10 minutes. After that, the main water bottle was collected for 70 minutes.

得られた水留の三塩化ビスマスは950gであった。こ
の三塩化ビスマスを過剰の純水(5MΩ)中書と滴下し
、完全にオキシ塩化ビスマスにしてレバルプ洗浄、乾燥
を行って乾量760gのオキシ塩化ビスマスを得た。こ
れを高純度黒鉛ポートに入れ800℃の水素気流中で3
時間水素還元を行い、10%の硝酸で酸洗し金属ビスマ
ス 540gを得た。使用した原、料の分光分析結果及
び得られた高純度金属ビスマス中の不純物の含有量を第
1表に示すat’た比較のためゾーン請製法によって得
たものの不純物の含有量も併せて第1表に示す。
The amount of bismuth trichloride in the resulting water distillate was 950 g. This bismuth trichloride was added dropwise with excess pure water (5 MΩ) to completely convert it into bismuth oxychloride, followed by Revalp washing and drying to obtain a dry weight of 760 g of bismuth oxychloride. This was placed in a high-purity graphite port and placed in a hydrogen stream at 800℃ for 3 hours.
Hydrogen reduction was carried out for a period of time, followed by pickling with 10% nitric acid to obtain 540 g of metal bismuth. The spectroscopic analysis results of the raw materials used and the content of impurities in the obtained high-purity metal bismuth are shown in Table 1.For comparison, the content of impurities in the product obtained by the zone contract manufacturing method is also shown. It is shown in Table 1.

この結果から高純度金属ビスマス中の不純物の合計は0
.84ppmであり、最終収率は6002%であった。
From this result, the total amount of impurities in high-purity metal bismuth is 0.
.. 84 ppm, and the final yield was 6002%.

実施例2 不純物を含有した実施例1とは異なる純度99.9%の
酸化ビスマスを実施例1と同様に処理をした結果を同じ
く第1表に示す、この結果から高純度金属ビスマス中の
不純物の合計は0.[lppmであり、最終収率は62
.0%であった。
Example 2 Bismuth oxide with a purity of 99.9%, which is different from Example 1 and which contains impurities, was treated in the same manner as in Example 1. The results are also shown in Table 1. From these results, impurities in high purity metal bismuth were determined. The total is 0. [lppm, final yield is 62
.. It was 0%.

〔効果〕〔effect〕

本発明によれば純度99.9999重量%以上の高純度
金属ビスマスを安定して製造することができる。
According to the present invention, high purity metallic bismuth having a purity of 99.9999% by weight or more can be stably produced.

また不純物含有量の多い粗酸化ビスマスを用いた場合に
も、当初の蒸留を繰り返すことにより高純度の金属ビス
マスを得ることが可能であり、その工業的価値は大なる
ものがある。
Furthermore, even when crude bismuth oxide containing a large amount of impurities is used, it is possible to obtain highly pure metallic bismuth by repeating the initial distillation, which has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 粗酸化ビスマスを濃塩酸で溶解し、残渣を濾別して三塩
化ビスマス水溶液を回収し、該三塩化ビスマス水溶液を
蒸留器又は精留器に入れて水分、塩酸及び低沸点物を蒸
発させた後、三塩化ビスマスの沸点近くの温度で蒸留し
て精製三塩化ビスマスを回収し、該精製三塩化ビスマス
を加水分解してオキシ塩化ビスマスとした後、該オキシ
塩化ビスマスを700〜900℃の水素気流中で還元す
ることを特徴とする高純度金属ビスマスの製造方法。
Crude bismuth oxide is dissolved in concentrated hydrochloric acid, the residue is filtered to recover a bismuth trichloride aqueous solution, and the bismuth trichloride aqueous solution is put into a distiller or rectifier to evaporate water, hydrochloric acid, and low-boiling substances, and then Purified bismuth trichloride is recovered by distillation at a temperature close to the boiling point of bismuth trichloride, and the purified bismuth trichloride is hydrolyzed to bismuth oxychloride. The bismuth oxychloride is then heated in a hydrogen stream at 700 to 900°C. A method for producing high-purity metal bismuth, characterized by reducing it with
JP62034547A 1987-02-19 1987-02-19 Production of high-purity metal bismuth Pending JPS63203731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034547A JPS63203731A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034547A JPS63203731A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Publications (1)

Publication Number Publication Date
JPS63203731A true JPS63203731A (en) 1988-08-23

Family

ID=12417335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034547A Pending JPS63203731A (en) 1987-02-19 1987-02-19 Production of high-purity metal bismuth

Country Status (1)

Country Link
JP (1) JPS63203731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816424B1 (en) 2006-12-22 2008-03-25 인하대학교 산학협력단 Photocatalyst having bismuthoxide-bismuthoxyhalide junction structure and preparation method thereof
JP2013139594A (en) * 2011-12-28 2013-07-18 Jx Nippon Mining & Metals Corp Method for treating bismuth electrolytic slime
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
JP5903497B2 (en) * 2012-11-02 2016-04-13 Jx金属株式会社 Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816424B1 (en) 2006-12-22 2008-03-25 인하대학교 산학협력단 Photocatalyst having bismuthoxide-bismuthoxyhalide junction structure and preparation method thereof
JP2013139594A (en) * 2011-12-28 2013-07-18 Jx Nippon Mining & Metals Corp Method for treating bismuth electrolytic slime
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
JP5903497B2 (en) * 2012-11-02 2016-04-13 Jx金属株式会社 Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy

Similar Documents

Publication Publication Date Title
JP4646251B2 (en) Method for acid recovery from aqueous etching mixture
JPS61146717A (en) Purification of tantalum
JPS6034498B2 (en) Collection and purification method of germanium valuables and germanium valuables obtained by this method
US3386892A (en) Purification of fluosilicic acid solution by distillation with phosphoric acid solution
CA1288212C (en) Process for the recovery of ammonia and fluoride values from ammonium fluoride solutions
JPH0344131B2 (en)
JPS63203731A (en) Production of high-purity metal bismuth
RU2386713C1 (en) Zirconium-bearing raw material processing method
JP3955092B2 (en) Method for treating dissociated zircon
RU2624749C2 (en) Method of obtaining beryllium oxide and beryllium metal
EP0210236A1 (en) Process for the production of high purity zirconia
CN109019682B (en) Zirconium oxychloride and preparation method thereof
JPH04300206A (en) Purification of silicon chloride
JPS63315519A (en) Method for recovering waste liquor from acid cleaning of steel
AU586467B2 (en) Process for the production of high purity zirconia
US2530735A (en) Purification of titanium halides
EP0113139B1 (en) Process for the preparation of boric acid as well as process for the preparation of silica using boric acid thus obtained
US2811418A (en) Purification of germanium tetrachloride
JPH06263715A (en) Production of high-purity methanesulfonyl chloride
RU2599478C1 (en) Method of producing beryllium metal
JPH03199116A (en) After-treatment for waste-free chlorosilane distillation residue
JPS63203730A (en) Production of high-purity metal bismuth
US2808312A (en) Process for treating volatile metal fluorides
US5296001A (en) Process for separating silicic compounds from cleaning baths and plant for its application
JPS5842127B2 (en) Method for recovering hydrofluoric acid from fluorine-containing mud